PCY恒压变量泵

PCY恒压变量泵
PCY恒压变量泵

PCY14-1B:斜盘式恒压变量柱塞泵-----型号说明

PCY14-1B:斜盘式恒压变量柱塞泵-----结构剖视

PCY14-1B:斜盘式恒压变量柱塞泵-----工作原理

主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。

这种变量型式的泵,输出压力小于调定恒压力时,全排量输出压力油,即定量输出,在输出油液的压力达到调定压力时,就自动地调节泵流量,以保证恒压力,满足系统的要求。泵的输出恒压值,根据需要,在调压范围内可以无级调定,泵的结构见图6,该结构将输出的压力油同时通至变量活塞下腔和和恒压阀的控制油入口,当输出压力小于调定恒压力时,作用在恒压阀芯上的油压推力小于调定弹簧力,恒压阀处于开启状态,压力油进入变量活塞上腔,变量活塞压在最低位置,泵全排量输出压力油;当泵在调定恒压力工作时,作用在恒压阀芯上的油压推力等于调定弹簧力,恒压阀的进排油口同时处于开启状态,使变量活塞上下腔的油压推力相等,变量活塞平衡在某一位置工作,若液压阻尼(负载)加大,油压瞬时升高,恒压阀排油口开大、进油口关小,变量活塞上腔比较下腔压力降低、变量活塞向上移动,泵的流量减小,直至压力下降到调定恒压力,这时变量活塞在新的平衡位置工作。反之,若液压阻尼(负载)减小,油压瞬时下降,恒压阀进油口开大,排油口关小,变量活塞上腔比较下腔油压升高,变量活塞向下移动,泵的流量增大,直至压力上升至调定恒压力。

PCY14-1B:斜盘式恒压变量柱塞泵-----系列规格

在公称压力为31.5MPa下,还派生有1.25、5、13、16、32、100ml/r排量规格

PCY14-1B:斜盘式恒压变量柱塞泵-----功率计算

N=QP/(60η)(Kw ) 实际使用的电机功率

Q——流量L/min(实际使用流量)

P——压力MPa(实际使用压力)

η——总效率可取0.85

用户可按实际使用负荷照上列公式计算后选用电机。

PCY14-1B:斜盘式恒压变量柱塞泵-----外形尺寸

恒压与恒功率变量泵要点

PCY14-1B:斜盘式恒压变量柱塞泵-----结构剖视 PCY14-1B:斜盘式恒压变量柱塞泵-----工作原理 主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。 这种变量型式的泵,输出压力小于调定恒压力时,全排量输出压力油,即定量输出,在输出油液的压力达到调定压力时,就自动地调节泵流量,以保证恒压力,满足系统的要求。泵的输出恒压值,根据需要,在调压范围内可以无级调定,泵的结构见图6,该结构将输出的压力油同时通至变量活塞下腔和和恒压阀的控制油入口,当输出压力小于调定恒压力时,作用在恒压阀芯上的油压推力小于调定弹簧力,恒压阀处于开启状态,压力油进入变量活塞上腔,变量活塞压在最低位置,泵全排量输出压力油;当泵在调定恒压力工作时,作用在恒压阀芯上的油压推力等于调定弹簧力,恒压阀的进排油口同时处于开启状态,使变量活塞上下腔的油压推力相等,变量活塞平衡在某一位置工作,若液压阻尼(负载)加大,油压瞬时升高,恒压阀排油口开大、进油口关小,变量活塞上腔比较下腔压力降低、变量活塞向上移动,泵的流量减小,直至压力下降到调定恒压力,这时变量活塞在新的平衡位置工作。反之,若液压阻尼(负载)减小,油压瞬时下降,恒压阀进油口开大,排油口关小,变量活塞上腔比较下腔油压升高,变量活塞向下移动,泵的流量增大,直至压力上升至调定恒压力。

YCY14-1B:斜盘式压力补偿变量(恒功率)柱塞泵/马达-----结构剖视 YCY14-1B:斜盘式压力补偿变量柱塞泵/马达-----工作原理 主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。 压力补偿变量泵的出口流量随出口压力的大小近似地在一定范围内按恒功率曲线变化。当来自主体部分的高压油通过通道(a、(b、(c进入变量壳体下腔(d)后,油液经通道(e)分别进入通道(f)和(h),当弹簧的作用力大于由油道(f)进入伺服活塞下端环形面积上的液压推力时,则油液经(h)到上腔(g),

(完整版)恒压与恒功率变量泵

主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。 这种变量型式的泵,输出压力小于调定恒压力时,全排量输出压力油,即定量输出,在输出油液的压力达到调定压力时,就自动地调节泵流量,以保证恒压力,满足系统的要求。泵的输出恒压值,根据需要,在调压范围内可以无级调定,泵的结构见图6,该结构将输出的压力油同时通至变量活塞下腔和和恒压阀的控制油入口,当输出压力小于调定恒压力时,作用在恒压阀芯上的油压推力小于调定弹簧力,恒压阀处于开启状态,压力油进入变量活塞上腔,变量活塞压在最低位置,泵全排量输出压力油;当泵在调定恒压力工作时,作用在恒压阀芯上的油压推力等于调定弹簧力,恒压阀的进排油口同时处于开启状态,使变量活塞上下腔的油压推力相等,变量活塞平衡在某一位置工作,若液压阻尼(负载)加大,油压瞬时升高,恒压阀排油口开大、进油口关小,变量活塞上腔比较下腔压力降低、变量活塞向上移动,泵的流量减小,直至压力下降到调定恒压力,这时变量活塞在新的平衡位置工作。反之,若液压阻尼(负载)减小,油压瞬时下降,恒压阀进油口开大,排油口关小,变量活塞上腔比较下腔油压升高,变量活塞向下移动,泵的流量增大,直至压力上升至调定恒压力。

YCY14-1B:斜盘式压力补偿变量(恒功率)柱塞泵/马达-----结构剖视 YCY14-1B:斜盘式压力补偿变量柱塞泵/马达-----工作原理

主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。 压力补偿变量泵的出口流量随出口压力的大小近似地在一定范围内按恒功率曲线变化。当来自主体部分的高压油通过通道(a)、(b)、(c)进入变量壳体下腔(d)后,油液经通道(e)分别进入通道(f)和(h),当弹簧的作用力大于由油道(f)进入伺服活塞下端环形面积上的液压推力时,则油液经(h)到上腔(g),推动变量活塞向下运动,使泵的流量增加。当作用于伺服活塞下端环形面积上的液压推力大于弹簧的作用力时,则伺服活塞向上运动,堵塞通道(h),使(g)腔的油通过(i)腔而卸压,此时,变量活塞上移,变量头偏角减小,使泵的流量减小。 调节流量特性时,可先将限位螺钉拧至上端,根据所需的流量和压力变化范围,调节弹簧套,使其流量开始发生变化时的初始压力符合要求,然后将限位螺钉拧至终级压力时的流量不再发生变化,其中间的流量与压力变化关系由泵的本身设计所决定。

浅谈变量泵选用

常见的变量柱塞泵有恒压变量泵、恒功率变量泵、负载敏感变量泵等。对于要求压力接近或相同,流量变化较大的液压系统,如节流调速系统、泵保压系统、要求快速响应的中位常闭换向阀系统、蓄能器系统、电液伺服系统和电液比例换向阀系统等,一般应采用恒压变量泵作为动力源,避免采用定量泵-溢流阀系统和旁路节流调速系统,以降低溢流或旁流流量损耗。恒压变量泵的主要特征是:在系统压力达到泵的设定压力前为定量泵特性;达到设定压力时,泵的流量随负载需要自动调整;无负载时,泵的流量自动降至0,但其输出压力维持恒定。国外中高压节流调速液压系统广泛采用恒压变量泵。 对于负载缓慢增加、平均功率较小或接近最大压力的行程较小的液压系统,如大多数压机,一般应采用恒功率变量泵作为动力源,对平均速度影响不大,但可以大幅减小装机功率。恒功率变量泵的主要特征是:在系统压力达到泵的变量压力前为定量泵特性;达到变量压力时,泵的流量随负载增加自动减小,但压力/流量乘积大致为常数。变量转折压力和压力/流量乘积(功率)均可根据需要调整,是应用最广泛的变量泵之一。 对于功率较大、负载缓慢增加且有较长保压时间要求的系统,也可采用恒压恒功率变量泵。 对于要求分别具有不同压力、不同流量的多执行器系统,可采用双压、双流量恒压变量泵或负载敏感变量泵。双压、双流量恒压变量泵的输出特性可调整为相当于2台不同压力、不同流量的恒压变量泵,利用泵上附设的电磁阀来转换工作状态,适合于双执行器系统。负载敏感

变量泵的输出特性为:在泵的额定压力和流量范围内,其实际输出压力和流量能同时随负载需要自动调整;无负载时,泵的流量自动降至0,且输出压力较低,适合于多执行器系统。由于上述2种泵能同时降低压力和流量损耗,故具有更好的节能效果,将获得良好的应用前景。 附带指出,对于零流量时输出压力较高的各种恒压变量泵,不影响系统功能时最好仍设置卸载回路,因这类泵在高压零流量时的功率损耗和磨损均大于零压全流量时的功率损耗和磨损。 1、工况判断是第一步。

变量泵的原理与应用

1.1液压变量泵(马达)的发展简况、现状和应用 1.1.1 简述 液压变量泵及变量马达能在变量控制装置的作用下能够根据工作的需要在一定范围内调整输出特性,这一特点已被广泛地应用在众多的液压设备中,如:恒流控制、恒压控制、恒速控制、恒转矩控制、恒功率控制、功率匹配控制等。采用变量泵(马达)系统,具有显著的节能效果,近年来使用越来越广泛,而且新的结构和控制方式发展迅速,各个生产厂也在不断改进设计,用以满足液压系统自动控制的不断发展需要。 使用液压系统的目的在于可使某一执行对象以预定的速度向正反两个方向运动。此时,为调节速度需进行节流,致使能量有所损失,并导致系统效率降低,为此需采用变量泵实现容积控制。使用变量泵进行位置和速度控制时,能量损耗最小。正确地使用和调节泵的流量,可使其只排出满足负载运动速度需要的流量,而使用定量泵时只有部分流量供给负载,其余的流量需要旁通至油箱。 此外,为了在不增加管路阻力的条件下提高液压马达的速度,也有必要为减少液压马达的排量而采用变量马达。 表1-1 三大类泵的主要应用现状

排量类型型式模型样式容积排量 图1-1 三大类泵的变量调节 1.1.2 叶片变量泵(马达)的研发历史和发展 根据密封工作容积在转子旋转一周吸、排油次数的不同,叶片泵分为两类,即完成一次吸、排油的单作用叶片泵和完成两次吸、排油的双作用叶片泵。根据叶片泵输出流量是否可调,又可分为定量叶片泵和变量叶片泵,双作用叶片泵均为定量泵。根据叶片变量泵的工作特性不同可分为限压式、恒压式和恒流量式三类,其中限压式应用较多。 恒压式变量泵一般系单作用泵。该泵的定子可以沿一定方向作平衡运动,以改变定子与转子之间的偏心距,即改变泵的流量。它的变量机能由泵内的压力反馈伺服装置控制,能自动适应负载流量的需要并维持恒定的工作压力。在工作中,还可根据要求调节其恒定压力值。因此,在使用该泵的系统中,实际工况相当于定量泵加溢流阀,且没有多余的油液从系统中流过,使能耗和温升都大大降低,缩小了泵站的体积。该泵如与比例电磁阀匹配,可以在系统中实现多工作点自动控制。 限压式变量叶片泵有内反馈式和外反馈式两种。内反馈式变量泵的操纵力来自泵本身的排油压力,外反馈式是借助于外部的反馈柱塞实现反馈的。 限压式变量叶片泵具有压力调整装置和流量调整装置。泵的输出流量可根据负载变化自动调节,当系统压力高于泵调定的压力时流量会减少,使功率损失降为最低,其输出功率与负载工作速度和负载大小相适应,具有高效、节能、安全可靠等特点,特别适用于作容积调速液压系统中的动力源。先导式带压力补偿的变量叶片泵允许根据系统要求自动调节其流量,可在满足工作要求的同时降低能耗。压力补偿的工作原理是:在先导压力作用下,被控柱塞移动,从而使泵的定子在某一位置平衡。当输出压力与先导压力相等时,定子向中心移动,并使输出流量满足工作要求。在输出流量

恒压与恒功率柱塞泵区别

恒压与恒功率柱塞泵区别 2009-06-11 21:58 dancer77582008-05-03 09:40压力补偿变量泵和恒压泵有区别吗?? 如果有的话他们分别的原理是怎么样的,,有资料可以上传一下吗??,分别说明这两种泵最好了 包括泵内部的结构图,,液压原理符号解释,以及变量特性曲线, 恒压变量泵是在达到泵平身的设定压力后才开始变量,此时流量下降成陡线下降.这个比较好理解 但是压力补偿是个什么意思,,,怎么个补偿法??? 我在也在论坛搜索了一下,感觉还是比较迷惑,所以特在此求助, 希望大家可以帮帮忙,,,谢谢了!~!~ sycscom2008-05-03 15:36我们通常说的恒压泵就是压力补偿变量泵啦,一回事!补充一下,严格说压力补偿泵范围更广,但通常说的压力补偿变量泵就是恒压泵新j2008-05-03 17:40压力补偿变量泵应是恒功率变量泵,与恒压变量是两种不同变量形式的泵,常见的YCY为恒功率泵,PCY为恒压变量,原理百度下吧。dancer77582008-05-04 08:41谢谢两位的帮忙 我又查了下,压力补偿泵的变量特性曲线和恒功率的变量泵相近 我觉得这个PCY的恒压变量泵我觉得叫限压泵更合适一点,,呵呵.. 就象教材上的那个限压式变量叶片泵 不知道这样说,对不对??? sycscom2008-05-04 09:00三楼说的恒功率泵的确也属于压力补偿泵,但现在一般都没有压力补偿泵的这个叫法的,要么恒压泵,要么恒功率泵,或恒流量泵,等yuezhenju2008-05-04 10:18那柱塞泵和注射泵有人知道各自的原理图吗?谢谢恒源液压2008-05-11 08:25按教科书说法,压力补偿变量就是恒功率变量,这种油泵在到了设定压力后,随着压力的升高,流量会随之减少。所以功率接近恒定。 闫波2008-05-11 11:19 就象我们在液压专业内通常所说的压力是一个广义的概念一样(它包括工作压力,二次压力,负载压力,超调压力等等),压力补偿似乎也应该是一个广义的概念,即所有缘于压力的变化而产生的流量或其它参数变化的,都应该称为压力补偿. 我认为,对于泵而言,所有以压力作为输入信号,自动通过变量机构使流量发生变化的,都应该属于压力补偿变量泵(如通常所讲的恒压泵,恒功率泵,负载敏感泵等等). 当然,这样的定义不应该由我这样一个搞应用的人所下. 正如6楼所讲:“按教科书说法,压力补偿变量就是恒功率变量”. 我理解,派克所谓“带标准压力补偿器”的变量泵,实际就是我们通常所讲的恒压变量泵. 力士乐在变量泵的解释中,并没有哪些是或哪些不是“压力补偿”的说法. shenduowen172008-08-28 12:45根据PARKER给出的压力——流量曲线可知,当流量一旦调定,其流量随压力的变化有很少的变化。当到达设定压力时,其流量和压力的关系又与恒功率泵的变化相同,所以这种泵应该分开看

恒压与恒功率变量泵

、恒压阀 晋梁由封 配抽盘缸体| 柱塞 /刻度盘 变量活塞 娈童竟作 下法兰 传刼轴 法兰盘 泵体 泵壳 回程盘 - 变童先

PCT 恒压变量 动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。这样,柱塞 随着缸体的旋转而作往复运动,完成吸油和压油动作。 这种变量型式的泵, 输出压力小于调定恒压力时,全排量输出压力油, 即定量输出,在 输出油液的压力达到调定压力时,就自动地调节泵流量,以保证恒压力,满足系统的要求。 泵的输出恒压值,根据需要,在调压范围内可以无级调定,泵的结构见图 6,该结构将输出 的压力油同时通至变量活塞下腔和和恒压阀的控制油入口,当输出压力小于调定恒压力时, 作用在恒压阀芯上的油压推力小于调定弹簧力, 恒压阀处于开启状态, 压力油进入变量活塞 上腔,变量活塞压在最低位置, 泵全排量输出压力油;当泵在调定恒压力工作时, 作用在恒 压阀芯上的油压推力等于调定弹簧力, 恒压阀的进排油口同时处于开启状态, 使变量活塞上 下腔的油压推力相等,变量活塞平衡在某一位置工作,若液压阻尼(负载)加大,油压瞬时 升高,恒压阀排油口开大、进油口关小, 变量活塞上腔比较下腔压力降低、 变量活塞向上移 动,泵的流量减小,直至压力下降到调定恒压力,这时变量活塞在新的平衡位置工作。 反之, 若液压阻尼(负载)减小,油压瞬时下降,恒压阀进油口开大,排油口关小,变量活塞上腔 比较下腔油压升高,变量活塞向下移动,泵的流量增大,直至压力上升至调定恒压力。 液压原理符号 10Q 50 10 调压范围 P (MP 弟 3175~云$ 主体部分(参见结构剖)由传动轴带动缸体旋转, 使均匀分布在缸体上的七个柱塞绕传

恒压变量泵操作维修知识

变量柱塞泵操作维修知识 一、工作原理 带滑靴结构的轴向柱塞泵是目前使用最广泛的轴向柱塞泵,安放在缸体中的柱塞通过滑靴与斜盘相接触,当传动轴带动缸体旋转时,斜盘将柱塞从缸体中拉出或推回,完成吸排油过程。柱塞与缸孔组成的工作容腔中的油液通过配油盘分别与泵的吸、排油腔相通。变量机构用来改变斜盘的倾角,通过调节斜盘的倾角可改变泵的排量。 二、柱塞泵的维护 斜盘式轴向柱塞泵一般采用缸体转动、端面配流的形式。缸体端面上镶有一块由双金属板与钢配油盘组成的摩擦副,而且大多数是采用平面配流的方法,所以维修比较方便。配油盘是轴向柱塞泵的关键部件之一,泵工作时,一方面工作腔的高压油把缸体推向配油盘,另一方面配油盘和缸体间的油膜压力形成对缸体的液压反推力使缸体背离配油盘。缸体对配油盘的设计液压压紧力Fn略大于配油盘对缸体的液压反推力Ff,即Fn/Ff=1.05~1.1,使泵工作正常并保持较高的容积效率。 实际上,由于油液的污染,往往使配油盘与缸体之间产生轻微磨损。特别是高压时,即使轻微的磨损也可以使液压反推力Ff增大,从而破坏Fn>Ff的关系,使配油盘和缸体间产生缝隙而不能正常工作。所以在柱塞泵的检修和维护过程中,应着重检查配油盘和缸体这一对摩擦副的使用情况,即使有轻微的磨损,也应及时修复。 三、常见故障处理 1.液压泵输出流量不足或不输出油液 (1)吸入量不足。原因是吸油管路上的阻力过大或补油量不足。如泵的转速过大,油箱中液面过低,进油管漏气,滤油器堵塞等。 (2)泄漏量过大。原因是泵的间隙过大,密封不良造成。如配油盘被金属碎片、铁屑等划伤,端面漏油;变量机构中的单向阀密封面配合不好,泵体和配油盘的支承面有砂眼或研痕等。可以通过检查泵体内液压油中混杂的异物判别泵被损坏的部位。 (3)倾斜盘倾角太小,泵的排量少,这需要调节变量活塞,增加斜盘倾角。 2.中位时排油量不为零 变量式轴向柱塞泵的斜盘倾角为零时称为中位,此时泵的输出流量应为零。但有时会出现中位偏离调整机构中点的现象,在中点时仍有流量输出。其原因是控制器的位置偏离、松动或损伤,需要重新调零、紧固或更换。泵的角度维持力不够、倾斜角耳轴磨损也会产生这种现象。 3.输出流量波动 输出流量波动与很多因素有关。对变量泵可以认为是变量机构的控制不佳造成,如异物进入变量机构,在控制活塞上划出阶痕、磨痕、伤痕等,造成控制活塞运动不稳定。由于放大器能量不足或零件损坏、含有弹簧的控制活塞的阻尼器效能差,都会造成控制活塞运动不稳定。流量不稳定又往往伴随着压力波动。这类故障一般要拆开液压泵,更换受损零部件,加大阻尼,提高弹簧刚度和控制压力等。

恒功率泵工作原理相关讨论

请教:力士乐A10VSO-DFLR(恒压/流量/功率控制)变量泵的控制原理 管理提醒: 本帖被论坛清道夫执行加亮操作(2009-01-08) 图片: 图片:

图片:

图片:

为向各位了解力士乐A10VSO…DFLR…恒压/流量/功率控制泵的控制原理,上传4张图片. 我想了解的问题是: 1.功率阀的原理; 2. 恒压/流量/功率控制三种控制功能的转换过程. 说明: 最上面的一张图为总图(网上下载的).图1和图2是按照力士乐另一份彩图资料绘制的. 图1中的A1和图2为清晰起见,图1中的X口我画在了上面(原资料是在侧面的) [ 此贴被论坛清道夫在2008-05-21 13:53重新编辑] 小中大引用推荐编辑只看复制 我的问题已经提出好几天了.无人回帖.可能是我对问题的叙述不很清楚. 最近几天我琢磨了一下,对于功率阀的调节原理,我先试着分析如下.是我个人的理解,请诸位指正.

功率阀相当于一个压力无级可调的(比例)溢流阀,它可无级地改变着进入流量调节器弹簧腔的压力P 通过泵斜盘改变功率阀调压弹簧的压缩量X来实现的(泵斜盘带动拨杆改变功率阀套的位置,进而改变功率阀压缩量X与泵斜盘倾角β成反比. 在泵进入恒功率控制期间,流量调节器控制阀芯的位置也有3个. 压力P H作用在控制阀芯的右端(见图1),以形成一个对抗反力,与作用在控制阀芯左端的泵出口压力P P相在中位(平衡位置),在此状态下,泵的斜盘倾角不变. 功率阀所决定的压力P H与泵压力P P应该是同比例变化(升降)的.并且P H的变化要比P P的变化滞后一点当泵压升高时,P P先将控制阀芯向右推离中位(平衡被破坏),并进入泵变量缸的无杆腔使泵的斜盘倾角β变角β的变小,功率阀调压弹簧的压缩量X则变大,阀的开启压力P H随之升高,升高了的P H又将控制阀芯推回中循环下去,控制阀芯连续的经历由平衡→不平衡→新的平衡的过程(用一位网友的话讲,就是控制阀芯在“中位控制. 当泵压降低时,则会出现相反的过程. 恒功率控制始于起点的调整压力,终于切断点的限位柱(即死档铁). 不知我分析的对不对,请各位点拨. [ 此贴被闫波在2008-02-11 10:35重新编辑] 顶端Posted: 2008-02-09 11:13 | 1 楼 小中大引用推荐编辑只看复制 图片:

PCY恒压变量泵

PCY14-1B:斜盘式恒压变量柱塞泵-----型号说明 PCY14-1B:斜盘式恒压变量柱塞泵-----结构剖视 PCY14-1B:斜盘式恒压变量柱塞泵-----工作原理

主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。 这种变量型式的泵,输出压力小于调定恒压力时,全排量输出压力油,即定量输出,在输出油液的压力达到调定压力时,就自动地调节泵流量,以保证恒压力,满足系统的要求。泵的输出恒压值,根据需要,在调压范围内可以无级调定,泵的结构见图6,该结构将输出的压力油同时通至变量活塞下腔和和恒压阀的控制油入口,当输出压力小于调定恒压力时,作用在恒压阀芯上的油压推力小于调定弹簧力,恒压阀处于开启状态,压力油进入变量活塞上腔,变量活塞压在最低位置,泵全排量输出压力油;当泵在调定恒压力工作时,作用在恒压阀芯上的油压推力等于调定弹簧力,恒压阀的进排油口同时处于开启状态,使变量活塞上下腔的油压推力相等,变量活塞平衡在某一位置工作,若液压阻尼(负载)加大,油压瞬时升高,恒压阀排油口开大、进油口关小,变量活塞上腔比较下腔压力降低、变量活塞向上移动,泵的流量减小,直至压力下降到调定恒压力,这时变量活塞在新的平衡位置工作。反之,若液压阻尼(负载)减小,油压瞬时下降,恒压阀进油口开大,排油口关小,变量活塞上腔比较下腔油压升高,变量活塞向下移动,泵的流量增大,直至压力上升至调定恒压力。 PCY14-1B:斜盘式恒压变量柱塞泵-----系列规格

恒压变量泵设计与性能分析.

燕山大学 课程设计说明书 (机电一体化课程设计) 项目名称:25ml/r恒压变量泵设计及控制特性仿真分析姓名:闫桂山、张帅、宋旭通、孙永海指导教师:权凌霄职称:讲师 2012-11-17

燕山大学课程设计(论文)任务书院(系):机械工程学院基层教学单位:机电控制系项目名称25ml/r恒压变量泵设计及控制特性仿真分析指导教师姓名权凌霄 小组成员分工闫桂山:了解掌握各种恒压变量泵的工作原理和控制策略张帅:液压泵外壳三维建模 宋旭通:液压泵仿真分析 孙永海:说明书的编写 项目考察知识点1.在理解反馈控制原理的基础上,初步了解液压泵特别是变量轴向柱塞泵的变量形式和工作原理 2.SOLIDWORKS的简单应用——泵壳三维建模。 3.Amesim的基本建模与仿真设计。 项目设计参数25ml/r,恒压轴向柱塞泵,斜盘式 项目实施内容1.设计恒压变量泵主体结构及变量机构(机-液反馈)。 2.通过理论建模(机-液反馈传函)和仿真分析,给出25ml/r恒压变量泵变量机构的结构参数和工作参数。 3.绘制25ml/r恒压变量泵三维零件模型、装配模型及相应的二维工程图。 项目结题须提交材料1. 设计计算说明书 2. 变量机构工作原理图A4 3. 泵的三维装配模型及二维工程图1*A1、8A2 4. 仿真分析报告、汇报PPT 项目实施时间节点要求第一周:设计恒压变量泵主体结构及变量机构(机-液反馈)。第二周:通过理论建模(机-液反馈传函)和仿真分析,给出25ml/r 恒压变量泵变量机构的结构参数和工作参数。 第三周:完成二维和三维图的绘制 第四周:完成泵壳体模态分析,准备汇报。

小组分工及贡献 姓名课题组分工 闫桂山各种恒压变量泵的工作原理和控制策略的了解及其原理图绘制,恒压变量泵的设计计算,恒压变量AMESim仿真,Matlab仿真,恒压变量泵的测绘,word排版制作,PPT制作 宋旭通恒压变量泵的原理分析,恒压变量泵AMESim 仿真、恒压变量泵的原理分析,恒压变量泵的测绘,solid works三维爆炸视图的生成,word排版制作,PPT制作 张帅恒压变量泵的测绘,三维建模,二维图绘制,相关资料查询 孙永海恒压变量泵的测绘,三维建模,二维图绘制,相关资料查询

变量泵的原理及应用

液压变量泵(马达)的发展简况、现状和应用 1.1.1 简述 液压变量泵及变量马达能在变量控制装置的作用下能够根据工作的需要在一定范围内调整输出特性,这一特点已被广泛地应用在众多的液压设备中,如:恒流控制、恒压控制、恒速控制、恒转矩控制、恒功率控制、功率匹配控制等。采用变量泵(马达)系统,具有显著的节能效果,近年来使用越来越广泛,而且新的结构和控制方式发展迅速,各个生产厂也在不断改进设计,用以满足液压系统自动控制的不断发展需要。 使用液压系统的目的在于可使某一执行对象以预定的速度向正反两个方向运动。此时,为调节速度需进行节流,致使能量有所损失,并导致系统效率降低,为此需采用变量泵实现容积控制。使用变量泵进行位置和速度控制时,能量损耗最小。正确地使用和调节泵的流量,可使其只排出满足负载运动速度需要的流量,而使用定量泵时只有部分流量供给负载,其余的流量需要旁通至油箱。 此外,为了在不增加管路阻力的条件下提高液压马达的速度,也有必要为减少液压马达的排量而采用变量马达。 表1-1 三大类泵的主要应用现状

排量类型型式模型样式容积排量 图1-1 三大类泵的变量调节 1.1.2 叶片变量泵(马达)的研发历史和发展 根据密封工作容积在转子旋转一周吸、排油次数的不同,叶片泵分为两类,即完成一次吸、排油的单作用叶片泵和完成两次吸、排油的双作用叶片泵。根据叶片泵输出流量是否可调,又可分为定量叶片泵和变量叶片泵,双作用叶片泵均为定量泵。根据叶片变量泵的工作特性不同可分为限压式、恒压式和恒流量式三类,其中限压式应用较多。 恒压式变量泵一般系单作用泵。该泵的定子可以沿一定方向作平衡运动,以改变定子与转子之间的偏心距,即改变泵的流量。它的变量机能由泵内的压力反馈伺服装置控制,能自动适应负载流量的需要并维持恒定的工作压力。在工作中,还可根据要求调节其恒定压力值。因此,在使用该泵的系统中,实际工况相当于定量泵加溢流阀,

恒压变量泵调压变量机构仿真分析

第2期(总期75期) 2016年3月 Fluid Power Transmission and Control No.2(Serial No.75) Mar.,2016 恒压轴向变量柱塞泵作为恒压油源,输出流量与负载流量实时匹配,没有溢流损失,回路效率高、发热少, 并且具有良好的动静态性能,在大功率液压系统,尤其是大型工程机械中逐步取代了定量泵,得到广泛的应用[1~3]。作为恒压变量泵的核心组件,调压变量机构的参数匹配、静态性能、动态响应都直接影响到液压泵的流量压力特性。 图1所示为某型号恒压轴向变量柱塞泵原理图。 1-斜盘回复弹簧;2-斜盘;3-随动活塞;4-控制滑阀;5-调压弹簧 图1某型恒压轴向变量柱塞泵 图2为其调压变量机构示意图,其工作原理如下:当负载所需流量突然下降,在调压变量机构未调整前液压泵的理论输出流量未发生变化,此时多余的流量就会造成系统压力上升,超过调压弹簧5的调定压力,使控制滑阀4向上移动,则液压泵出口的高压油与随动活塞3的控制腔连通,在压力油的作用下,推动随动活塞3下移,使液压泵的排量减小,进而减小液压泵的输出流量,从而使液压泵的出口压力降 收稿日期:2015-12-16 作者简介:秦二卫(1985-),男,硕士,工程师,现从事石油钻采装备的开发。 低,直到出口压力恢复到调定值;反之,当负载所需流量突然上升时,变量机构未调整前泵出口压力降低,此时控制滑阀4在调压弹簧 5作用下向下移动,使得随动活塞3控制腔与壳体回油相连通,随动活塞3上移,使油泵的排量增大,从而增加油泵的输出流量,进而增大了泵的出口压力,直到出口压力回复到调定值。 1-斜盘回复弹簧;2-斜盘;3-随动活塞;4-控制滑阀;5-调压弹簧 图2调压变量调节示意图 柱塞泵作为液压系统的基本元件,经过近几十年的研究发展以及国外技术的引进,相关技术已经趋于成熟。但多数研究者或者设计人员的工作集中于液压泵的转子、柱塞、分配油盘等零部件的改进,对于液压泵调压变量机构的深入研究则相对较少[4~5]。本文在合理建立液压泵调压变量机构数学模型的基础上,对系统的参数匹配、静态性能和动态响应进行了仿真计算分析,探索液压泵调压变量机构的设计指导准则,为恒压变量柱塞泵的设计及性能改进提供理论依据。 1数学模型 1.1控制滑阀的运动方程 恒压变量泵调压变量机构仿真分析 秦二卫 白玉新吴文晋张达王恒罗翔李鹏 (北京精密机电控制设备研究所北京100076) 摘 要:在建立恒压变量柱塞泵调压变量机构数学模型的基础上,对系统的参数匹配、静态性能和动态响应进行了仿 真计算分析,为恒压变量柱塞泵调压变量机构的设计及性能改进提供理论依据。关键词:恒压变量柱塞泵;调压变量机构;仿真分析中图分类号:TH137 文献标志码:A 文章编号:1672-8904-(2016) 02-0034-005

(完整版)恒功率变量泵与恒压变量泵

恒功率泵所实现的功能就时保证电机不会超功率,低压时大流量,高压时小流量;恒压泵能够实现零流量保压。 1)恒压泵一般用于这样的液压系统:开始阶段要求低压快速前进,而后转为慢速靠近,最后停止不动并保压,像油压机就是这样。这里,恒压泵设定的压力就是系统保压所需要的压力。这里,对“液压系统压力由负载决定,而由溢流阀加于限定”的基本原则应该讲是符合的。为了更好理解泵控系统,可以考虑修改为“系统压力由负载决定,而由恒压泵加于限定”。像压机的例子,压制件的反力可以很大,具体施加多少由恒压泵调节。 2)恒流泵主要用于工程机械这种设备上就一台发动机,要充分利用其功率。对液压系统就可以在低压时大流量,高压时小流量。这表面上与恒压泵相似,其实不然。恒功率泵在压力流量变化时,遵循恒功率,而恒压泵在未达到调定值之前,是最大排量的定量泵,不存在开始恒功率的拐点。而进入恒压工况后,原则上可以根据系统的需要提供流量而保持压力不变。 3)恒压变量泵是在达到泵平身的设定压力后才开始变量,此时流量下降成陡线下降.恒功率变量泵是几乎全压力阶段都在变量,基本保证输出的功率恒定在一定范围内,但是在泵设定的功率范围内,压力上升,流量是全流量输出,当超过这个压力,流量开始下降,以保证输出功率恒定(这也就是说在低于额定功率时,实际使用功率不是恒定的).还有电控变量泵,它的变量曲线由电控部份决定,与实际压力无关.不管如何,电机与油泵的功率匹配,是必须考虑的. 4)恒压泵更重要的一点是:在压力不变的情况下更节约能源。恒功率泵是能根据负载变化改变运动速度,也主要用于这种负载变化要求速度能变化的情况。5)1)一般情况下,固定工业液压选用恒功率的案例较少,多数是行走机械(工程机械)动力是发动机的,为了充分利用功率,选用恒功率泵的情况较多。当然天下之大,不能一概而论。 6)对于一个在反复循环过程中,或者随机操作过程中,压力与流量两个参数都有比较大差异的系统,人们往往采用“一把钥匙开一把锁”的模式灵活处理。 对于流量有大有小的可供选择方案很多,例如:直流相加减(多台定量泵并联),全交流(变频电机驱动定量泵,变排量泵),直流加交流(几台定量泵,加变排量泵),加蓄能器,等等,恒压恒功率的情况如前所说。 对于压力变化很大的,办法也很多,但最后要与流量变化结合起来考虑。例如,多级压力切换,电液比例阀,比例压力泵,加增压器,加电动高压泵作为增压泵(这两个都是局部增压),等等。 7)恒压用在压力不变化,但是流量变化的工况;恒功率用在压力和流量都变化,但是功率不边的工况. 8)调速有两种方案:一是泵控马达系统;一种是阀控马达系统。前一种方案有:1定量泵+变量马达 2变量泵(变频电机+定量泵)+定量马达

几种常用轴向柱塞变量泵的工作原理

几种常用轴向柱塞变量泵的工作原理 1 恒压控制 采用恒压控制的变量泵称之为恒压变量泵,其控制原理如 图1所示,其中1为控制滑阀、2为调压弹簧、3是控制油缸,1 和2合称为恒压阀。当系统压力较低时,控制油缸右端没有压力 油,控制油缸在弹簧的作用下向右运行,推动泵的变量机构,使 泵处于最大排量状态。当系统压力增大到恒压阀的调定压力时, 控制滑阀端部液压力大于调压弹簧的弹簧力而使阀芯右移,压力 油进入控制油缸右端,推动控制油缸向左运行,再推动泵的变量 机构,使泵的排量减小,因而输出流量减小,泵的工作压力也随之降低。当控制滑阀左端的液压力等于弹簧力时,滑阀关闭,控制油缸停止运动,变量过程结束,泵的工作压力重新稳定在弹簧调定值附近。同理,当系统压力降低时,变量机构使泵的输出流量增加,工作压力回升到调定值。 2 远程压力控制 远程压力控制原理如图2所示,它与恒压控制原理基本相同,唯 一的区别就是压力调节阀可根据需要安装在任意位置,从而对泵的压 力起到远程调节的作用。 图中1即为远程压力控制阀,一般为直动式溢流阀,也可采用比 例溢流阀。采用比例溢流阀时,变量泵压力可由电信号进行调整。 3 并联压力控制 图 2 远程压力控制原理 至系统11 2 图3 并联控制原理 至系统123图1 恒压变量泵控制原理

图3所示为力士乐DP型并联压力控制原理图,其中1为DP阀,2为控制滑阀。当液压泵出现压力波动(如压力减小)时,控制滑阀切换到右侧,控制油缸右行,油泵排量加大,同时控制油缸的活塞杆推动DP阀上行,DP阀前后的压差减小,从而控制滑阀右端控制压力减小,使液压泵排量减小。从而使液压泵稳定在一个合适的位置。 4 流量控制 流量控制变量泵的控制原理如图4所示,其中1为控制滑阀、 2为压差弹簧、3是控制油缸,4为节流阀(一般为比例阀),1 和2合称为恒流阀,恒流阀的压差弹簧一般提前调好,不再变化。 液压泵的压力油一路作用在恒流阀的左侧,另一路通过节流 阀和X口作用在恒流阀的右侧。由于经过了节流阀,所以恒流阀 左右两端的控制油压力也存在着压差。 当负载压力升高时,恒流阀右端控制油的压力加上压差弹簧 的调定压力大于左端控制油的压力,恒流阀切换到右端位置,控制活塞后腔泄压,前腔压力油推动控制油缸右行,使液压泵排量加大,液压泵出口压力升高,恒流阀左端控制油压力加大,恒流阀又切换到左侧位置,控制油推动控制油缸使液压泵排量减小至变化前的位置。最终,液压泵维持在该平衡位置而保持排量不变,此时,节流阀前后压差等于压差弹簧调定压力。反之,当负载压力降低时,也是如此。 当节流阀的阀口开度发生改变时,液压泵的排量也发生改变。实际上,液压泵的流量与节流阀的前后压差成正比,与阀口开口度成正比。 5 恒功率控制 5.1双曲线恒功率控制工作原理 恒功率控制的作用是控制泵的输出功率不大于设 定功率,这是通过限制变量泵的压力与流量的乘积保持 不变来实现的。恒功率控制根据控制方式的不同,分为 双曲线恒功率控制控制和双弹簧恒功率控制。前者为完 全恒功率控制,后者为近似恒功率控制。 图5为双曲线恒功率控制泵的原理图。其中1为变量控制部分,包括控制油缸3,小柱塞4,反馈杆5和铰支点6;2为恒功率阀,包括阀杆7和调节弹簧8。 在液压泵运行时,压力油通过控制油缸的有杆腔作 4 5 8 图5 双曲线恒功率控制原理 3 7 6 图 4 恒流量控制原理 2 4 3 1

恒功率变量泵与恒压变量泵[整理]

恒功率变量泵与恒压变量泵[整理] 恒功率泵所实现的功能就时保证电机不会超功率,低压时大流量,高压时小流量;恒压泵能够实现零流量保压。 1)恒压泵一般用于这样的液压系统:开始阶段要求低压快速前进,而后转为慢速靠近,最后停止不动并保压,像油压机就是这样。这里,恒压泵设定的压力就是系统保压所需要的压力。这里,对“液压系统压力由负载决定,而由溢流阀加于限定”的基本原则应该讲是符合的。为了更好理解泵控系统,可以考虑修改为“系统压力由负载决定,而由恒压泵加于限定”。像压机的例子,压制件的反力可以很大,具体施加多少由恒压泵调节。 2)恒流泵主要用于工程机械这种设备上就一台发动机,要充分利用其功率。对液压系统就可以在低压时大流量,高压时小流量。这表面上与恒压泵相似,其实不然。恒功率泵在压力流量变化时,遵循恒功率,而恒压泵在未达到调定值之前,是最大排量的定量泵,不存在开始恒功率的拐点。而进入恒压工况后,原则上可以根据系统的需要提供流量而保持压力不变。 3)恒压变量泵是在达到泵平身的设定压力后才开始变量,此时流量下降成陡线下降.恒功率变量泵是几乎全压力阶段都在变量,基本保证输出的功率恒定在一定范围内,但是在泵设定的功率范围内,压力上升,流量是全流量输出,当超过这个压力,流量开始下降,以保证输出功率恒定(这也就是说在低于额定功率时,实际使用功率不是恒定的).还有电控变量泵,它的变量曲线由电控部份决定,与实际压力无关.不管如何,电机与油泵的功率匹配,是必须考虑的. )恒压泵更重要的一点是:在压力不变的情况下更节约能源。恒功率泵是能根4 据负载变化改变运动速度,也主要用于这种负载变化要求速度能变化的情况。

恒功率控制柱塞泵变量特性的设计及特点

恒功率控制柱塞泵变量特性的设计及特点 活应用技术研究恒功率控制柱塞泵变量特性的设计及特点太原润滑液压研究所常若薇“随输出压力的降低而增大,泵的输出功率基本恒定。这使原动机能充分发挥其能力,减少功率消耗。恒功率变量特性的设计计算是实现泵的变量性能的基本保证。 1A7VLV恒功率变量泵结构及控制原理A7VLV恒功率变量泵属斜轴式柱塞泵,主要结构如所示。其主要由主轴1、柱塞副2、缸体3、配流盘4和变量机构等组成。工作原理是:原动机带动主轴1转动,装在主轴盘上的柱塞副拨动缸体转动。缸体上有7个等分的柱塞孔,柱塞副在缸体孔中作往复运动。缸体轴线相对主轴线有一夹角时,随着主轴的转动,缸体孔中柱塞副的行程有所改变。当柱塞孔容积由小变大时,通过配流盘的低压侧从泵的吸油口吸入液压油,当柱塞孔的容积由大变小时,通过配流盘的高压侧从泵的压油口排出压力油。主轴旋转1周,7个柱塞副在缸体孔中各往复运动1次,连续进行吸油、排油,从而使原动机输入的机械能转变为液压能。 I一主轴;2―柱塞副;3 6―变量活塞;7―传动杆;8一弹簧顶杆;A―油缸A腔;B―油缸B腔恒功率柱塞泵结构图A7VLV轴向柱塞泵恒功率变量机构主要由变量壳体5、变量活塞6、传动杆7、小活塞8、阀套9、控制阀芯10、大弹簧11、小弹簧12、调节弹簧13、弹簧顶杆14等组成。恒功率变量机理为:由变量壳体形成的变

量活塞油缸A腔常通压力油,使变量活塞带动传动杆使缸体、配流盘处于最大摆角位置,同时压力油经端盖通道作用在小活塞上,当作用在小活塞上的液压力大于弹簧11预压力和调节弹簧13的压力总和时,弹簧顶杆14顶着控制阀芯10向下运动,此时阀芯打开,高压油进入B腔,则变量活塞6在液压差动力的作用下推动着传动杆7带动缸体、配流盘绕O点转动,减少摆角Y从而压缩大弹簧11、小弹簧12使泵的输出流量减少,达到新的平衡。同时弹簧11使控制阀芯复位,实现了行程反馈。当泵的输出压力继续升高时,上述过程再次重复,流量进一步减少。当缸体摆角减小到一定值时,小活塞的液压力必须克服大弹簧11、小弹簧12、调节弹簧13的合力,控制阀芯才能再一次开启,进一步减小缸体摆角,减少泵的流量。 2恒功率变量特性的设计计算2n巧常数。 P一一泵的输出压九MPa;Q泵的输出流量,L/min n――泵的总效率。 假设n为一定值,常数,则P、Q应呈双曲线关系。 但实际的恒功率变量采用了弹簧控制的变量机构,只能近似地保证泵的恒功率值。在设计计算变量弹簧时应使其特性近似符合双曲线关系,特性曲线见。分别是25%、50 %额定输入功率的恒功率曲线。 进修大学机电一体化专业毕业,工程师,030009太原市解放咿/则),则泵的恒功率值为50%额定功率时:50 =户2八61.2),满足该式的户、2―定在50%额定输入功率的斜轴泵的理论排量为:q Z――柱塞数;D主轴分布圆直径,cm;Y――缸体相对主轴的夹角。

恒功率及恒压泵控制原理及其应用

恒功率及恒压泵控制原理及其应用 恒功率泵所实现的功能就是保证电机不会超功率,低压时大流量,高压时小流量;恒压泵能够实现零流量保压。 1)恒压泵一般用于这样的液压系统:开始阶段要求低压快速前进,而后转为慢速靠近,最后停止不动并保压,像油压机就是这样。这里,恒压泵设定的压力就是系统保压所需要的压力。这里,对“液压系统压力由负载决定,而由溢流阀加于限定”的基本原则应该讲是符合的。为了更好理解泵控系统,可以考虑修改为“系统压力由负载决定,而由恒压泵加于限定”。像压机的例子,压制件的反力可以很大,具体施加多少由恒压泵调节。 2)恒流泵主要用于工程机械这种设备上就一台发动机,要充分利用其功率。对液压系统就可以在低压时大流量,高压时小流量。这表面上与恒压泵相似,其实不然。恒功率泵在压力流量变化时,遵循恒功率,而恒压泵在未达到调定值之前,是最大排量的定量泵,不存在开始恒功率的拐点。而进入恒压工况后,原则上可以根据系统的需要提供流量而保持压力不变。 3)恒压变量泵是在达到泵本身的设定压力后才开始变量,此时流量下降成陡线下降.恒功率变量泵是几乎全压力阶段都在变量,基本保证输出的功率恒定在一定范围内,但是在泵设定 的功率范围内,压力上升,流量是全流量输出,当超过这个压力,流量开始下降,以保证输出功率恒定(这也就是说在低于额定功率时,实际使用功率不是恒定的).还有电控变量泵,它的变量曲线由电控部份决定,与实际压力无关.不管如何,电机与油泵的功率匹配,是必须考虑的. 4)恒压泵更重要的一点是:在压力不变的情况下更节约能源。恒功率泵是能根据负载变化改变运动速度,也主要用于这种负载变化要求速度能变化的情况。 5)1)一般情况下,固定工业液压选用恒功率的案例较少,多数是行走机械(工程机械)动力是发动机的,为了充分利用功率,选用恒功率泵的情况较多。当然天下之大,不能一概而论。 6)对于一个在反复循环过程中,或者随机操作过程中,压力与流量两个参数都有比较大差异的系统,人们往往采用“一把钥匙开一把锁”的模式灵活处理。 对于流量有大有小的可供选择方案很多,例如:直流相加减(多台定量泵并联),全交流(变频电机驱动定量泵,变排量泵),直流加交流(几台定量泵,加变排量泵),加蓄能器,等等,恒压恒功率的情况如前所说。 对于压力变化很大的,办法也很多,但最后要与流量变化结合起来考虑。例如,多级压力切换,电液比例阀,比例压力泵,加增压器,加电动高压泵作为增压泵(这两个都是局部增压),等等。 7)恒压用在压力不变化,但是流量变化的工况;恒功率用在压力和流量都变化,但是功率不变的工况. 8)调速有两种方案:一是泵控马达系统;一种是阀控马达系统。前一种方案有:

定量泵与变量泵的区别资料讲解

在转速恒定的条件下,输出流量可变的为变量泵,反之为定量泵。他们最大的不同就是变量泵的轴是偏心安装。简单来说定量泵的转速选定后,他的流量和压力就确定了,就不能调节。变量泵的输出流量可以根据系统的压力变化(外负载的大小),自动地调节流量,就是压力高时输出流量小,压力低时输出流量大,这样他可以节省液压元件的数量,从而简化了油路系统,而且可以减少油发热。缺点是流量脉动严重,系统压力不太平稳,泵的寿命短,泵的轴承容易坏,因为他是偏心安装,而且泵的嘈音大。 叶片泵通过调节偏心距、柱塞泵通过调节滑板角度可以实现变量。 变量泵与定量泵的区别 注塑及液压设备中我们最常用到有变量泵和定量泵,这两种油泵的使用效果各显千秋,除了压力稳定性及响应速度上的区别,其构造形式上也有所不同。 液压系统的设计中,不但要实现其拖动与调节功能,还要尽可能地利用能量,达到高效、可靠运行的目的。液压系统的功率损失会使系统的总效率下降、油温升高、油液变质,导致液压设备发生故障。因此,设计液压系统时必须多途径地考虑降低系统的功率损失。几种控制回路的功率损失: 1选用传动效率较高的液压回路和适当的调速方式目前普遍使用着的定量泵节流调速系统,其效率较低(<0.385),这是因为定量泵与油缸的效率分别为85%与95%左右,方向阀及管路等损失约为5%左右。所以,即使不进行流量控制,也有25%的功率损失。加上节流调速,至少有一半以上的浪费。此外,还有泄漏及其它的压力损失和容积损失,这些损失均会转化为热能导致液压油温升。所以,定量泵加节流调速系统只能用于小流量系统。为了提高效率减少温升,应采用高效节能回路,上表为几种回路功率损失比较。另外,液压系统的效率还取决于负载。同一种回路,当负载流量QL与泵的最大流量Qm比值大时回路的效率高。例如可采用手动伺服变量、压力控制变量、压力补偿变量、流量补偿变量、速度传感功率限制变量、力矩限制器功率限制变量等多种形式,力求达到负载流量QL与泵的流量的匹配。 2对于常用的定量泵节流调速回路,应力求减少溢流损失 2.1采用卸荷回路机械的工作部件短时停止工作时,一般都让液压系统中的液压泵空载运转(即让泵输出的油液全部在零压或很低压力下流回油箱),而不是频繁地启闭电机。这样做可以节省功率消耗,减少液压系统的发热,延长泵和电机的使用寿命,一般功率大于3kw的液压系统都设有卸荷回路。下面介绍几种典型的卸荷回路。 2.1.1采用三位阀的卸荷回路采用具有中位卸荷机能的三位换向阀,可以使液压泵卸荷。这种方法简单、可靠。中位卸荷机能是M、H、K型。图1为采用具有M型中位机能换向阀的卸荷回路。这种方法比较简单,阀处于中位时泵卸荷。它适用于低压小流量的液压系统;用于高压大流量系统,为使泵在卸荷时仍能提供一定的控制油压[(2~3)×105Pa],可在泵的出口处(或回油路上)增设一单向阀(或背压阀)。但这将使泵的卸荷压力相应增加。图1三位阀卸荷回路 2.1.2采用二位二通阀的卸荷回路图2为采用二位二通阀的卸荷回路,图示位置为泵的卸荷状态。这种卸荷回路,二位二通阀的规格必须与泵的额定流量相适应。因此这种卸荷方式不适用于大流量的场合,且换向时会产生液压冲击。通常用于泵的额定流量小于63L/min液压系统。 2.1.3用先导式溢滚阀的卸荷回路,在先导式溢流阀1的遥控口接一小规格

相关文档
最新文档