(推荐)伺服驱动器参数设置方法

(推荐)伺服驱动器参数设置方法
(推荐)伺服驱动器参数设置方法

伺服驱动器参数设置方法

在自动化设备中,经常用到伺服电机,特别是位置控制,大部分品牌的伺服电机都有位置控制功能,通过控制器发出脉冲来控制伺服电机运行,脉冲数对应转的角度,脉冲频率对应速度(与电子齿轮设定有关),当一个新的系统,参数不能工作时,首先设定位置增益,确保电机无噪音情况下,尽量设大些,转动惯量比也非常重要,可通过自学习设定的数来参考,然后设定速度增益和速度积分时间,确保在低速运行时连续,位置精度受控即可。

1.位置比例增益:设定位置环调节器的比例增益。设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。但数值太大可能会引起振荡或超调。参数数值由具体的伺服系统型号和负载情况确定。

2.位置前馈增益:设定位置环的前馈增益。设定值越大时,表示在任何频率的指令脉冲下,位置滞后量越小位置环的前馈增益大,控制系统的高速响应特性提高,但会使系统的位置不稳定,容易产生振荡。不需要很高的响应特性时,本参数通常设为0表示范围:0~100%

3.速度比例增益:设定速度调节器的比例增益。设置值越大,增益越高,刚度越大。参数数值根据具体的伺服驱动系统型号和负载值情况确定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡的条件下,尽量设定较大的值。

4.速度积分时间常数:设定速度调节器的积分时间常数。设置值越小,积分速度越快。参数数值根据具体的伺服驱动系统型号和负载情况确定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡的条件下,尽量设定较小的值。

5.速度反馈滤波因子:设定速度反馈低通滤波器特性。数值越大,截止频率越低,电机产生的噪音越小。如果负载惯量很大,可以适当减小设定值。数值太大,造成响应变慢,可能会引起振荡。数值越小,截止频率越高,速度反馈响应越快。如果需要较高的速度响应,可以适当减小设定值。

6.最大输出转矩设置:设置伺服驱动器的内部转矩限制值。设置值是额定转矩的百分比,任何时候,这个限制都有效定位完成范围设定位置控制方式下定位完成脉冲范围。本参数提供了位置控制方式下驱动器判断是否完成定位的依据,当位置偏差计数器内的剩余脉冲数小于或等于本参数设定值时,驱动器认为定位已完成,到位开关信号为ON,否则为OFF。

在位置控制方式时,输出位置定位完成信号,加减速时间常数设置值是表示电机从0~2000r/min的加速时间或从2000~0r/min的减速时间。加减速特性是线性的到达速度范围设置到达速度在非位置控制方式下,如果伺服电机速度超过本设定值,则速度到达开关信号为ON,否则为 OFF。在位置控制方式下,不用此参数。与旋转方向无关。

7.手动调整增益参数

调整速度比例增益KVP值。当伺服系统安装完后,必须调整参数,使系统稳定旋转。首先调整速度比例增益KVP值.调整之前必须把积分增益KVI及微分增益KVD调整至零,然后将KVP值渐渐加大;同时观察伺服电机停止时足否产生振荡,并且以手动方式调整KVP参数,观察旋转速度是否明显忽快忽慢.KVP值加大到产生以上现象时,必须将KVP值往回调小,使振荡消除、旋转速度稳定。此时的KVP值即初步确定的参数值。如有必要,经KⅥ和KVD调整后,可再作反复修正以达到理想值。

调整积分增益KⅥ值。将积分增益KVI值渐渐加大,使积分效应渐渐产生。由前述对积分控制的介绍可看出,KVP值配合积分效应增加到临界值后将产生振荡而不稳定,如同KVP值一样,将KVI值往回调小,使振荡消除、旋转速度稳定。此时的KVI值即初步确定的参数值。

调整微分增益KVD值。微分增益主要目的是使速度旋转平稳,降低超调量。因此,将KVD值渐渐加大可改善速度稳定性。

调整位置比例增益KPP值。如果KPP值调整过大,伺服电机定位时将发生电机定位超调量过大,造成不稳定现象。此时,必须调小KPP值,降低超调量及避开不稳定区;但也不能调整太小,使定位效率降低。因此,调整时应小心配合。

8.自动调整增益参数

现代伺服驱动器均已微计算机化,大部分提供自动增益调整( autotuning)的功能,可应付多数负载状况。在参数调整时,可先使用自动参数调整功能,必要时再手动调整。事实上,自动增益调整也有选项设置,一般将控制响应分为几个等级,如高响应、中响应、低响应,用户可依据实际需求进行设置。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

安川伺服说明书功能

功能说明高性能化功能 在机械的固有振动频率较低时,通过将机械系模型化补偿其滞后,从而抑制其振动。 利用该功能,可缩短低刚性机械的整定时间。与机械的驱动系发生振动时,利用观测控制使其减低,实现高伺服增益的驱动。 通过该功能,改善伺服特性。 当机械产生高频共振音时,设定与机械系共振频率一致的振动泸波器,从而抑制共振。由于轴共振引起伺服系起振时,通过转矩指令泸波器抑制轴共振。 由于采用了速度观测,实现了低速下的平滑运转和定位整定时间的缩短。为改善电机加减速运转时的过渡特性,速度环的P1(比例积分)控制和P(比例)控制可切换。从而抑制过调和欠调。 因加入了前馈补偿,从而缩短了定位时间。当欲缩短定位时间时,可根据负载条件使用。 使用速度控制时,有时即使速度指令为“0”, 由于漂移亦会产生移动。零箝位动作就是与速 度指令低于设定值时,经位置环将伺服锁定而 使其停转的功能。 功能

简单设定功能 连接即动,简单设定。 由于惯量恒定精度的提高,所以无需调整伺服增益。伺服驱动器判断伺服电机的功率、规格、无需设定电机参数,当连接不适用电机时,有报警显示。 可监控转矩指令的有效转矩运算值。可监控再生电力的负载率。 累积负载率再生负载率 80%50% 再生过载报警前,可预先发出信号。避免不经意间改写用户参数。 标准配备计算机接口,可进行用户参数的设定,速度转矩指令,监控波形的描绘及1:N通讯(N=14)。无需输入指令,使用手操器亦可操作电机运行,便于试运转。 即使电源掉电,亦可记忆10次过去发生的报警,便于故障判断。 灵活应用功能

通过与上位控制器之间的输入输出信号的分配,在9个信号中可进行3类选择。在码盘的原点脉冲位置定位停。用于电机轴和机械位置的匹配。 除可分别使用位置,速度及转矩控制外,亦可进行各控制模式的切换。限制通过电机的最大电流,抑制过大的转矩的产生,应用于防止机械损坏。 可使用绝对值编码器。使用了绝对值编码器,将无需原点复位动作,断电复位后,可即时起动。可对编码器脉冲任意分频,可自由设定上位制器的定位分辨率。 无需变更电机及码盘的连线,通过用户常数的设定,可根据正、反转指令将电机的运转方向,

伺服驱动器维修检测以及方法

伺服驱动器维修检测以及方法 1、示波器检查驱动器的电流监控输出端时,发现它全为噪声,无法读出; 故障原因:电流监控输出端没有与交流电源相隔离(变压器)。 处理方法:可以用直流电压表检测观察。 2、电机在一个方向上比另一个方向跑得快; (1) 故障原因:无刷电机的相位搞错。 处理方法:检测或查出正确的相位。 (2) 故障原因:在不用于测试时,测试/偏差开关打在测试位置。 处理方法:将测试/偏差开关打在偏差位置。 (3) 故障原因:偏差电位器位置不正确。 处理方法:重新设定。 3、电机失速; (1) 故障原因:速度反馈的极性搞错。 处理方法:可以尝试以下方法。 a. 如果可能,将位置反馈极性开关打到另一位置。(某些驱动器上可以) b. 如使用测速机,将驱动器上的TACH+和TACH-对调接入。 c. 如使用编码器,将驱动器上的ENC A和ENC B对调接入。 d. 如在HALL速度模式下,将驱动器上的HALL-1和HALL-3对调,再将Motor-A和Motor-B对调接好。 (2) 故障原因:编码器速度反馈时,编码器电源失电。 处理方法:检查连接5V编码器电源。确保该电源能提供足够的电流。如使用外部电源,确保该电压是对驱动器信号地的。 4、LED灯是绿的,但是电机不动; (1) 故障原因:一个或多个方向的电机禁止动作。 处理方法:检查+INHIBIT 和–INHIBIT 端口。 (2) 故障原因:命令信号不是对驱动器信号地的。 处理方法:将命令信号地和驱动器信号地相连。 5、上电后,驱动器的LED灯不亮; 故障原因:供电电压太低,小于最小电压值要求。 处理方法:检查并提高供电电压。 6、当电机转动时, LED灯闪烁; (1) 故障原因:HALL相位错误。 处理方法:检查电机相位设定开关(60°/120°)是否正确。多数无刷电机都是120°相差。 (2) 故障原因:HALL传感器故障 处理方法:当电机转动时检测Hall A, Hall B, Hall C的电压。电压值应该在5VDC和0之间。 7、LED灯始终保持红色; 故障原因:存在故障。 处理方法:原因: 过压、欠压、短路、过热、驱动器禁止、HALL无效。

安川伺服驱动器全参数表和功能表

安川伺服驱动器参数表 安川伺服驱动器和凯恩帝数控系统相配时,只需设定以下参数(见参数表);其余参数,一般情况下,不用修改。 安川伺服驱动器和凯恩帝数控系统相配时,只需设定以下参数(见参数表);其余参数,一般情况下,不用修改。 Pn000 功能选择 n.0010(设定值) 第0位:设定电机旋转方向;设“1”改变电机旋转反向。第1位:设定控制方式为:“1”位置控制方式。 Pn200 指令脉冲输入方式功能选择 n.0101(设定值) “1”正反双路脉冲指令(正逻辑电平)(设定从控制器送给驱动器的指令脉冲的类型) Pn202 电子齿轮比(分子) Pn203 电子齿轮比(分母) 根据不同螺距的丝杆与带轮比计算确定,计算方法如下: Pn202/Pn203=编码器条纹数(32768)X4 / 丝杠螺距×带轮比×1000 参数设置范围: 1/100≤分子/分母≤100 注:1. KND 系统内的电子齿轮比需设置为:CMR/CMD=1:1 (确保0.001 的分辨率);2. 如果是数控车床,X 轴用直径编程,则以上计算公式中,分母还应乘以2,即:丝杠螺距×带轮比×1000×2。 Pn50A 功能选择 n.8100(设定值) 1-使用/S-ON 信号(伺服启动信号)。4-伺服驱动器上,“正向超程功能无效”。 Pn50B 功能选择 n.6548(设定值) 1-伺服驱动器上,“负向超程功能无效”。 Pn50E 功能选择 n.0000(设定值) 配KND 系统时,设置为“0000”,详细见安川手册 Pn50F 功能选择 n.0200(设定值) 3-伺服驱动器上,CN1 插头的27 和28 脚用作控制刹车用的24V 中间继电器的控制信号/BK。(注:当电机带刹车时需设置) Pn506 伺服关时,在电机停止情况下,刹车延时时间根据具体要求设定注:设定单位以“10ms”为单位。出厂时设为“0”。(当电机带刹车时需设置) Pn507 伺服关时,电机在转动情况下,刹车开始参数根据具体要求设定 注:电机在转动情况下,伺服关断时,当电机低于此参数设定的转速时,电机刹车才开始动作。设定单位以“转”为单位。出厂时设为“100”。(Pn507 和 Pn508 满足一个条件,刹车就开始动作) Pn508 伺服关时,电机在转动情况下,刹车延时时间根据具体要求设定 注:电机在转动情况下,伺服关断时,延时此参数设定的时间后半部,

安川伺服里面有很多个全参数但是其中只有几个全参数需要调

安川伺服里面有很多个参数但是其中只有几个参数需要调:Pn100 Pn101Pn102 Pn103Pn401 Pn110Pn000 Pn200 Pn201 Pn202 Pn203 Pn50A 其中Pn100 Pn101 Pn102受到Fn001刚性的控制,一般情况下刚性调到5那么速度增益,位置增益,积分时间就自动调好了 将Pn110调到0运动机器那么Fn007里面就会出现机器的惯量把惯量放到Pn103里就可以了 Pn200=n.0004 Pn201=2500 Pn202=32768 Pn203=2500 Pn50A=n,8100 Fn001为机械刚性Pn100为速度增益Pn101为速度积分时间Pn102为位置增益Pn401为扭矩滤波器时间当Fn001动了之后Pn100 Pn101 Pn102就会一起动 Pn110为自动调谐,调谐的是Pn103积分比,驱动器会将积分比储存到Fn007中 Pn200为指令脉冲形态Pn201为PG分频比设定Pn202为电子齿轮比分子Pn203为电子齿轮比分母Pn50A为输入信号选择1

安川伺服驱动器和凯恩帝数控系统相配时,只需设定以下参数 (见参数表);其余参数,一般情况下,不用修改。 Pn000 功能选择 n.0010(设定值) 第0位:设定电机旋转方向;设“1”改变电机旋转反向。第1位:设定控制方式为:“1”位置控制方式。 Pn200 指令脉冲输入方式功能选择 n.0101(设定值) “1”正反双路脉冲指令(正逻辑电平)(设定从控制器送给驱动器的指令脉冲的类型) Pn202电子齿轮比(分子) Pn203 电子齿轮比(分母) 根据不同螺距的丝杆与带轮比计算确定,计算方法如下:Pn202/Pn203=编码器条纹数(32768)X4 / 丝杠螺距×带轮比×1000 参数设置范围: 1/100≤分子/分母≤100 注:1. KND 系统内的电子齿轮比需设置为:CMR/CMD=1:1 (确保0.001 的分辨率);2. 如果是数控车床,X 轴用直径编程,则以上计算公式中,分母还应乘以2,即:丝杠螺距×带轮比×1000×2。

伺服驱动器参数设置方法

伺服驱动器参数设置方法 在自动化设备中,经常用到伺服电机,特别是位置控制,大部分品牌的伺服电机都有位置控制功能,通过控制器发出脉冲来控制伺服电机运行,脉冲数对应转的角度,脉冲频率对应速度(与电子齿轮设定有关),当一个新的系统,参数不能工作时,首先设定位置增益,确保电机无噪音情况下,尽量设大些,转动惯量比也非常重要,可通过自学习设定的数来参考,然后设定速度增益和速度积分时间,确保在低速运行时连续,位置精度受控即可。 1.位置比例增益:设定位置环调节器的比例增益。设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。但数值太大可能会引起振荡或超调。参数数值由具体的伺服系统型号和负载情况确定。 2.位置前馈增益:设定位置环的前馈增益。设定值越大时,表示在任何频率的指令脉冲下,位置滞后量越小位置环的前馈增益大,控制系统的高速响应特性提高,但会使系统的位置不稳定,容易产生振荡。不需要很高的响应特性时,本参数通常设为0表示范围:0~100% 3.速度比例增益:设定速度调节器的比例增益。设置值越大,增益越高,刚度越大。参数数值根据具体的伺服驱动系统型号和负载值情况确定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡的条件下,尽量设定较大的值。 4.速度积分时间常数:设定速度调节器的积分时间常数。设置值越小,积分速度越快。参数数值根据具体的伺服驱动系统型号和负载情况确定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡的条件下,尽量设定较小的值。 5.速度反馈滤波因子:设定速度反馈低通滤波器特性。数值越大,截止频率越低,电机产生的噪音越小。如果负载惯量很大,可以适当减小设定值。数值太大,造成响应变慢,可能会引起振荡。数值越小,截止频率越高,速度反馈响应越快。如果需要较高的速度响应,可以适当减小设定值。 6.最大输出转矩设置:设置伺服驱动器的内部转矩限制值。设置值是额定转矩的百分比,任何时候,这个限制都有效定位完成范围设定位置控制方式下定位完成脉冲范围。本参数提供了位置控制方式下驱动器判断是否完成定位的依据,当位置偏差计数器内的剩余脉冲数小于或等于本参数设定值时,驱动器认为定位已完成,到位开关信号为 ON,否则为OFF。 在位置控制方式时,输出位置定位完成信号,加减速时间常数设置值是表示电机从0~2000r/min的加速时间或从2000~0r/min的减速时间。加减速特性是线性的到达速度范围设置到达速度在非位置控制方式下,如果伺服电机速度超过本设定值,则速度到达开关信号为ON,否则为OFF。在位置控制方式下,不用此参数。与旋转方向无关。7.手动调整增益参数 调整速度比例增益KVP值。当伺服系统安装完后,必须调整参数,使系统稳定旋转。首先调整速度比例增益KVP值.调整之前必须把积分增益KVI及微分增益KVD调整至零,然后将KVP值渐渐加大;同时观察伺服电机停止时足否产生振荡,并且以手动方式调整KVP参数,观察旋转速度是否明显忽快忽慢.KVP值加大到产生以上现象时,必须将KVP 值往回调小,使振荡消除、旋转速度稳定。此时的KVP值即初步确定的参数值。如有必要,经KⅥ和KVD调整后,可再作反复修正以达到理想值。 调整积分增益KⅥ值。将积分增益KVI值渐渐加大,使积分效应渐渐产生。由前述对积分控制的介绍可看出,KVP值配合积分效应增加到临界值后将产生振荡而不稳定,如同KVP值一样,将KVI值往回调小,使振荡消除、旋转速度稳定。此时的KVI值即初步确定的参数值。

安川伺服电机说明书

YSKAWA 安川∑Ⅱ数字交流伺服  安装调试说明书  (2004.7版本)

目 录 1. 安川连接示意图  2. 通电前的检查  3. 通电时的检查 4. 安川伺服驱动器的参数设定  5. 安川伺服驱动器的伺服增益调整

1. 安川连接示意图  重要提示: 由于电机和编码器是同轴连接,因此,在电机轴端安装带轮或连轴器时,请勿敲击。否则,会损坏编码器。(此种 情况,不在安川的保修范围!)

2. 通电前的检查  1) 确认安川伺服驱动器和电机插头的连接,相序是否正确:  A.SGMGH电机,不带刹车制动器的连接: 伺服驱动器 电机插头  U A V B W C 接地 D B.SGMGH电机 0.5KW-4.4KW,带刹车制动器电机的连接: 伺服驱动器 电机插头  U A V B W C  接地 D  刹车电源 E  刹车电源 F   刹车电源为: DC90V (无极性)     C. SGMGH电机5.5KW-15KW,带刹车制动器电机的连接:    伺服驱动器 电机插头  U A V B W C  接地 D  电机制动器插头 刹车电源 A 刹车电源 B   刹车电源为: DC90V (无极性)   注: 1.相序错误,通电时会发生电机抖动现象。  2.相线与“接地”短路,会发生过载报警。

2)确认安川伺服驱动器CN2和伺服电机编码器联接正确,  接插件螺丝拧紧。  3)确认伺服驱动器CN1和数控系统的插头联接正确,  接插件螺丝拧紧。    3.通电时的检查   1) 确认三相主电路输入电压在200V-220V范围内。  建议用户选用380V/200V的三相伺服变压器。  2)确认单相辅助电路输入电压在200V-220V范围内。    4.安川伺服驱动器的参数设定  安川伺服驱动器参数,操作方法如下:(1)参数密码设定;  (2)用户参数和功能参数的设定;   1)参数密码设定  为防止任意修改参数,将“Fn010”辅助功能参数,设定: ? “0000” 允许改写 PnXXX 的用户参数,及部分辅助功 能“FnXXX”参数。  ? “0001” 禁止改写 PnXXX 的用户参数,及部分辅助功 能“FnXXX”参数。

伺服驱动器8大参数设置

伺服驱动器8大参数设置 摘要:在自动化设备中,经常用到伺服电机,特别是位置控制,大部 分品牌的伺服电机都有位置控制功能,通过控制器发出脉冲来控制伺服电 机运行,脉冲数对应转的角度,脉冲频率对应速度(与电子齿轮设定有关),当一个新的系统,参数不能工作时,首先设定位置增益,确保电机无噪音 情况下,尽量设大些,转动惯量比也非常重要,可通过自学习设定的数来 参考。然后设定速度增益和速度积分时间,确保在低速运行时连续,位置 精度受控即可。并给出故障排查技巧。 一、伺服驱动器的8大参数设置: (1)位置比例增益 设定位置环调节器的比例增益。设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。但数值太大可能会引起振荡或超调。参数数值由具 体的伺服系统型号和负载情况确定。 (2)位置前馈增益 设定位置环的前馈增益。设定值越大时,表示在任何频率的指令脉冲下,位置滞后量越小位置环的前馈增益大,控制系统的高速响应特性提高,但会使系统的位置不 稳定,容易产生振荡。不需要很高的响应特性时,本参数通常设为0表示范围:0~100% (3)速度比例增益 设定速度调节器的比例增益。设置值越大,增益越高,刚度越大。参数数值根据具体的伺服驱动系统型号和负载值情况确定。一般情况下,负载惯量越大,设定值越 大。在系统不产生振荡的条件下,尽量设定较大的值。 (4)速度积分常数 设定速度调节器的积分时间常数。设置值越小,积分速度越快。参数数值根据具体的伺服驱动系统型号和负载情况确定。一般情况下,负载惯量越大,设定值越大。 在系统不产生振荡的条件下,尽量设定较小的值。 (5)速度反馈滤波因子 设定速度反馈低通滤波器特性。数值越大,截止频率越低,电机产生的噪音越小。 如果负载惯量很大,可以适当减小设定值。数值太大,造成响应变慢,可能会引起振 荡。数值越小,截止频率越高,速度反馈响应越快。如果需要较高的速度响应,可以 适当减小设定值。 (6)最大输出转矩设置 设置伺服驱动器的内部转矩限制值。设置值是额定转矩的百分比,任何时候,这 个限制都有效定位完成范围设定位置控制方式下定位完成脉冲范围。本参数提供了位 置控制方式下驱动器判断是否完成定位的依据,当位置偏差计数器内的剩余脉冲数小 于或等于本参数设定值时,驱动器认为定位已完成,到位开关信号为 ON,否则为 OFF。

大豪伺服参数调整简易说明V1.2

大豪伺服参数调整简易说明 参数调整前请参考阅读《大豪伺服高速机调试操作手册》,以便于熟悉操作。大豪伺服框架主要针对各个针长进行控制,因此驱动器中对应有相关参数,详见 许则升级成最新的主控程序和驱动器程序 一、确认XY通讯地址(需重新上电才能生效) 大豪伺服框架采用通信方式进行指令控制,因此务必把XY轴对应的驱动器地址设对(X向驱动器参数PA01设为0001, Y向驱动器参数PA01设为0002)。如果设置错误将会造成通信报错或者绣作花样变形走位。 二、设定电子齿轮比PA02、PA03(需重新上电才能生效)电子齿轮比设置规律为: A、框架轴套采用0.45对应移框0.1mm的机器,则电子齿轮比的设置为

电子齿轮比分子(PA02) 二级传动减速装置大轮 半径 电子齿轮比分母(PA03) . 二级传动减速装置小轮半径 B 、框架轴套采用0.36对应移框0.1mm 的机器,则电子齿轮比的设置为 电子齿轮比分子(PA02) 二级传动减速装置大轮半径 10 - 电子齿轮比分母(PA03) 二级传动减速装置小轮 半径 注:如果是采用三洋伺服参数设置的机器,则可以根据上述的AB 两条折算。 或者用大豪伺服电子齿轮比=1.25 X 三洋伺服电子齿轮比来计算。 另设置好伺服驱动器电子齿轮比后, 可以通过手动移框一段距离来反馈是否 正确。手动移框一小段距离(比如5mm )后,将XY 位移清零,在台板上做标记, 接着移框100m m ,停止移框后在台板上做标记,用尺子测量这两个标记之间的 距离是否也是100mm 。如果测量结果是100mm ,那说明驱动器的电子齿轮比设 置是对的。 具体步骤如下: ① 设置成低速移框;按电脑操作面板上的 〔兰 键,屏幕上显示为 礎” * m “十 &TI : 的妙 11 ”K I -GD I J -X t 1 -¥ [ -va n | -tvr 出.o i FXf -+IIQ.A ] tvl -15.0 ] iSTI TI Mb li 32 PtRCEHr : 7 Ji ②向X 方向移框一段距离(比如5mm 后,按电脑操作面板上的1工 键,将位移清零,屏幕上 X [ +0.0 ] 显示 ,在台板上做标记 X r-1000 1 ] Y [+0.0 ) ④停止移框,在台板上做标记 g 手动高速移框; :手动低速移框 ③接着按这个方向继续移动100mm,屏幕上, X [ 4 100,0 ] 显示¥ I 1或者

伺服电机测试步骤

伺服电机是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。在伺服电机投入使用之前,需要对伺服电机进行一些测试,以确保其能正常安全地工作。下面就给大家介绍一下伺服电机的测试步骤是怎样。 首先,先测试一下电机,任何电路也不用连接,把电机的三根线任意两根短路在一起,用手转动电机轴,感觉起来有阻力,那就OK。 第二步,把驱动器按图纸接上电源(例如用了调压器,从100V调到220V,怕驱动器是100V的),通电,驱动器正常,有错误信息显示,对照说明书,是显示了编码器有故障的错误,这个也正常,还没有连接编码器呢。 第三步,接上编码器,再开机,没有任何错误显示了。 第四步,按照说明书上设置驱动器。例如设置了“速度控制模式”,然后旋动电位器,电机没有转动。按说明书上的说明,调整拨动开关,最后把“Servo-ON”拨动以后,电机一下子锁定了,OK!然后旋动电位器,使SPR/TRQR输入引脚有电压,好!电机转动起来了。伺服驱动器上的转数达到

了1000、2000、3000最后可到4000多转。说明书上推荐是3000转的,再高速可能会有些问题。 第五步,重新设置了伺服驱动器,改成“位置控制模式”,把运动控制卡(或者使用MACH3,连接电脑并行口)接到脉冲、方向接口上,电机也转动了!按照500Kpps的输出速率,驱动器上显示出了3000rpm。正反转都可自行控制。 最后,再调节一下运动控制卡,和做的小连接板。板子上的LED阵列是为了测试输出用的,插座是连接两相编码器的,另一个插座是输出脉冲/方向的,开关、按钮是测试I/O输入的。 以上就是关于伺服电机测试步骤的相关信息,如果缺少专业的检测人员,建议购置一台专门用于伺服电机的测试系统既可以节省人力成本,又可以提高检测效率保证质量。ZDT-I 伺服电机测试系统采用模块化设计,依据国内外最新测试标准,结合用户测试需求,完成伺服电机性能测试。

整理安川伺服电机参数基本调整

安川伺服电机参数基本调整动态参数调整步骤: 步骤一. 设定系统刚性(Fn 001) Kp : 位置回路比例增益(机床Kp 建议值30-90 /sec) Kv : 速度回路比例增益(机床Kv 建议值30-120 Hz) Ti : 速度回路积分增益(机床Ti 建议值10-30 ms) 范例: 以机床大小选择不同刚性(1米加工中心机建议Fn001设定5 ) 步骤二. 自动调协(auto turning) 寻找马达与机床惯性比自动调协目的,主要是在计算马达与机床整合后有些动态参数会受到影响ex: 马达负载惯性比…,如果不先将相关参数找出速度回路的表现会与Kv/Ti 设置的结果不一致自动调协操作步骤:1.参数Pn110设11。(打开在线自动调谐功能) 2.手动Jog床台让床台来回往复多次运行。3.手动Jog床台时如发生共振现象,请立即压下紧急停止按钮,将驱动器参数Pn408设1(打开共振抑制功能),然受修正Pn409(共振抑制频率)设定,1米加工中心机建议Pn409设定200。4.将Fn007内容写入EEPROM。(按Mode键至Fn000→按Up或Down键至Fn007

→持续按Data 键1秒显示负载贯性比→持续按Set键1秒后Fn007内容显示之负载贯量比即可写入EEPROM) 5.参数Pn110设12。(关闭在线自动调谐功能) 步骤三. 起动并设定驱动器抑制共振功能相关参数(Pn408设1即打开共振抑制功能,Pn409可设定共振抑制频率) 马达与机床结合后,除了马达选用太小,无法达到高响应之外,有时也会发生马达扭力够,但是因为机床床台传动刚性较差,会产生共振而无法达到高响应又平顺的控制目标,此时,除了加强机床的传动刚性外,可利用控制器抑制共振功能,而得到高响应的结果 . 步骤四. 将速度回路增益参数再调高 就位置回路控制而言,速度回路是内回路,内回路响应越高,外回路(位置回路)表现越如预期,比较不会受到外界切削力,磨擦力的影响,所以在切削应用场合,请将速度回路增益尽量调高,以得到更好的切削质量

A 伺服参数设置

松下A5系列伺服参数 一、松下MINAS A5系列伺服驱动器参数设定: 用松下MINAS A5系列伺服驱动器,设定以下参数后,机床即可工作。但 二、松下驱动器的调节 松下伺服器修改参数设定值后,须选择EEPROM 写入模式。 方法如下: ①按MODE键,选择EEPROM写入显示模式EE_SEt; ②按SET键,显示EEP -;

③按住上翻键约3 秒,显示EEP ――到――――――到StArt,参数保存完显示FiniSh.表示参数写入有效,显示rESEt.表示需关断电源,重新通电设定值才能生效;显示Error.表示写入无效,需重新设定参数。 三、电子齿轮比的计算(针对松下A5驱动),有两种计算方式: 1、松下专有方式:* 电机每旋转一次的指令脉冲数=螺距/脉冲当量 2、通用计算方式:当参数为0时,电子齿轮比=分子/分母==编码器分辨率*脉冲当量*机械减速比/螺距(=10000**1/5=2/1) 四、惯量比的调节惯量比 该参数对机床运行的平稳性、加工效果等起到了很重要的作用,比如:机床振动、机床电机发出异常声音、加工出来的圆不圆、加工的工件粗糙、加工的工件变形等,只有设置合理的惯量比,机床才能发挥出最大的优势,才能加工出更好的工件。 惯量比的设定有两种方法: 其一、手动设定直接手动将估算的惯量比设置到【】里。如果手动设置,需要你估算该机床的惯量比,既然估算,很难达到理想的惯量比,机床就很难发挥出最大的优势。 其二、自动设定机床运动。只有适合机床的惯量比,加工出来的工件才是最好的下面我将详细介绍惯量比的自动调节: 1) 调节【】实时自动增益调整模式设定 【】X轴、Y轴设为【1】 【】Z轴设为【3】 2) 调节【】实时自动调整机械刚性选择 该参数非常重要,决定了机床的平稳性以及加工效果。一般设定值在0~31之间。X轴Y 轴Z轴可根据机床本身任意设,在机床运动时机床不振动、电机不发出嗡嗡声音的前提下,尽量增大参数的值,因为该参数决定机床的刚性,机床的刚性越大,加工出来的工件越理想,加工效果越好 3) 装载一个三轴加工文件,最好连动的,可以不放工件进行空跑,也可以放工 件。大约十分钟左右便可以停下来,此时,你去看【】,已经有了变化,此时不管数值是多少,不要去改动。因为是自动惯量比,请抛开你以前认为的数值。如果其中某一个轴为0,重新操作。 4) 重新调节【】实时自动增益调整模式设定 【】X轴、Y轴设为【0】 【】Z轴设为【0】 即将实时自动增益调整设置无效 5) 调节【】第一控制切换模式 将【】设为【0】,让第一增益值固定 6) 调节【】第1位置环增益和【】第1速度环增益 在实时自动增益时,【】第 1 位置环增益和【】第 1 速度环增益便会随着机械刚性的选择进行变化。在机床运动时机床不振动、电机不发出嗡嗡声音的前提下,尽量增大两个参数的值,这样响应越快,加工出来的工件越理想,加工效果越好。

七大方法解析伺服驱动器如何测试检修

七大方法解析伺服驱动器如何测试检修 伺服系统包括伺服驱动器和伺服电机,驱动器利用精密的反馈结合高速数字信号处理器DSP,控制IGBT产生精确电流输出,用来驱动三相永磁同步交流伺服电机达到精确调速和定位等功能。和普通电机相比,由于交流伺服驱动器内部有许多保护功能,且电机无电刷和换向器,因此工作可靠,维护和保养工作量也相对较小。 为了延长伺服系统的工作寿命,在使用过程中需注意以下问题。对于系统的使用环境,需考虑到温度、湿度、粉尘、振动及输入电压这五个要素。定期清理数控装置的散热通风系统。应经常检查数控装置上各冷却风扇工作是否正常。应视车间环境状况,每半年或一个季度检查清扫一次。 当数控机床长期闲置不用时,也应定期对数控系统进行维护保养。首先,应经常给数控系统通电,在机床锁住不动的情况下,让其空载运行。在空气湿度较大的梅雨季节应该天天通电,利用电器元件本身发热驱走数控柜内的潮气,以保证电子部件的性能稳定可靠。实践证明,经常停置不用的机床,过了梅雨天后,一开机往往容易发生各种故障。 由于运动控制系统最终用户的工作条件和企业一线工程技术支撑能力的限制,常常使得机电系统不能够得到良好的设备管理,轻则缩短机电一体化设备的生命周期,重则由于设备故障降低产能造成经济效益的损失。 伺服驱动器是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分,主要应用于高精度的定位系统。一般是通过位置、速度和力矩三种方式对伺服马达进行控制,实现高精度的传动系统定位,目前是传动技术的高端产品。那么对伺服驱动器如何测试检修,以下是一些方法: 1、示波器检查驱动器的电流监控输出端时,发现它全为噪声,无法读出 故障原因:电流监控输出端没有与交流电源相隔离(变压器) 处理方法:可以用直流电压表检测观察。 2、电机在一个方向上比另一个方向跑得快

伺服驱动器的工作模式与伺服驱动器的测试方法

伺服驱动器的工作模式与伺服驱动器的测试方法 伺服驱动器是用来控制伺服电机的一种控制器,伺服驱动器其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分。目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM )为核心设计的驱动电路,IPM 内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。 功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM 电压型逆变器变频来驱动三相永磁式同步交流伺服电机。功率驱动单元的整个过程可以简单的说就是AC-DC-AC 的过程。整流单元(AC-DC )主要的拓扑电路是三相全桥不控整流电路。伺服驱动器一般可以采用位置、速度和力矩三种控制方式,主要应用于高精度的定位系统,目前是传动技术的高端。随着伺服系统的大规模应用,伺服驱动器使用、伺服驱动器调试、伺服驱动器维修都是伺服驱动器在当今比较重要的技术课题,越来越多工控技术服务商对伺服驱动器进行了技术深层次研究。 伺服驱动器是现代运动控制的重要组成部分,被广泛应用于工业机器人及数控加工中心等自动化设备中。尤其是应用于控制交流永磁同步电机的伺服驱动器已经成为国内外研究热点。当前交流伺服驱动器设计中普遍采用基于矢量控制的电流、速度、位置 3 闭环控制算法。该算法中速度闭环设计合理与否,对于整个伺服控制系统,特别是速度控制性能的发挥起到关键作用。在伺服驱动器速度闭环中,电机转子实时速度测量精度对于改善速度环的转速控制动静态特性至关重要。为寻求测量精度与系统成本的平衡,一般采用增量式光电编码器作为测速传感器,与其对应的常用测速方法为M/T 测速法。M/T 测速法虽然具有一定的测量精度

安川伺服∑∨学习笔记

安川伺服∑∨学习笔记 This model paper was revised by LINDA on December 15, 2012.

安川伺服∑-∨学习笔记 一.面板操作 1.up、down同时按下使伺服报警复位 二.功能选择型参数表示方法 1.Pn000.1参数Pn000的第1位数值(从左到右为:第0.1. 2.3位) 三.刹车使用方法 1.使用27、28号输出端子为刹车输出 2.设定输出信号的分配:首先设定27、28上的旋转捡出信号为无效,然后分配制动器信 号到27、28号端子上 3.设置参数Pn50E、Pn50F(如下图) 4.制动器指令---伺服off延时时间Pn5060~50ms 5.伺服电机旋转时的制动器动作条件(下面任意一个) a.电机进入非通电状态后,伺服电机转速低于Pn507的设定值时; b.电机进入非通电状态后,经过了Pn508的设定时间时。 注意:请勿将电机旋转捡出信号(/TGON)和制动器信号(/BK)分配在同一个端子上。若分配于同一个端子,因垂直轴的下落的速度,会使/TGON信号ON,制动器可能会不动作。

四.再生电阻使用 1.再生电阻连接在B1-B2之间,同时去掉B2-B3之间的连线 2.修改参数:Pn600设定单位为:10w,20w设为2,0为使用内置再生电阻 五.基本参数设定 1.Pn000.11位置控制B位置控制带脉冲指令禁止功能(使用/P-con端口)(三轴伺服使 用) 2.Pn000.00正转、1反转电机旋转方向选择 3.伺服ON使用 a.使用输入信号/s-onCN1-40Pn50A.10低电平有效 b.伺服on始终有效Pn50A.17 4.选择使用/不使用超程放止功能 Pn50A.38始终允许正转 Pn50B.08始终允许反转 5.主回路电源欠电压时的转距限制功能 Pn008.10不检出主回路欠电压警告。(出厂设定) 六.位置控制的基本参数设定

伺服驱动器重要参数的设置方法和技巧

伺服驱动器重要参数的设置方法和技巧 随着市场的发展和国内功率电子技术、微电子技术、计算机技术及控制原理等技术的进步,国内数控系统、交流伺服驱动器及伺服电动机这两年有了较大的 发展,在某些应用领域打破了国外的垄断局面。笔者因多年从事数控技术工作,使用了多套日本安川、松下、三洋等数字伺服,但最近因国产伺服性价比好,使 用了一些数控技术公司生产的交流伺服驱动及电动机,对使用中某些方面总结了一些简单实用的技巧。 1KNDSD100基本性能 1.1基本功能 SD100采用国际上先进的数字信号处理器(DSP)TM320(S240)、大规模可编程门阵列(FPGA)、日本三菱的新一代智能化功率模块(1PM),集成度高,体积小,具有超速、过流、过载、主电源过压欠压、编码器异常和位置超差等保护功能。 与步进电动机相比,交流伺服电动机无失步现象。伺服电动机自带编码器,位置信号反馈至伺服驱动器,与开环位置控制器一起构成半闭环控制系统。调速比宽1:5000,转矩恒定,1 r和2000r的扭矩基本一样,从低速到高速都具有稳定的转矩特性和很快的响应特性。采用全数字控制,控制简单灵活。用户通过参数修改可以对伺服的工作方式、运行特性作出适当的设置。目前价格仅比步进电动机高2000~3000元。 1.2参数调整 SD100为用户提供了丰富的用户参数0~59个,报警参数1~32个,监视方式(电动机转速,位置偏差等)22个。用户可以根据不同的现场情况调整参数,以达到最佳控制效果。几种常用的参数的含义是: (1)“0”号为密码参数,出厂值315,用户改变型号必须将此密码改为

385。" (2)“1”号为型号代码,对应同系列不同功率级别的驱动器和电动机。 (3)“4”号为控制方式选择,改变此参数可设置驱动器的控制方式。其中,“0”为位置控制方式;“1”为速度控制方式;“2”为试运行控制方式;“3”为JOG控制方式;“4”为编码器调零方式;“5”为开环控制方式(用户测试电压及编码器);“6”为转矩控制方式。 (4)“5”号为速度比例增益,出厂值为 150。"此设置值越大,增益越高,刚度越高。参数设置根据具体的伺服驱动型号和负载情况设定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡情况下,应尽量设定较大些。 (5)“6”号为速度积分时间常数,出厂值为 20。"此设定值越小,积分速度越快,太小轻易产生超调,太大使响应变慢。参数设置根据具体的伺服驱动型号和负载确定。一般情况下,负载惯量越大,设定值越大。 (6)“40”、“4l”号为加减速时间常数,出厂设定为 0。"此设定值表示电动机以0~100r/min转速所需的加速时间或减速时间。加减速特性呈线性。 (7)“9”号为位置比例增益,出厂没定为 40。"此设置值越大,增益越高,刚度越高,相同频率指令脉冲条件下,位置滞后量越小。但数值太大可能会引起振荡或超调。参数数值根据具体的伺服驱动型号和负载情况而定。 2 KNDSD100的参数设置技巧 SD100伺服驱动器和凯恩帝数控系统相配时,只需设定表1中的参数,其余参数,一般情况下,不用修改。电子齿轮比的设置如下:

富士伺服驱动器参数设定基本操作。(方案

4.2.1 第一阶段 连接伺服放大器及伺服电机,进行试运行。配线方法参照3 章。 在伺服电机的输出轴未连接到机械系统的状态下进行试运行。 在第一阶段确认以下项目。 <确认> ?确认伺服放大器的电源配线(L1、L2、L3) ?确认伺服电机动力线(U、V、W)、编码器电缆线 ?确认伺服放大器、伺服电机是否正常工作 ?确认参数4 号(旋转方向切换/CCW(逆时针)方向旋转时的相位切换)■试运行顺序 (1) 请固定伺服电机,以防其横向翻倒。 将伺服电机牢固固定 不要在电机的输出轴上安装任何东西 (2) 请按3 章的配线,为伺服放大器与伺服电机配线。 ※第一阶段进行单体试运行,故不要连接到CN1 上。 (3) 请确认4-2 页的「■初次通电前的注意事项」后,再通电。 i) 请确认充电用显示灯。 ii) 请确认触摸面板显示。 ※万一报警检出时,请切断电源,确认配线后,参照9 章。

请预习说明书的第4章和第8章。 5 参数 5.1 参数构成 伺服放大器中有调整机械系统的设定、伺服的特性与精度的各种参数。 由于参数的设定值被存储在可电换写的ROM (EEPROM) 中,因此,即使切断电源也不会丢失。 作为参数一览表的"变更" 项目的"电源" 的参数,即使切断主电源,再接通电源时仍然有效。(请确认主电源切断时,伺服放大器的触摸面板<7 段文字显示>灯灭。) 5.1.1 利用触摸面板编集的方法 5-2

5.2 参数一览表

5.3 参数说明 以每一命令脉冲的机械系统的移动量为单位量设定参数(电子齿轮)。利用以下计算式计算。

提示:当伺服电机旋转一周时的机械系统的移动量中有π时,355/113 可以近似。 输出脉冲数和命令脉冲补偿无关。根据参数19 号的设定值,电机轴正转时,输出B 相进给90°相位差2 路信号。

Σ-Ⅱ安川伺服简易说明书

Σ-Ⅱ安川伺服驱动器及电机接线示意图(增量型编码器) 驱动器插头接线:参数设置: L1 1.接通驱动器电源 L2 三相AC200V 2.按SET按钮2次,显示Pn000; L3 3.用DATA键、↑、↓选择您需要的参数号 1 短接显示:Pn***; 2 4.按住DATA键2秒,显示参数值; 空 5. 用DATA键、↑、↓选择您需要的参数值 L1C 并接于L1 6. 按住DATA键确认,参数储存后显示Pn*** L2C 并接于L3 7.重复3-6步骤设定其它参数 B1 外接电阻接线端口 8.关掉电源,等显示消失后重新上电。 B2 内部电阻短接端口 B3 注:恢复出厂值设置: U 接电机航插A 1. 按SET键1次,显示Fn000; V 接电机航插B 2. 用↑、↓键选择Fn005;按DATA键2秒, W 接电机航插C 显示PINIT,按SET键显示闪烁; 接地端接电机航插D 3.重新上电即完成恢复出厂值。 CN1(控制信号接线口): CN2(编码器接线口): 驱动器插头:电脑控制器接线端:驱动器插头:伺服电机航插: 1,2 脚 12GND / 0V 1 H 8 脚 CP1脉冲信号 2 G 12 脚 CW方向信号 5 C 14 脚伺服清零信号 6 D 3,7脚短接壳体 J 11,13脚短接 15,18脚短接 参数号Pn:功能说明:数据: 00(正反转选择) 0010/0011 100(速度环增益) 80 (设定值增大可提高伺服电机响应速度,过高的增 益会导致振动) 101(速度环积分时间) 1000(设定值减小可减短伺服电机的刹车时间) 102 (位置环增益) 60 (设定值增大可提高伺服刚性,过高的增益会导致振动)200 (伺服清零方式) 0010 202 (电子齿轮分子) 65535 203 (电子齿轮分母) 250 408(转距滤波器开关) 0001 (调0001后使Pn409有效) 409 (转距滤波器) 2000 (通过调节该参数可使电机震动减小) 50A (输入信号选择1) 8170 (务必设定成8170) 50B (输入信号选择2) 6548 (务必设定成6548) 600 (再生电阻容量) 12 (单位:10W 外接电阻时设定)

力士乐REXROTH伺服参数设置

力士乐REXROTH伺服参数设置 文中简述了力世乐ECODRIVE03 伺服驱动系统通过并行接口进行位置块(组)操作模式(position block mode)的控制原理,并例举了与伺服驱动相关的故障及其解决方法。 数控机床控制中西门子、法那科伺服驱动系统应用较为普遍,而力世乐ECODRIVE03 伺服系统亦广泛地应用于机械制造、印刷造纸业、食品包装及集装总装等领域。拥有FWA-ECODR3-SMT-02VS-MS 等系列硬件的ECODRIVE03 伺服系统通过串行、模拟、并行接口,及对系统标准参数(S 型参数)生产参数(P 型参数)的设置,可完成扭矩控制、速度控制、位置控制、插补控制、点动、位置块(组)及步进电机等模式的操作。且系统带有测量、驱动、暂停、模拟输入/输出、数字输入/输出等多种基本功能并拥有完备的诊断功能。下面介绍力世乐伺服系统的位置块(组)操作模式的控制原理。 1 位置块(组)操作模式的控制原理 1.1 概述位置块(组)操作模式的控制原理 位置块(组)操作模式是伺服系统以设定的速度、加速度等参数驱动电机运行到已在程序中预设的目标值的位置控制。系统根据所处理的不同工艺过程(加工区域)最多可以设置64 个位置块(组)。 应用位置块(组)操作模式时,首先要对操作首要模式参数S-0-0032 进行设置,如设置为0000 0000 0011 х011 时,是通过编码器1 接口进行位置控制。其中第3 位,bit3=0时代表位移滞后控制,bit3=1 时为无滞后控制;同时要将第二操作模式1 设置为点动模式,即设置参数S-0-0033 为1100 0000 0001 1011。 系统中与之相关的参数为: P-0-4006:加工块的目标位置值 P-0-4007:加工块的速度值

安川伺服电机参数基本调整

安川伺服电机参数基本调整 动态参数调整步骤: 步骤一.设定系统刚性(Fn 001) Kp : 位置回路比例增益(机床Kp 建议值30-90 /sec) Kv : 速度回路比例增益(机床Kv 建议值30-120 Hz) Ti : 速度回路积分增益(机床Ti 建议值10-30 ms) 范例: 步骤二. 自动调协(auto turning) 寻找马达与机床惯性比 自动调协目的,主要是在计算马达与机床整合后有些动态参数会受到影响ex: 马达负载惯性比… ,如果不先将相关参数找出速度回路的表现会与 Kv/Ti 设置的结果不一致 自动调协操作步骤: 1.参数Pn110设11。(打开在线自动调谐功能) 2.手动Jog床台让床台来回往复多次运行。 3.手动Jog床台时如发生共振现象,请立即压下紧急停止按钮,将驱动器 参数Pn408设1(打开共振抑制功能),然受修正Pn409(共振抑制频率)设 定,1米加工中心机建议Pn409设定200。 4.将Fn007内容写入EEPROM。 (按Mode键至Fn000→按Up或Down键至Fn007→持续按Data 键1秒显 示负载贯性比→持续按Set键1秒后Fn007内容显示之负载贯量比即可 写入EEPROM) 5.参数Pn110设12。(关闭在线自动调谐功能) 步骤三.起动并设定驱动器抑制共振功能相关参数 (Pn408设1即打开共振抑制功能,Pn409可设定共振抑制频率) 马达与机床结合后,除了马达选用太小,无法达到高响应之外,有时也会发生马达扭力够,但是因为机床床台传动刚性较差,会产生共振而无法达到高响应又 平顺的控制目标,此时,除了加强机床的传动刚性外,可利用控制器抑制共振功能,而得到高响应的结果 . 步骤四. 将速度回路增益参数再调高 就位置回路控制而言,速度回路是内回路,内回路响应越高,外回路(位置回路)表现越如预期,比较不会受到外界切削力,磨擦力的影响,所以在切削应用场合,请将速度回路增益尽量调高,以得到更好的切削质量

相关文档
最新文档