反渗透脱盐系统

反渗透脱盐系统
反渗透脱盐系统

吨一级反渗透脱盐设备技术方案

25m3/h脱盐水处理设备 设 计 方 案

目录 一、概述 0 二、设计依据 0 三、设计原则 (1) 四、工艺流程 (1) 五、工艺说明 (1) 六、设备选型及主要技术参数 (8) 七、运行成本分析 (16) 八、电气控制 (17) 九、售后服务 (19) 十、设备报价清单 (20) 十一、附图 (21)

一、概述 业主因生产需要,需购置一套反渗透装置,产水量为25m3/h。根据业主未提供详细的水质资料,我公司根据业主的出水要求,采用目前国内外先进的成熟可靠的予处理+一级RO制水工艺进行方案设计。 二、设计依据 1、处理水量:25m3/h 2、原水水质: 3、出水水质: 脱盐率≥95% 4、JB2932-86《水处理设备制造技术条件》; 5、GJ32-90《橡胶衬里化工设备》; 6、ZBJ98003-87《水处理设备油漆、包装技术条件》; 7、工艺设计计算按《给排水设计手册》; 8、RO设计按《反渗透膜设计导则》。 9、ZBJ98004-87《水处理设备原材料入厂检验》; 10、GB150-89《钢制压力容器》; 11、劳锅字[1990]8号《压力容器安全监察规格》;

12、GBJ87《工业企业噪音设计规范》; 13、进口设备的制造工艺和材料符合美国机械工程师协会(ASME)和美国材料试验学会(ASTM)工业法规中涉及的标准或相当标准。 三、设计原则 1.本设计力求一次性投资小、运行费用低、操作简便。 2.本工艺出水水质好,且可连续供水。 3.本工艺设计范围包括工艺方案、设计计算、经济技术指标及工艺流程图。 四、工艺流程 PAC 阻垢剂 ↓↓ 原水箱→原水泵→多介质过滤器→活性炭过滤器→板式换热器→保安过滤器→高压泵→反渗透装置→除盐水箱→脱盐水泵→用水点 五、工艺说明 I、预处理系统 因反渗透系统进水对污染指数要求比较高,而原水水质一般,为保证原水经处理后符合RO装置进水要求,在RO装置前设置预处理系统。 预处理系统包括絮凝剂、多介质过滤器、活性炭过滤器。确保进入RO系统的原水水质污染指数达标,根据源水水质,工艺设置RO工艺,确保达到业主要求。 ◆反渗透系统的进水要求:

导致反渗透膜脱盐率过快下降的原因

导致反渗透膜脱盐率过快 下降的原因 Prepared on 24 November 2020

导致反渗透膜脱盐率过快下降的原因在脱盐水处理设备中,采用反渗透膜进行脱盐处理是目前最先进、最经济的技术。在反渗透设备日常运行中,经常发现反渗透纯水设备出现脱盐率过快下降的情况,那么纯水设备脱盐率过快下降的原因有哪些深圳市纯水一号水处理厂家给大家总结如下: 1、高压差导致脱盐率下降 压差升高同时往往伴随着脱盐率快速下降。在正常的流量下,压差的上升通常是由于膜元件水流量通道的隔网进入杂质,污染物质和水垢引起的,导致产水流量的下降。当超过设定的给水流量时,也会发生过大的压差,当启动时给水压力提升过快,发生水锤压差会很大,如果膜已经被污染,特别是微生物污染,压差也会增大。给水至浓水间的压差表示的是水力阻力,与给水的流速、温度有关,应该保持产水和浓水有一定的流速。出现高压差的可能性有:水垢、微生物污染、阻垢剂沉淀、过滤器过滤介质漏、给水/浓水密封损坏。 2、在线化学清洗不合理 超纯水设备在运行中是不可避免被污染。预处理和添加各种要种药剂只能将反渗透被污染的可能性降到最低,而不能彻底的杜绝。因此,长期运行的反渗透系统在经过一定时间的运行后,必须

要充分论证和确认是哪一种污染物。针对聚酰胺膜的特点,可以根据相应的污垢选取适当的清洗剂: a、盐酸(36%-38%),配制成%稀溶液,去除金属氧化物质。 b、氢氧化钠,配制成%的稀溶液,去除二氧化硅、微生物膜、有机物等,pH约为12。作用是对有机微生物粘膜的水解破坏而剥离,对于二氧化硅胶体垢,形成的硅酸钠为可溶性,从而除垢。 c、乙二胺四乙酸四钠,作为螯合剂广泛应用于工业清洗,1%水溶液,加入浓度%-1%。 d、十二烷基磺酸钠,属阴离子表面活性剂,目的是分散在溶液中的有机化合物,可使溶液的表面张力降低,引起正吸附,这样可使溶液表面溶质分子的的浓度大于溶液内部溶质分子的浓度。十二烷基磺酸钠是反渗透清洗是最主要的表面活性剂,加入浓度为%。 f、甲醛,甲醛对细菌、真菌、病毒、芽胞及原虫等皆有极强的杀灭力,加入浓度为%-35。 3、余氯的控制差 次氯酸钠作为杀菌剂,广泛应用于纯水设备预处理中。在反渗透系统中,为防止反渗透的微生物污染,对反渗透进水要进行氯化处理。用比色计测定余氯,控制余氯的质量浓度在砂过滤器进口处一般为L,不小于L,在反渗透前保安过滤器处应小于L。而聚酰胺

反渗透技术问答(实用问题集)

反渗透技术问答(实用问题集)1.膜元件的标准测试回收率、实际回收率与系统回收率 膜元件标准回收率为膜元件生产厂家在标准测试条件所采用的回收率。海德能公司苦咸水膜元件的标准回收率15%,海水膜元件10%。 膜元件实际回收率是膜元件实际使用时的回收率。为了降低膜元件的污染速度、保证膜元件的使用寿命,膜元件生产厂家对单支膜元件的实际回收率作了明确规定,要求每支l米长的膜元件实际回收率不要超过18%,但当膜元件用于第二级反渗透系统水处理时,则实际回收率不受此限制,允许超过18%。 系统回收率是指反渗透装置在实际使用时总的回收率。系统回收率受给水水质、膜元件的数量及排列方式等多种因素的影响,小型反渗透装置由于膜元件的数量少、给水流程短,因而系统回收率普遍偏低,而工业用大型反渗透装置由于膜元件的数量多、给水流程长,所以实际系统回收率一般均在75%以上,有时甚至可以达到90%。 在某些情况下,对于小型反渗透装置也要求较高的系统回收率,以免造成水资源的浪费,此时在设计反渗透装置时就需要采取一些不同的对策,最常见的方法是采用浓水部分循环,即反渗透装置的浓水只排放一部分,其余部分循环进入给水泵入口,此时既可保证膜元件表面维持一定的横向流速,又可以达到用户所需要的系统回收率,但切不可通过直接调整给水/浓水进出口阀门来提高系统回收率,如果这样操作,就会造成膜元件的污染速度加快,导致严重后果。 系统回收率越高则消耗的水量越少,但回收率过高会发生以下问题。 ①产品水的脱盐率下降。 ②可能发生微溶盐的沉淀。 ③浓水的渗透压过高,元件的产水量降低。 一般苦咸水脱盐系统回收率多控制在75%,即浓水浓缩了4倍,当原水含盐量较低时,有时也可采用80%,如原水中某种微溶盐含量高,有时也采用较低的系统回收率以防止结垢。 2.如何确定系统回收率 工业用大型反渗透装置由于膜元件的数量多、给水流程长,实际系统回收率一般均在75%以上,有时甚至可以达到90%。对于小型反渗透装置也要求较高

反渗透膜元件离子脱除率性能标准

评价反渗透膜元件离子脱除率性能标准 世韩反渗透膜结构有两类均质和非对称膜。目前主要用于醋酸纤维素膜材料和芳香聚酰胺类。它的组件是中空纤维类型、体积类型,板框式和管式。可用于化工单元操作,如分离、浓缩和提纯的主要用于制备纯水和水处理行业。UE8040-PF反渗透膜可以拦截大于0.0001微米材料,是一种最微妙的膜分离产品,它能有效地拦截所有溶解盐和有机分子量大于100,同时允许水分子通过。 世韩反渗透膜用于从水中脱除可溶性的盐份,当水分子快速透过反渗透水处理膜时,溶解性的盐份透过膜的速度十分缓慢。在自然渗透条件下,水分子经扩散透过半透性膜进入高浓度含盐量侧,以便膜两侧溶质强度达到平衡。为了克服或逆转这一自然渗透的趋势,对高浓度进水施加压力,就会产生纯净的透过液。 脱盐率是膜元件排斥可溶解性离子程度的一种量度,反渗透元件能够脱除许多种不同的离子,除了个别特殊情况外,反渗透对二价离子比一价离子的脱除率要高,因此,如果膜对NaCl表出现优异的脱除率的话,可以预见,膜将会对二价离子如铁、钙、镁和硫酸根有更好的脱除率。因此,NaCl被广泛地用于作为评价反渗透膜元件离子脱除率性能的标准物质。 膜对离子态杂质的脱除性能,膜也能除去或至少承受进水中其它的杂质,例如有机物、二氧化碳和气体,当用户评估反渗透元件时,也应该包括其脱除或承受这些非离子类杂质的能力。 盐份透过膜的传递速度是以质量体积浓度度量的,现有的仪表能测定出产水比电导值(即电导率),这一数值可以十分容易地换算成透过膜的渗透液中每升所含盐份的毫克数,用百分率表示,计算方法为:脱盐率V=÷原液浓度A×%。 反渗透膜元件的脱盐率已确定在其制造成型,脱盐率取决于RO反渗透膜元件表面密度的超薄层,致密层脱盐率越来越高,与此同时,水率越低。反渗透膜脱盐率不同的材料主要是由材料结构和分子量、离子和复杂的单价离子高脱盐率可超过99%,单价离子如钠、钾、氯离子脱盐率略低,但也可以超过98%(反渗透膜的使用时间越长,化学清洗,反渗透膜脱盐率越低)的有机物去除率分子量大于100也能导致98%,但低分子量有机物去除率的不到100人。

导致反渗透膜脱盐率过快下降的原因修订稿

导致反渗透膜脱盐率过快下降的原因 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

导致反渗透膜脱盐率过快下降的原因在脱盐水处理设备中,采用反渗透膜进行脱盐处理是目前最先进、最经济的技术。在反渗透设备日常运行中,经常发现反渗透纯水设备出现脱盐率过快下降的情况,那么纯水设备脱盐率过快下降的原因有哪些?深圳市纯水一号水处理厂家给大家总结如下: 1、高压差导致脱盐率下降 压差升高同时往往伴随着脱盐率快速下降。在正常的流量下,压差的上升通常是由于膜元件水流量通道的隔网进入杂质,污染物质和水垢引起的,导致产水流量的下降。当超过设定的给水流量时,也会发生过大的压差,当启动时给水压力提升过快,发生水锤压差会很大,如果膜已经被污染,特别是微生物污染,压差也会增大。给水至浓水间的压差表示的是水力阻力,与给水的流速、温度有关,应该保持产水和浓水有一定的流速。出现高压差的可能性有:水垢、微生物污染、阻垢剂沉淀、过滤器过滤介质漏、给水/浓水密封损坏。 2、在线化学清洗不合理 超纯水设备在运行中是不可避免被污染。预处理和添加各种要种药剂只能将反渗透被污染的可能性降到最低,而不能彻底的杜绝。因此,长期运行的反渗透系统在经过一定时间的运行后,必须要充分论证和确认是哪一种污染物。针对聚酰胺膜的特点,可以根据相应的污垢选取适当的清洗剂: a、盐酸(36%-38%),配制成%稀溶液,去除金属氧化物质。

b、氢氧化钠,配制成%的稀溶液,去除二氧化硅、微生物膜、有机物等,pH 约为12。作用是对有机微生物粘膜的水解破坏而剥离,对于二氧化硅胶体垢,形成的硅酸钠为可溶性,从而除垢。 c、乙二胺四乙酸四钠,作为螯合剂广泛应用于工业清洗,1%水溶液,加入浓度%-1%。 d、十二烷基磺酸钠,属阴离子表面活性剂,目的是分散在溶液中的有机化合物,可使溶液的表面张力降低,引起正吸附,这样可使溶液表面溶质分子的的浓度大于溶液内部溶质分子的浓度。十二烷基磺酸钠是反渗透清洗是最主要的表面活性剂,加入浓度为%。 f、甲醛,甲醛对细菌、真菌、病毒、芽胞及原虫等皆有极强的杀灭力,加入浓度为%-35。 3、余氯的控制差 次氯酸钠作为杀菌剂,广泛应用于纯水设备预处理中。在反渗透系统中,为防止反渗透的微生物污染,对反渗透进水要进行氯化处理。用比色计测定余氯,控制余氯的质量浓度在砂过滤器进口处一般为L,不小于L,在反渗透前保安过滤器处应小于L。而聚酰胺类膜的突出问题是防止其被氧化。进水余氯值和强氧化均对其造成不利的影响,必须严格控制。因而定期检测反渗透进水的余氯值极为重要。 以上信息由深圳市纯水一号水处理科技有限公司提供,希望对您有帮助,我们结合多年的生产实践经验,以优质的品质为基础,以市场需求为导向,深得国内外客户的认同和支持。

反渗透脱盐水操作手册

20万吨甲醇工程脱盐水站 操作维护手册 编制: 审核: 批准: 特别告示:

注意!严禁没有阅读并完全理解本操作维护手册,没有经过相应培训的人员操作本系统装置。 由于本系统装置是在一定的水压下运行,违背本手册中的 操作规程将可能导致伤害甚至死亡事故的发生。请特别留意本说明中的安全规范以及贵公司的安全规定,请给操作人员提供完善的安全防护用品。 因以下情况造成的任何人身伤害、设备损坏以及其他方面的损失,OEE公司不承担任何责任: ▲操作人员缺乏对本系统装置的培训和操作技能; ▲人为疏忽; ▲没有遵守本手册规定的操作规程或国家强制制性的法律法规。 ▲如果您对手册中的操作规范或者涉及到的设备有任何问题请随时和我们: 手册说明: 本资料专为脱盐水站的运行管理而编制的,有关各工艺设备、传动设备、电仪设备的使用维护及检查,请参阅设备使用说明书。 本手册叙述的是基本运行要领,操作人员应以本书为基础,结合现场条件,根据实际情况进行适当的修改,编制出本企业的操作运行规程,使装置处于最佳运行状态。

本书所列运行数据,均为设计条件下的基础数据,故在实际运行中要根据运行的实际情况进行修正。 警告 RO系统在运行中,出现下列现象之一者,RO膜必须进行化学清洗: ●产品水的膜透过量下降10-15% ●产品水的脱盐率降低10-15% ●膜的压力差(进水压力-浓水压力)增加10-15% 目录 (4) 第一章系统概述 (5) 第一节工艺概述 (5) 第二节仪表与自控系统概述 (7) 第三节电气概述 (8) 第二章工艺设备 (9) 第一节换热器 (9) 第二节锰砂过滤器 (10) 第三节加药装置 (14)

反渗透的原理及清洗条件

反渗透装置 1.工艺原理: RO是利用半透膜透水不透盐的特性,去除水中的各种盐份。在RO的原水侧加压,使原水中的一部分纯水沿与膜垂直的方向透过膜,水中的盐类和胶体物质在膜表面浓缩,剩余部分原水沿与膜平行的方向将浓缩的物质带走。透过水中仅残余少量盐份,收集利用透过水,即达到了脱盐的目的。 膜元件的水通量越大,回收率越高则其膜表面浓缩的程度越高,由于浓缩作用,膜表面的物质浓度与主体水流中物质浓度不同,产生浓差极化现象。浓差极化会使膜表面盐的浓度增大,膜的渗透压增大,盐的透过率也增大,为提高给水的压力而需要消耗更多的能量。 2 膜的污染: 膜的污染由微溶盐结晶、胶体物质浓聚、微生物和细菌滋生等原因而引起。膜表面上的浓差极化现象造成膜面的盐类浓度大于主体水流中的浓度,过大的盐浓度造成微溶盐结晶沉淀在膜表面;胶体物质的扩散系数较盐类小得多,在膜表面浓聚的胶体物质不及扩散而沉积,是造成膜污染的主要原因;微生物和细菌会以有机物胶体为养分,在膜表面滋生,滋生的菌斑会严重影响膜的性能,造成难以恢复的膜性能下降。 RO系统的运行中应控制好膜通量、膜元件的回收率。因为膜通量和回收率过高可能造成膜的污染速度过高和需要频繁的化学清洗。 3.运行要点及工艺参数 3.1 周围环境温度最低不得低于5?C,最高不得高于38?C。当温度高于35?C时, 应加强通风措施。 3.2 脱盐系统的回收率75%。较低的系统回收率易于防止结垢和膜污染。 3.3 控制盐的透过量:盐透过量与膜两侧的浓度差和温度有关。因此应控制系统 回收率在75%左右,水温最高不得大于30℃。 3.4 正常运行中膜元件受到渗透水的冲洗,所以只有在RO出水量下降10%或压 降增加15%或脱盐率明显下降或人为要求时,才对系统进行化学清洗。但为了保证系统长时间的安全运行,通常三个月至半年清洗一次。清洗方向与运行的方向相同,不允许反向清洗,以免发生膜卷伸出而损坏膜元件。

世韩反渗透膜脱盐率及脱除性能说明

世韩反渗透膜脱盐率及脱除性能说明 世韩反渗透膜结构有两类均质和非对称膜。目前主要用于醋酸纤维素膜材料和芳香聚酰胺类。它的组件是中空纤维类型、体积类型,板框式和管式。可用于化工单元操作,如分离、浓缩和提纯的主要用于制备纯水和水处理行业。UE8040-PF反渗透膜可以拦截大于0.0001微米材料,是一种最微妙的膜分离产品,它能有效地拦截所有溶解盐和有机分子量大于100,同时允许水分子通过。 世韩反渗透膜用于从水中脱除可溶性的盐份,当水分子快速透过反渗透水处理膜时,溶解性的盐份透过膜的速度十分缓慢。在自然渗透条件下,水分子经扩散透过半透性膜进入高浓度含盐量侧,以便膜两侧溶质强度达到平衡。为了克服或逆转这一自然渗透的趋势,对高浓度进水施加压力,就会产生纯净的透过液。 脱盐率是膜元件排斥可溶解性离子程度的一种量度,反渗透元件能够脱除许多种不同的离子,除了个别特殊情况外,反渗透对二价离子比一价离子的脱除率要高,因此,如果膜对NaCl表出现优异的脱除率的话,可以预见,膜将会对二价离子如铁、钙、镁和硫酸根有更好的脱除率。因此,NaCl被广泛地用于作为评价反渗透膜元件离子脱除率性能的标准物质。 膜对离子态杂质的脱除性能,膜也能除去或至少承受进水中其它的杂质,例如有机物、二氧化碳和气体,当用户评估反渗透元件时,也应该包括其脱除或承受这些非离子类杂质的能力。 盐份透过膜的传递速度是以质量体积浓度度量的,现有的仪表能测定出产水比电导值(即电导率),这一数值可以十分容易地换算成透过膜的渗透液中每升所含盐份的毫克数,用百分率表示,计算方法为:脱盐率V=÷原液浓度A×%。 反渗透膜元件的脱盐率已确定在其制造成型,脱盐率取决于RO反渗透膜元件表面密度的超薄层,致密层脱盐率越来越高,与此同时,水率越低。反渗透膜脱盐率不同的材料主要是由材料结构和分子量、离子和复杂的单价离子高脱盐率可超过99%,单价离子如钠、钾、氯离子脱盐率略低,但也可以超过98%(反渗透膜的使用时间越长,化学清洗,反渗透膜脱盐率越低)的有机物去除率分子量大于100也能导致98%,但低分子量有机物去除率的不到100人。

RO膜元件的脱盐率

RO膜元件的脱盐率在其制造成形时就已确定,脱盐率的高低取决于膜元件表面超薄脱盐层的致密度,脱盐层越致密脱盐率越高,同时产水量越低。反渗透对不同物质的脱除率主要由物质的结构和分子量决定,对高价离子及复杂单价离子的脱除率可以超过99%,对单价离子如:钠离子、钾离子、氯离子的脱除率稍低,但也超过了98%;对分子量大于100的有机物脱除率也可达到 98%,但对分子量小于100的有机物脱除率较低。 透水率=单位时间内渗透的水量,L/H÷单位膜面积,M2 脱盐率=(反渗透处理进水中的含盐量,MG/L-反渗透处理出水中的含盐量,MG/L)÷反渗透处理进水中的含盐量,MG/L 回收率--指膜系统中给水转化成为产水或透过液的百分比。膜系统的回收率在设计时就已经确定,是基于预设的进水水质而定的。 回收率=(产水流量/进水流量)×100% RO膜脱盐率衰减系数依据是什么? 膜件在使用过程中,其脱盐率会有所降低,即盐透过率会上升,同样由于受到给水水质、污染指数SDI 值、设计水通量、运行维护水平、膜元件材质等多种因素的影响,因此膜元件厂家无法给出盐透过率增加的速度,只能假设出一个数据供设计者参考。 例如: 醋酸纤维膜元件,每年盐透过率增加为17-33%,复合膜每年盐透过率增加为3-17%。如果设计者选用最低脱盐率为99.6%(即盐透过率为0.4%)的CPA3膜元件,设定的每年盐透过率增加10%,那么一年后盐透过率增加值=盐透过率×每年盐透过增加百分数。即1年后盐透过率增加值=0.4%×10%=0.04%,可折算为1年后盐透过率=0.4%+0.04%=0.44%,即一年后CPA3膜元件的最低脱盐率为99.56%。有些人玩玩会认为脱盐率每年衰减10%,即最低脱盐率99.6%的CPA3膜元件,1年后脱盐率为89.6%,2年后79.6%,这种算法是不正确的。

水的反渗透除盐.

一、水的反渗透除盐 技术术语 浓水:又称盐水,是反渗透系统的浓缩废液 淡水:又称渗透水、产水,是反渗透系统的净化水 回收率:淡水与供水的比值 Y=Qp/Qf×100% 式中:Qp——产品水流量(m3/h) Qf——原水流量(m3/h) 脱盐率:表示反渗透装置或元件对盐分的脱盐能力 Rf=(Cf-Cp)/Cf ×100% 式中:Cf——原水电导率(us/cm) Cp——产品水电导率(us/cm) 段:指膜组件的浓水流经下一股组件处理,流经几组膜组件 即称为几段 级:指膜组件的产品水再经膜组件处理,产品水经几次膜组 件处理即称为几级 产水通量:单位时间内透过膜元件(组件)单位膜表面的水量 污泥密度指数(SDI):通过平均孔径为0.4um的微孔滤膜测定。具体步骤是:用直径为47mm、平均孔径为0.45um的微孔滤膜,在0.21MPa 的压力下过滤水样,记录最初滤过500ml的水样所花费的时间t0, 继续过滤15min后,再记录滤过500ml水样所花费的时间t15。用下 式计算SDI: SDI=(1- t0/ t15)×100/15

在上述过程中,凡是粒径大于以4um的微粒、胶体和细菌大都被截 留在膜面上,引起透水速度下降,过滤同等体积水样所需时间延长, 所以t0/t15<1。水中悬浮固体越多,t0/t 15值越小,SDI越大;当 水污染很严重时,t15→∞,SDI趋近极限值6. 7;当水中杂质尺寸 小于0.45um时,t0≈t15, SDI接近于O 浓差极化:反渗透装置在运行过程中,淡水透过后膜界面层浓缩水中的含 盐量增大,和进谁之间往往会产生浓度差,严重时会形成很高 的浓度梯度现象,称为浓差极化。 1.1反渗透水处理系统的设计 反渗透水处理系统的设计是依据原水水质、产水水质、水量要求、排放水量要求以及场地情况等原始资料,选择合理的水处理工艺流程,选择适当的膜元件,确定膜元件的数量和排列方式,选择高压泵等。

反渗透膜技术指标的相关分析

反渗透膜技术指标的相关分析 1、脱盐率和透盐率 脱盐率――通过反渗透膜从系统进水中去除可溶性杂质浓度的百分比。 透盐率――进水中可溶性杂质透过膜的百分比。 脱盐率=(1-产水含盐量/进水含盐量)×100% 透盐率=100%-脱盐率 反渗透膜元件的脱盐率在其制造成形时就已确定,脱盐率的高低取决于反渗透膜元件表面超薄脱盐层的致密度,脱盐层越致密脱盐率越高,同时产水量越低。反渗透对不同物质的脱除率主要由物质的结构和分子量决定,海德能反渗透膜元件对高价离子及复杂单价离子的脱除率可以超过99%,对单价离子如:钠离子、钾离子、氯离子的脱除率稍低,但也超过了98%;对分子量大于100的有机物脱除率也可达到98% 2、产水量(水通量) 产水量(水通量)――指反渗透系统的产能,即单位时间内透过膜水量,通常用吨/小时或加仑/天来表示。 渗透流率――渗透流率也是表示反渗透膜元件产水量的重要指标。指单位膜面积上透过液的流率,通常用加仑每平方英尺每天(GFD)表示。过高的渗透流率将导致垂直于膜表面的水流速加快,加剧膜污染。 3、回收率 回收率--指膜系统中给水转化成为产水或透过液的百分比。膜系统的回收率在设计时就已经确定,是基于预设的进水水质而定的。回收率通常希望最大化以便提高经济效益,但是应该以膜系统内不会因盐类等杂质的过饱和发生沉淀为它的极限值。 回收率=(产水流量/进水流量)×100%

反渗透的影响因素 反渗透膜的水通量和脱盐率是反渗透过程中关键的运行参数,这两个参数将受到压力、温度、回收率、给水含盐量、给水PH值因素的影响。 1、进水压力 进水压力本身并不会影响盐透过量,但是进水压力升高使得驱动反渗透的净压力升高,使得产水量加大,同时盐透过量几乎不变,增加的产水量稀释了透过膜的盐分,降低了透盐率,提高脱盐率。当进水压力超过一定值时,由于过高的回收率,加大了浓差极化,又会导致盐透过量增加,抵消了增加的产水量,使得脱盐率不再增加。 2.、进水温度 温度对反渗透的运行压力、脱盐率、压降影响最为明显。温度上升,渗透性能增加,在一定水通量下要求的净推动力减少,因此实际运行压力降低。同时溶质透过速率也随温度的升高而增加,盐透过量增加,直接表现为产品水电导率升高。 温度对反渗透各段的压降也有一定的影响,温度升高,水的粘度降低,压降减少,对于反渗透膜的通道由于污堵而使湍流程度增强的装置,粘度对压降的影响更为明显。 反渗透膜产水电导对进水水温的变化十分敏感,随着水温的增加,水通量也线性的增加,进水水温每升高1℃,产水通量就增加2.5%~3.0%;其原因在于透过膜的水分子粘度下降、扩散性能增强。进水水温的升高同样会导致透盐率的增加和脱盐率的下降,这主要是因为盐分透过膜的扩散速度会因温度的提高而加快。 3、进水pH值 各种膜组件都有一个允许的pH值范围,进水pH值对产水量几乎没有影响;但是即使在允许范围内,PH值对脱盐率也有较大影响,一方面pH值对产品水的电导率也有一定的影响,这是因为反渗透膜本身大都带有一些活性基团,pH值可以影响膜表面的电场进而影响到离子的迁移,pH值对进水中杂质的形态有直接影响,如对可离解的有机物,其截留率随pH值的降低而下降;另一方面由于水中溶解的CO2受pH值影响较大,pH值低时以气

反渗透技术在饮用水处理中的应用

反渗透技术在饮用水处理中的应用 08级给水排水(2)班李上兴0817040055 摘要:反渗透技术是一种新兴的饮用水处理技术,本文就反渗透技术在饮用水水处理中的应用进行探讨。具有一定的参考价值。 关键词:反渗透技术;饮用水水处理;应用 Application of the reverse osmosisto the drinking water treatment Abstract:The reverse osmosis was an emerging technology for the drinking water treatment,application of the reverse osmosisto the drinking water treatment is discussed in this article.It has a certain reference value. Key words:reverse osmosis;drinking water treatment;application 1引言 在各种膜分离技术中,反渗透技术是近年来国内应用最成功、发展最快、普及最广的一种。估计自1995年以来,反渗透膜的使用量每年平均递增20%;据保守的统计,1999年工业反渗透膜元件的市场供应量为8英寸膜6000支,4英寸膜26000支。2000年和2001年的市场更为强劲,膜用量一年比一年有较大幅度的提高。据估算,反渗透技术的应用已创造水处理行业全年10亿人民币以上的产值。国内反渗透膜工业应用的最大领域仍为大型锅炉补给水、各种工业纯水,饮用水的市场规模次之,电子、半导体、制药、医疗、食品、饮料、酒类、化工、环保等行业的应用也形成了一定规模。本文就反渗透技术在饮用水处理中的应用进行探讨。 2反渗透技术的内涵及基本原理 RO(Reverse Osmosis)反渗透技术是利用压力表差为动力的膜分离过滤技术,源于美国二十世纪六十年代宇航科技的研究,后逐渐转化为民用,目前已广泛运用于科研、医药、食品、饮料、海水淡化等领域。RO反渗透膜孔径小至纳米级(1纳米=10-9米),在一定的压力下,H20分子可以通过RO膜,而源水中的无机盐、重金属离子、有机物、胶体、细菌、病毒等杂质无法通过RO膜,从而使可以透过纯水和无法透过的浓缩水严格区分开来。RO膜过滤后的纯水电导率5s/cm,符合国家实验室三级用水标准。再经过原子级离子交换柱循环过滤,出水电阻率可以达到18.2M.cm,超过国家实验室一级用水标准(GB682—92)。当纯水和盐水被理想半透膜隔开,理想半透膜只允许水通过而阻止盐通过,此时膜纯水侧的水会自发地通过半透膜流入盐水一侧,这种现象称为渗透,若在膜的盐水侧施加压

影响反渗透设备脱盐率的因素分析

影响反渗透设备脱盐率的因素分析 反渗透设备是通过设备内的反渗透膜来对原水中的杂质和细 菌进行过滤的,将这些截留在膜的一侧,最后随着废水一起排出。反渗透设备出水水质的好坏很大部分是由反渗透膜决定的。反渗透膜的水通量和脱盐率是反渗透过程中关键的运行参数,这两个参数将受到压力、温度、回收率、给水含盐量、给水PH值因素的影响。 1、进水压力 进水压力本身并不会影响盐透过量,但是进水压力升高使得驱动反渗透的净压力升高,使得产水量加大,同时盐透过量几乎不变,增加的产水量稀释了透过膜的盐分,降低了透盐率,提高脱盐率。当进水压力超过一定值时,由于过高的回收率,加大了浓差极化,又会导致盐透过量增加,抵消了增加的产水量,使得脱盐率不再增加。 2.、进水温度 温度对反渗透的运行压力、脱盐率、压降影响最为明显。温度上升,渗透性能增加,在一定水通量下要求的净推动力减少,因此实际运行压力降低。同时溶质透过速率也随温度的升高而增加,盐透过量增加,直接表现为产品水电导率升高。 温度对反渗透各段的压降也有一定的影响,温度升高,水的粘度降低,压降减少,对于反渗透膜的通道由于污堵而使湍流程度增强的装置,粘度对压降的影响更为明显。 反渗透膜产水电导对进水水温的变化十分敏感,随着水温的增加,水通量也线性的增加,进水水温每升高1℃,产水通量就增加2.5%~3.0%;其原因在于透过膜的水分子粘度下降、扩散性能增强。进水水温的升高同样会导致透盐率的增加和脱盐率的下降,这主要是因为盐分透过膜的扩散速度会因温度的提高而加快。

3、进水pH值 各种膜组件都有一个允许的pH值范围,进水pH值对产水量几乎没有影响;但是即使在允许范围内,PH值对脱盐率也有较大影响,一方面pH值对产品水的电导率也有一定的影响,这是因为反渗透膜本身大都带有一些活性基团,pH值可以影响膜表面的电场进而影响到离子的迁移,pH值对进水中杂质的形态有直接影响,如对可离解的有机物,其截留率随pH值的降低而下降;另一方面由于水中溶解的CO2受pH值影响较大,pH值低时以气态CO2形式存在,容易透过反渗透膜,所以pH低时脱盐率也较低,随pH升高,气态CO2转化为HCO3-和CO32-离子,脱盐率也逐渐上升,pH在7.5~8.5 之间时,脱盐率达到最高。 4、进水盐浓度 渗透压是水中所含盐分或有机物浓度的函数,含盐量越高渗透压也增加,进水压力不变的情况下,净压力将减小,产水量降低。透盐率正比于反渗透膜正反两侧盐浓度差,进水含盐量越高,浓度差也越大,透盐率上升,从而导致脱盐率下降。对同一系统来说,给水含盐量不同,其运行压力和产品水电导率也有差别,给水含盐量每增加l00ppm,进水压力需增加约0.007MPa,同时由于浓度的增加,产品水电导率也相应的增加。

一种提升反渗透膜脱盐率技术

一种反渗透膜脱盐率恢复的技术方法 技术领域 本实用新型涉及反渗透膜的运营维护技术领域,尤其涉及一种反渗透膜脱盐率恢复领域。 背景技术 反渗透系统即利用反渗透膜的特性来除去水中绝大部分可溶性盐分、胶体、有机物及微生物,已广泛用于水处理脱盐。反渗透膜元件在长时间运行过程中,膜表面会受到碳酸钙沉淀、硫酸钙沉淀、微生物、金属氧化物、硅沉积物等污染物形成的结垢沉积物,这些结构沉积物使反渗透膜性能下降,反渗透膜脱盐率下降,影响产品水水质。 实用新型内容 针对上述反渗透膜性能下降,反渗透膜脱盐率下降问题,本实用新型的目的是提供一种反渗透膜脱盐率恢复的方法,提高产品水水质。 为了实现上述目的,本实用新型提供如下技术方法: 一种反渗透膜脱盐率恢复的技术方法,此方法的实施步骤包括: (1)、了解反渗透设备运行状况:包括前段工艺流程、投运行时间、段间压差、高压泵出口压力、高压泵电机电流、膜元件结垢状况、清洗装置状况等; (2)、根据设备运行状况针对性出方案,对方案进行评估;依据确定的方案进行反渗透膜脱盐率恢复工作; (3)、配置pH为11~12的化学清洗溶液1,将化学清洗溶液1加热到40℃,并保持此温度;对反渗透膜进行循环清洗;先进行小流量5m3/h/支膜壳循环清洗20分钟;然后进行中等流量10m3/h/支膜壳循环清洗20分钟;然后再进行大流量15m3/h/支膜壳循环清洗20分钟,最后再进行小流量5m3/h/支膜壳循环清洗150分钟; (4)、使用反渗透产水对完成步骤(3)的反渗透膜进行低压大流量冲洗10分钟; (5)、配置pH为2~3的化学清洗溶液2,对反渗透膜进行中等流量10m3/h/支膜壳循环清洗100分钟; (6)、使用反渗透产水对完成步骤(5)的反渗透膜进行低压大流量冲洗10分钟。 本实用新型的有益效果如下: 1、本实用新型的反渗透膜脱盐率恢复的技术方法能够可快速有效的解决反渗透膜元件 脱盐率下降的污染问题,快速有效的进行了膜元件的维护;避免了膜元件离线清洗或者膜元件更换,能够有效保证反渗透稳定运行,保证产品水水质; 2、本实用新型的反渗透膜脱盐率恢复的技术方法可以避免反渗透膜元件因脱盐率下降

导致反渗透膜系统脱盐率整体过低的原因

反渗透膜系统为什么脱盐率整体过低? 来源:秦泰盛实业 反渗透膜系统为什么脱盐率整体过低?以下是一个实际应用案例,为您分析潜在因素: 反渗透项目设计: 有一个200m3/h的反渗透项目,分成两套装置,每套装置的产水量为100m3/h,设计采用美国海德能CPA3低压高脱盐率反渗透膜,设计回收率 75%,每套装置采用108支美国海德能8040的CPA3膜元件,(12:6)×6排列,给水含盐量 1000mg/L,温度为25℃,按照公司的设计软件的设计计算,在初始投运时,其系统脱盐率应该在98%以上,运行压力应该不高于1.06MPa(10.6bar)。 系统实际运行情况: 系统实际运行时,运行压力与设计压力吻合,但系统脱盐率不到90%,工 程公司经过与技术人员的多次讨论与原因分析,并且在现场对每一支压力容器的产水电导率进行了测试,测试结果表明,装置第一段12支压力容器的产水电导率基本一致,装置第二段6支压力容器的产水电导率基本一致,并且第一段压力容器的产水电导率均低于第二段压力容器的产水电导率,符合反渗透产水的一般规律,从而排除了某些压力容器内存在密封圈泄漏的可能性。 由于现场条件有限,不能进行水质全分析,只有电导率表和pH试纸,在测量给水电导率和pH值后发现,电导率值基本与设计水质相符,用pH试纸测出的pH值大约为7~8,从而排除了水质大幅度变化的可能性。经过反复调查发现,工程公司只是对来水进行简单的预处理后送入反渗透系统,而甲方所提供的来水实际上已经在另一个车间进行了石灰软化处理,处理后也没有对水进行pH值的调节就送到了反渗透的净化车间,由于工程公司没有在给水系统中设计安装pH 表,同时pH 试纸又已经失效,因而没有能够发现pH值已经很高的事实。根据

反渗透操作说明1

反渗透操作说明1 第一章系统概述 采用PLC 控制,系统中反渗透装置为自动运行,其它设备均为手动操作。工艺中水泵、电动阀等动力、控制设备的启停、开关受水箱液位及相关压力开关的连锁保护。水处理现场装有温度、压力、液位、流量、电导率、PH 值等检测仪表。 第一节工艺概述 一、基础条件 1. 原水条件: 1.1. 设计水源:地下水。 1.2. 设计水温:最高:25 ℃,最低:15 ℃ 2. 产水要求 2.1. 预处理产水: SDI :≤4 ;余氯:<0.1mg/L ;水温:20-25 ℃。 2.2. 反渗透产水:

RO系统脱盐率:一年内:≥98% ;三年内:≥97% 产水水量:≥30 m 3/h 水的 回收率:≥75 % 二、工艺流程简述: 1.系统主工艺流程: 原水→聚凝剂投加装置→多介质过滤器→活性炭过滤器→阻垢剂投加装置 →热交换器→保安过滤器→反渗透脱盐装置→除盐水箱→除盐水泵→用水点。本系统根据功能可分为二个分系统,即预处理系统、RO 脱盐系统。预处理系统多介质过滤器、活性碳过滤器等,用于去除水中的悬浮物、胶体等,为后续的脱盐处理提供条件; RO 脱盐系统能脱除水中绝大部分的盐份,极大的减轻了后面水处理设备的 运行负担。包括RO 高压泵、RO 膜组,保安过滤器等。 2.系统辅助流程: 2.1. 过滤器反洗系统: 由反洗水泵、反洗水箱构成。用于定时去除多介质过滤器和活性碳过滤器截 留的污物。反洗水水源采用RO 的浓水。 2.2. RO 清洗系统: 主要设备包括5μm 保安过滤器、清洗水箱、清洗水泵等。随着系统运行时间的增加,进入RO膜组的微量难溶盐、微生物、有机和无机杂质颗粒会不可避免的污堵RO膜表面,产生RO 膜组的产水量下降、脱盐率下降等情况。为此需要RO 清洗系统,在必要时对RO 装置进行化学清洗。

导致反渗透膜脱盐率过快下降的原因

导致反渗透膜脱盐率过快下降的原因在脱盐水处理设备中,采用反渗透膜进行脱盐处理是目前最先进、最经济的技术。在反渗透设备日常运行中,经常发现反渗透纯水设备出现脱盐率过快下降的情况,那么纯水设备脱盐率过快下降的原因有哪些?深圳市纯水一号水处理厂家给大家总结如下: 1、高压差导致脱盐率下降 压差升高同时往往伴随着脱盐率快速下降。在正常的流量下,压差的上升通常是由于膜元件水流量通道的隔网进入杂质,污染物质和水垢引起的,导致产水流量的下降。当超过设定的给水流量时,也会发生过大的压差,当启动时给水压力提升过快,发生水锤压差会很大,如果膜已经被污染,特别是微生物污染,压差也会增大。给水至浓水间的压差表示的是水力阻力,与给水的流速、温度有关,应该保持产水和浓水有一定的流速。出现高压差的可能性有:水垢、微生物污染、阻垢剂沉淀、过滤器过滤介质漏、给水/浓水密封损坏。 2、在线化学清洗不合理 超纯水设备在运行中是不可避免被污染。预处理和添加各种要种药剂只能将反渗透被污染的可能性降到最低,而不能彻底的杜绝。因此,长期运行的反渗透系统在经过一定时间的运行后,必须要充分论证和确认是哪一种污染物。针对聚酰胺膜的特点,可以根据相应的污垢选取适当的清洗剂: a、盐酸(36%-38%),配制成%稀溶液,去除金属氧化物质。

b、氢氧化钠,配制成%的稀溶液,去除二氧化硅、微生物膜、有机物等,pH约为12。作用是对有机微生物粘膜的水解破坏而剥离,对于二氧化硅胶体垢,形成的硅酸钠为可溶性,从而除垢。 c、乙二胺四乙酸四钠,作为螯合剂广泛应用于工业清洗,1%水溶液,加入浓度%-1%。 d、十二烷基磺酸钠,属阴离子表面活性剂,目的是分散在溶液中的有机化合物,可使溶液的表面张力降低,引起正吸附,这样可使溶液表面溶质分子的的浓度大于溶液内部溶质分子的浓度。十二烷基磺酸钠是反渗透清洗是最主要的表面活性剂,加入浓度为%。 f、甲醛,甲醛对细菌、真菌、病毒、芽胞及原虫等皆有极强的杀灭力,加入浓度为%-35。 3、余氯的控制差 次氯酸钠作为杀菌剂,广泛应用于纯水设备预处理中。在反渗透系统中,为防止反渗透的微生物污染,对反渗透进水要进行氯化处理。用比色计测定余氯,控制余氯的质量浓度在砂过滤器进口处一般为L,不小于L,在反渗透前保安过滤器处应小于L。而聚酰胺类膜的突出问题是防止其被氧化。进水余氯值和强氧化均对其造成不利的影响,必须严格控制。因而定期检测反渗透进水的余氯值极为重要。 以上信息由深圳市纯水一号水处理科技有限公司提供,希望对您有帮助,我们结合多年的生产实践经验,以优质的品质为基础,以市场需求为导向,深得国内外客户的认同和支持。

反渗透装置脱盐系统的说明及操作

反渗透装置脱盐系统的说明及操作一级反渗透产水量120T/h,原水经过滤器将水的污染指数降低至3以下,以保证反渗透安全运行。水经过滤器过滤后,由计量泵加入适量阻垢剂,使水经反渗透装置时保证反渗透不会结垢。 水经上述处理后,再经5μm过滤器,以防止大颗粒物体进入反渗透膜,水由高压泵将压力提高到一定压力(本系统一般为1.0 ~1.5MPa左右),进入一级反渗透装置,一级反渗透的产水进入一级反渗透水箱,经过再次加压后进入二级反渗透设备,进行二级脱盐处理,出水水质电导率到2 us/cm 以下,满足生产和下一步工艺的需要。 1、反渗透装置技术参数 (1)型号:一级RO-60(两套)二级RO-50(两套) (2)运行压力:1.0-1.5MPa (3)一级产水量:120T/h 二级产水量:100T/H (4)脱盐率:≥98%,回收率(一级75%,二级 85%) (5)结构形式:卧式 (6)压力容器排列形式:一级:7:4 二级:6:3 (7)运行温度: 25℃ (8)膜类型:BW30-400 2、反渗透的原理 反渗透设备是采用膜分离手段来除去水中的离子、有机物及微细悬浮物(细菌、胶体微粒)以达到水的脱盐纯化目的。其原理是水与溶液以渗透膜相隔,水则向溶液渗透,两相之间有渗透压,若在溶液相上加压大于渗透压,则溶液相中的水就会向水相反向渗透过去。利用反渗透而取得脱

盐水,即原水在足够的压力下,通过渗透膜而变成纯净的水,没有通过的水溶解物、悬浮物浓度逐渐增大。 以下的操作定义,便于进一步理解机组的性能: (1)淡水:又称渗透水,产水,是反渗透系统的净化水。 (2)供水:又称供给水,给水,是进入反渗透膜系统的供给水流。 (3)浓水:又称盐水,是反渗透系统的浓缩废液。 (4)半透膜:允许溶液中溶剂透过而溶质(溶解固形物)却不能透过的膜。 (5)产水量:膜元件、膜组件系列或系统每小时生产淡水的能力。 (6)膜元件:组成反渗透膜组件的单个反渗透膜滤元。 (7)膜组件:含有一个或多个反渗透膜元件的压力容器。 (8)段:膜组件的浓水流经下一组膜组件处理、流经几次膜组件即称为几段。 (9)级:膜组件的产品水再经下一组膜组件处理,产品水经几次膜组件处理即称为几级。 (10)水通量:单位时间内透过膜元件(组件)单位膜表面积的水量。 (11)回收率:淡水与供水之比,以百分比表示。 (12)脱盐率:反渗透装置或膜件对盐分(或特定分子)的脱除能力。 1)按电导率计量: 2)按Cl-计算:

RO膜元件的脱盐率

RO膜元件的脱盐率,在其制造成形时就已确定,脱盐率的高低取决于膜元件表面超薄脱盐层的致密度,脱盐层越致密脱盐率越高,同时产水量越低。反渗透对不同物质的脱除率主要由物质的结构和分子量决定,对高价离子及复杂单价离子的脱除率可以超过99%,对单价离子如:钠离子、钾离子、氯离子的脱除率稍低,但也超过了98%;对分子量大于100的有机物脱除率也可达到 98%,但对分子量小于100的有机物脱除率较低。 透水率=单位时间内渗透的水量,L/H÷单位膜面积,M2 脱盐率=(反渗透处理进水中的含盐量,MG/L-反渗透处理出水中的含盐量,MG/L)÷反渗透处理进水中的含盐量,MG/L 回收率--指膜系统中给水转化成为产水或透过液的百分比。膜系统的回收率在设计时就已经确定,是基于预设的进水水质而定的。 回收率=(产水流量/进水流量)×100% RO膜脱盐率衰减系数依据是什么? 膜件在使用过程中,其脱盐率会有所降低,即盐透过率会上升,同样由于受到给水水质、污染指数SDI值、设计水通量、运行维护水平、膜元件材质等多种因素的影响,因此膜元件厂家无法给出盐透过率增加的速度,只能假设出一个数据供设计者参考。 例如: 醋酸纤维膜元件,每年盐透过率增加为17-33%,复合膜每年盐透过率增加为3-17%。如果设计者选用最低脱盐率为99.6%(即盐透过率为0.4%)的CPA3膜元件,设定的每年盐透过率增加10%,那么一年后盐透过率增加值=盐透过率×每年盐透过增加百分数。即1年后盐透过率增加值=0.4%×10%=0.04%,可折算为1年后盐透过率=0.4%+0.04%=0.44%,即一年后CPA3膜元件的最低脱盐率为99.56%。有些人玩玩会认为脱盐率每年衰减10%,即最低脱盐率99.6%的CPA3 膜元件,1年后脱盐率为89.6%,2年后79.6%,这种算法是不正确的。

相关文档
最新文档