数控原理第四象限逐点比较法直线插补程序

数控原理第四象限逐点比较法直线插补程序
数控原理第四象限逐点比较法直线插补程序

Private Sub Command1_Click()

Picture1.ForeColor = vbBlack

Picture1.DrawWidth = 2

Picture1.Line (500, 500)-(500, 5500) '坐标系

Picture1.Line (500, 500)-(5500, 500)

Picture1.Line (500, 5500)-(460, 5400) '箭头

Picture1.Line (500, 5500)-(540, 5400)

Picture1.Line (5500, 500)-(5400, 460)

Picture1.Line (5500, 500)-(5400, 540)

Picture1.Line (5850, 550)-(5750, 450)

Picture1.Line (5850, 450)-(5750, 550)

Picture1.Line (500, 5800)-(450, 5750)

Picture1.Line (500, 5800)-(550, 5750)

Picture1.Line (500, 5800)-(500, 5900)

Picture1.Line (430, 5800)-(380, 5800)

Picture1.ForeColor = vbRed

Picture1.DrawWidth = 4

Picture1.Line (500, 500)-(500 + 400 * Int(Text3), 500 - 400 * Int(Text4))

Command2.Enabled = True

100

Text1.SetFocus

End Sub

Private Sub Command2_Click()

Form1.Cls

Dim k, m, j, l, n, F(20) As Integer

m = 0

l = 0

k = 0

F(m) = 0

Picture1.ForeColor = vbGreen

Picture1.DrawWidth = 3

j = Abs(Int(Text3)) + Abs(Int(Text4)) '总步数

Form1.CurrentX = 200

Form1.CurrentY = 200

Print "初始:进给方向" & "F(m)=0" & " Xe=" & Int(Text3) & " Y e=" & Int(Text4) & " ∑= " & j

For n = 1 To j

If F(m) >= 0 And j > 0 Then 'X方向进给

m = m + 1 '序号

l = l + 1 'X方向进给l加1

F(m) = F(m - 1) - Abs(Int(Text4))

Picture1.Line (500 + 400 * (l - 1), 500 + k * 400)-(500 + 400 * (l), 500 + k * 400)

Form1.CurrentX = 200

Form1.CurrentY = 200 + m * 300

Print "第" & m & "步" & " △x F(" & m & ")= " & F(m) & " " & "x=" & l & " " & "y=-"; k & " ∑=" & j - n

Else 'Y方向进给

k = k + 1

m = m + 1

Picture1.Line (500 + 400 * l, 500 + (k - 1) * 400)-(500 + 400 * l, 500 + k * 400)

F(m) = F(m - 1) + Abs(Int(Text3))

Form1.CurrentX = 200

Form1.CurrentY = 200 + m * 300

Print "第" & m & "步" & " △y F(" & m & ")= " & F(m) & " " & "x="; l & " " & "y=-"; k & " ∑=" & j - n

End If

Next n

End Sub

Private Sub Command3_Click()

Text3.Text = ""

Text4.Text = ""

Picture1.Cls

Form1.Cls

End Sub

Private Sub Command4_Click()

End

End Sub

插补运动(逐点比较法)

1、概述 在机床的实际加工中,被加工工件的轮廓形状千差万别,各式各样。严格说来,为了满足几何尺寸精度的要求,刀具中心轨迹应该准确地依照工件的轮廓形状来生成。然而,对于简单的曲线,数控装置易于实现,但对于较复杂的形状,若直接生成,势必会使算法变得很复杂,计算机的工作量也相应地大大增加。因此,在实际应用中,常常采用一小段直线或圆弧去进行逼近,有些场合也可以用抛物线、椭圆、双曲线和其他高次曲线去逼近(或称为拟合)。所谓插补是指数据密化的过程。在对数控系统输入有限坐标点(例如起点、终点)的情况下,计算机根据线段的特征(直线、圆弧、椭圆等),运用一定的算法,自动地在有限坐标点之间生成一系列的坐标数据,即所谓数据密化,从而自动地对各坐标轴进行脉冲分配,完成整个线段的轨迹运行,以满足加工精度的要求。 机床数控系统的轮廓控制主要问题就是怎样控制刀具或工件的运动轨迹。无论是硬件数控(NC)系统,还是计算机数控(CNC)系统或微机数控(MNC)系统,都必须有完成插补功能的部分,只是采取的方式不同而已。在CNC或MNC中,以软件(程序)完成插补或软、硬件结合实现插补,而在NC中有一个专门完成脉冲分配计算(即插补计算)的计算装置——插补器。无论是软件数控还是硬件数控,其插补的运算原理基本相同,其作用都是根据给定的信息进行数字计算,在计算过程中不断向各个坐标发出相互协调的进给脉冲,使被控机械部件按指定的路线移动。 有关插补算法问题,除了要保证插补计算的精度之外,还要求算法简单。这对于硬件数控来说,可以简化控制电路,采用较简单的运算器。而对于计算机数控系统来说,则能提高运算速度,使控制系统较快且均匀地输出进给脉冲。 经过多年的发展,插补原理不断成熟,类型众多。从产生的数学模型来分,有直线插补、二次曲线插补等;从插补计算输出的数值形式来分,有基准脉冲插补(又称脉冲增量插补)和数据采样插补。在基准脉冲插补中,按基本原理又分为以区域判别为特征的逐点比较法插补,以比例乘法为特征的数字脉冲乘法器插补,以数字积分法进行运算的数字积分插补,以矢量运算为基础的矢量判别法插补,兼备逐点比较和数字积分特征的比较积分法插补,等等。在CNC系统中,除了可采用上述基准脉冲插补法中的各种插补原理外,还可采用各种数据采样插补方法。 本文将介绍在数控系统中常用的逐点比较法、数字积分法、时间分割法等多种插补方法以及刀具半径补偿计算原理。 2、逐点比较法 逐点比较法是我国数控机床中广泛采用的一种插补方法,它能实现直线、圆弧和非圆二次曲线的插补,插补精度较高。

逐点比较法插补原理实验报告

南昌航空大学实验报告 年月日 课程名称:数控技术实验名称:逐点比较法插补原理 班级:姓名:同组人: 指导老师评定:签名: 一、实验的目的与要求 1.目的 ①掌握逐点比较法插补的原理及过程; ②掌握利用计算机高级语言,设计及调试“插补运算轨迹”模拟画图的程序设计方法; ③进一步加深对插补运算过程的理解; 二、实验仪器 计算机一台 三、实验原理 ①逐点比较法插补运算的原理 首先粗略的简单介绍一下机床是如何按照规定的图形加工出所需的工件的。例如,现在要加工一段圆弧(图2-1),起点为A,终点为B,坐标原点就是圆心,Y轴、X轴代表纵、横拖板的方向,圆弧半径为R。 如从A点出发进行加工,设某一时刻加工点在M1,一般来说M1和圆弧 有所偏离。因此,可根据偏离的情 况确定下一步加工进给的方向,使下 一个加工点尽可能向规定图形(即圆 弧)靠拢。 若用R M1表示加工点M1到圆心O 的距离,显然,当R M1

可以看出,加工的结果是用折线来代替圆弧,为了清楚起见,在图2-1中,每步的步长画的很大,因此加工出来的折线与所需圆弧的误差较大。 若步长缩小,则误差也跟着缩小,实际加工时,进给步长一般为1微米,故实际误差时很小的。 ②计算步骤 由上述可以看出,拖板每进给一步都要完成四个工作节拍。 偏差判别:判别偏差符号,确定加工点是在要求图形外还是在图形内。 工作台进给:根据偏差情况,确定控制X坐标(或Y坐标)进给一步,使加工点向规定的图形靠拢,以缩小偏差。 偏差计算:计算进给一步后加工点与要求图形的新偏差,作为下一步偏差判别的依据。 终点判断:判定是否到达终点,如果未达到终点,继续插补,如果以到达终点,停止插补。 计算步骤的框图如下所示: 图2-2 逐点比较法插补计算步骤 ③插补运算公式 插补运算公式表 四、实验内容及步骤 应用VB设计逐点比较法的插补运算程序,在计算机屏幕上画出轨迹图。 1 程序界面 采用图形显示方式,动态的显示出直线和圆弧的插补过程。

逐点比较法直线插补圆弧插补实例

逐点比较法直线插补 (1)偏差函数构造 对于第一象限直线OA上任一点(X,Y):X/Y = Xe/Ye 若刀具加工点为Pi(Xi,Yi),则该点的偏差函数Fi可表示为: 若Fi= 0,表示加工点位于直线上; 若Fi> 0,表示加工点位于直线上方; 若Fi< 0,表示加工点位于直线下方。 (2)偏差函数字的递推计算 采用偏差函数的递推式(迭代式):既由前一点计算后一点 Fi =Yi Xe -XiYe 若Fi>=0,规定向+X 方向走一步 Xi+1 = Xi +1 Fi+1 = XeYi –Ye(Xi +1)=Fi –Ye 若Fi<0,规定+Y 方向走一步,则有 Yi+1 = Yi +1 Fi+1 = Xe(Yi +1)-YeXi =Fi +Xe (3)终点判别 直线插补的终点判别可采用三种方法。 1)判断插补或进给的总步数:2)分别判断各坐标轴的进给步数;3)仅判断进给步数较多的坐标轴的进给步数。 (4)例 对于第一象限直线OA,终点坐标Xe=6 ,Ye=4,插补从直线起点O开始,故F0=0 。终点判别是判断进给总步数N=6+4=10,将其存入终点判别计数器中,每进给一步减1,若N=0,则停止插补。

逐点比较法圆弧插补(1)偏差函数构造 任意加工点Pi(Xi,Yi),偏差函数Fi可表示为 若Fi=0,表示加工点位于圆上;

若Fi >0,表示加工点位于圆外; 若Fi <0,表示加工点位于圆内 (2)偏差函数的递推计算 1) 逆圆插补 若F ≥0,规定向-X 方向走一步 若Fi<0,规定向+Y 方向走一步 2) 顺圆插补 若Fi ≥0,规定向-Y 方向走一步 若Fi<0,规定向+y 方向走一步 (3)终点判别 1)判断插补或进给的总步数: 2)分别判断各坐标轴的进给步数: (4)例 对于第一象限圆弧AB ,起点A (4,0),终点B (0,4) ???+-=-+-=-=++12)1(122211i i i i i i i X F R Y X F X X ???++=-++=+=++12)1(122211i i i i i i i Y F R Y X F Y Y ???+-=--+=-=++12)1(122211i i i i i i i Y F R Y X F Y Y ???++=-++=+=++12)1(122211i i i i i i i X F R Y X F X X b a b a Y Y X X N -+-=b a x X X N -= b a y Y Y N -=

插补原理

插补原理:在实际加工中,被加工工件的轮廓形状千差万别,严格说来,为了满足几何尺寸精度的要求,刀具中心轨迹应该准确地依照工件的轮廓形状来生成,对于简单的曲线数控系统可以比较容易实现,但对于较复杂的形状,若直接生成会使算法变得很复杂,计算机的工作量也相应地大大增加,因此,实际应用中,常采用一小段直线或圆弧去进行拟合就可满足精度要求(也有需要抛物线和高次曲线拟合的情况),这种拟合方法就是“插补”,实质上插补就是数据密化的过程。插补的任务是根据进给速度的要求,在轮廓起点和终点之间计算出若干个中间点的坐标值,每个中间点计算所需时间直接影响系统的控制速度,而插补中间点坐标值的计算精度又影响到数控系统的控制精度,因此,插补算法是整个数控系统控制的核心。插补算法经过几十年的发展,不断成熟,种类很多。一般说来,从产生的数学模型来分,主要有直线插补、二次曲线插补等;从插补计算输出的数值形式来分,主要有脉冲增量插补(也称为基准脉冲插补)和数据采样插补[26]。脉冲增量插补和数据采样插补都有个自的特点,本文根据应用场合的不同分别开发出了脉冲增量插补和数据采样插补。 1数字积分插补是脉冲增量插补的一种。下面将首先阐述一下脉冲增量插补的工作原理。2.脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲的方式输出。这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调的进给脉冲,驱动电机运动。一个脉冲所产生的坐标轴移动量叫做脉冲当量。脉冲当量是脉冲分配的基本单位,按机床设计的加工精度选定,普通精度的机床一般取脉冲当量为:0.01mm,较精密的机床取1或0.5 。采用脉冲增量插补算法的数控系统,其坐标轴进给速度主要受插补程序运行时间的限制,一般为1~3m/min。脉冲增量插补主要有逐点比较法、数据积分插补法等。逐点比较法最初称为区域判别法,或代数运算法,或醉步式近似法。这种方法的原理是:计算机在控制加工过程中,能逐点地计算和判别加工偏差,以控制坐标进给,按规定图形加工出所需要的工件,用步进电机或电液脉冲马达拖动机床,其进给方式是步进式的,插补器控制机床。逐点比较法既可以实现直线插补也可以实现圆弧等插补,它的特点是运算直观,插补误差小于一个脉冲当量,输出脉冲均匀,速度变化小,调节方便,因此在两个坐标开环的CNC系统中应用比较普遍。但这种方法不能实现多轴联动,其应用范围受到了很大限制。对于圆弧插补,各个象限的积分器结构基本上相同,但是控制各坐标轴的进给方向和被积函数值的修改方向却不同,由于各个象限的控制差异,所以圆弧插补一般需要按象限来分成若干个模块进行插补计算,程序里可以用圆弧半径作为基值,同时给各轴的余数赋比基值小的数(如R/2等),这样可以避免当一个轴被积函数较小而另一个轴被积函数较大进,由于被积函数较小的轴的位置变化较慢而引起的误差。4.2 时间分割插补是数据采样插补的一种。下面将首先阐述数据采样插补的工作原理。2.1 数据采样插补是根据用户程序的进给速度,将给定轮廓曲线分割为每一插补周期的进给段,即轮廓步长。每一个插补周期执行一次插补运算,计算出下一个插补点坐标,从而计算出下一个周期各个坐标的进给量,进而得出下一插补点的指令位置。与基准脉冲插补法不同的是,计算出来的不是进给脉冲而是用二进制表示的进给量,也就是在下一插补周期中,轮廓曲线上的进给段在各坐标轴上的分矢大小,计算机定时对坐标的实际位置进行采样,采样数据与指令位置进行比较,得出位置误差,再根据位置误差对伺服系统进行控制,达到消除误差使实际位置跟随指令位置的目的。数据采样法的插补周期可以等于采样周期也可以是采样周期的整数倍;对于直线插补,动点在一个周期内运动的

激光原理例题

第四章思考与练习题 1.光学谐振腔的作用。是什么 2.光学谐振腔的构成要素有哪些,各自有哪些作用 3.CO2激光器的腔长L=1.5m,增益介质折射率n=1,腔镜反射系数分别为r1=,r2=,忽 略其它损耗,求该谐振腔的损耗δ,光子寿命Rτ,Q值和无源腔线宽ν?。 4.证明:下图所示的球面折射的传播矩阵为 ?? ? ? ? ? ? ? - 2 1 2 1 2 1 η η η η η R 。折射率分别为 2 1 ,η η的两介质分界球面半径为R。 5.证明:下图所示的直角全反射棱镜的传播矩阵为 ? ? ? ? ? ? ? ? - - - 1 2 1 η d 。折射率为n的棱镜高d。 6.导出下图中1、2、3光线的传输矩阵。

R 7. 已知两平板的折射系数及厚度分别为n 1,d 1,n 2,d 2。(1)两平板平行放置,相距l ,(2) 两平板紧贴在一起,光线相继垂直通过空气中这两块平行平板的传输矩阵,是什么 8. 光学谐振腔的稳定条件是什么,有没有例外谐振腔稳定条件的推导过程中,只是要求光 线相对于光轴的偏折角小于90度。因此,谐振腔稳定条件是不是一个要求较低的条件,为什么 9. 有两个反射镜,镜面曲率半径,R 1=-50cm ,R 2=100cm ,试问: (1)构成介稳腔的两镜间距多大 (2)构成稳定腔的两镜间距在什么范围 (3)构成非稳腔的两镜间距在什么范围 10. 共焦腔是不是稳定腔,为什么 11. 腔内有其它元件的两镜腔中,除两腔镜外的其余部分所对应传输矩阵元为ABCD ,腔镜 曲率半径为1R 、2R ,证明:稳定性条件为1201g g <<,其中11/g D B R =-;22/g A B R =-。 12. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。 13. 激光器谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物 质长0.5m ,其折射率为,求腔长L 在什么范围内是稳定腔。 14. 如下图所示三镜环形腔,已知l ,试画出其等效透镜序列图,并求球面镜的曲率半径R 在什么范围内该腔是稳定腔。图示环形腔为非共轴球面镜腔,在这种情况下,对于在由光轴组成的平面内传输的子午光线,f = R cos /2,对于在于此垂直的平面内传输的弧矢光线,f = R/(2cos),为光轴与球面镜法线的夹角。

逐点比较法插补实验报告

实验报告 实验内容:逐点比较法直线和圆弧插补2011年9月25日 院系:物科院班级:085 学号:07080518 姓名:陈实 实验目的: 利用逐点比较法的插补原理,编写直角坐标系下的直线、圆弧插补程序,观察屏幕上仿真的运动轨迹,掌握逐点比较法的插补原理。 实验原理: 逐点比较发是基于动点与理想曲线院函数的比较来实现插补的。逐点比较法的插补过程,每走一步要进行一下四个步骤: 偏差判别:根据偏差值确定刀具相对加工曲线的位置 坐标进给:根据偏差判别的结果,决定控制线沿哪个坐标进给一步以接近曲线 偏差计算:计算新加工店相对曲线的偏差,作为下一步偏差判别的依据 终点判别:判别是否到达终点,未到达终点则返回第一步继续插补,到终点则停止 1、逐点比较法直线插补原理: 逐点比较法在第一象限的直线插补原理如下图所示,其他象限情况可依次类推。 现加工OE直线,如果刀具动点在OE直线上方或在线上,则令刀具沿X正方向进给一步;若刀具动点在OE直线下方,则令刀具沿Y轴正方向进给一步,如此循环直到加工到E点。判别刀具动点的位置根据偏差函数判别公式: 根据这个公式可以推到出两种不同情况下的地推公式:

对于插补终点的判别,可以采用单向的计数长度法,即:取计数长度M等于Xe、Ye中的大者,并设该坐标方向为计数方向。插补时,仅在该方向上产生进给时,计数长度减一。图1的逐点比较法中,工作循环的结束条件就是M减为0. 2、逐点比较法圆弧插补原理: 逐点比较法在第一象限的圆弧插补原理如图所示,其他象限可一次类推: 对于第一象限的逆圆弧,如果动点在圆弧的外侧则令刀具动点沿X轴负方向进给一步。如果动点在圆弧的内侧则令刀具沿Y轴正方向进给一步。 圆弧的偏差计算公式为: 根据这个公式同样可推导出圆弧插补的两种不同情况下的递推公式: 对于插补终点的判别,同样可以采用单向的计数长度法,不过对于圆弧,计数的方向并不取决于终点坐标中的大者,而是取决于圆弧终点处。 逐点比较法插补中需要编写插入部分流程图:

基于FPGA的逐点比较圆弧插补算法设计

二○一三届毕业设计 基于FPGA逐点比较圆弧插补算法设计 学院:电子与控制工程学院 专业:电子科学与技术 姓名:…….. 学号:……… 指导教师:…….. 完成时间:2013年5月 二〇一三年五月

摘 要 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 摘 要 本课题主要是研究基于VHDL 实现数控系统中的逐点比较圆弧插补,要求圆弧运动过程平滑,在各象限能顺利过渡,并有较小的设计误差,能与运动控制部分很好的集成,实现较高的切割频率。 本课题采用QuartusII 软件来调试程序,并进行波形仿真。主要的工作如下: 1) 理解数控系统中逐点比较圆弧插补算法的原理及其实现方法; 2) 通过硬件描述语言VHDL 在FPGA 上实现上述算法; 3) 完成圆弧插补的仿真与测试。 关键词:VHDL ,FPGA ,逐点比较法,QuartusII

ABSTRACT ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ABSTRACT This topic mainly studies based on VHDL realization of point by point comparison circular arc interpolation in nc system, the movement for arc process smooth, in each quadrant can smooth transition, and a relatively small design error, can very good integration with motion control part, realize the high frequency of cutting. This subject adopts software QuartusII to debug program and waveform simulation. The main work is as follows: 1. Understand CNC system the principle of point by point comparison in circular arc interpolation algorithm and its realization method 2. Through the hardware description language VHDL FPGA to realize the above algorithms. 3. Finish arc interpolation of simulation and test KEY WORDS : VHDL, FPGA, point-by-point comparison, QUARTUS II

第五章运动控制插补原理及实现

运动控制插补原理及实现 数控系统加工的零件轮廓或运动轨迹一般由直线、圆弧组成,对于一些非圆曲线轮廓则用直线或圆弧去逼近。插补计算就是数控系统根据输入的基本数据,通过计算,将工件的轮廓或运动轨迹描述出来,边计算边根据计算结果向各坐标发出进给指令。 数控系统常用的插补计算方法有:逐点比较法、数字积分法、时间分割法、样条插补法等。逐点比较法,即每一步都要和给定轨迹上的坐标值进行比较,视该点在给定规矩的上方或下方,或在给定轨迹的里面或外面,从而决定下一步的进给方向,使之趋近给定轨迹。 直线插补原理 图3—1是逐点比较法直线插补程序框图。图中n是插补循环数,L是第n个插补循环中偏差函数的值,Xe,Y。是直线的终点坐标,m是完成直线插补加工刀具沿X,y轴应走的总步数。插补前,刀具位于直线的起点,即坐标原点,偏差为零,循环数也为零。 在每一个插补循环的开始,插补器先进入“等待”状态。插补时钟发出一个脉冲后,插补器结束等待状态,向下运动。这时每发一个脉冲,触发插补器进行一个插补循环。所以可用插补时钟控制插补速度,同时也可以控制刀具的进给速度。插补器结束“等待”状态后,先进行偏差判别。若偏差值大于等于零,刀具的进给方向应为+x,进给后偏差值成为Fm-ye;若偏差值小于零,刀具的进给方向应为+y,进给后的插补值为Fm+xe。。 进行了一个插补循环后,插补循环数n应增加l。 最终进行终点判别,若n

逐点比较法直线插补

§2—1 逐点比较法 逐点比较法是我国数控机床中广泛采用的一种插补方法,它能实现直线、圆弧和非圆二次曲线的插补,插补精度较高。 逐点比较法,顾名思义,就是每走一步都要将加工点的瞬时坐标同规定的图形轨迹相比较,判断其偏差,然后决定下一步的走向,如果加工点走到图形外面去了,那么下一步就要向图形里面走;如果加工点在图形里面,那么下一步就要向图形外面走,以缩小偏差。这样就能得出一个非常接近规定图形的轨迹,最大偏差不超过一个脉冲当量。 在逐点比较法中,每进给一步都须要进行偏差判别、坐标进给、新偏差计算和终点比较四个节拍。下面分别介绍逐点比较法直线插补和圆弧插补的原理。 一、 逐点比较法直线插补 如上所述,偏差计算是逐点比较法关键的一步。下面以第Ⅰ象限直线为例导出其偏差计算公式。 图 2-1 直 线 差 补 过 程 e ) O Y 图2-1 直线插补过程 点击进入动画观看逐点比较法直线插补

如图2—1所示,假定直线 OA 的起点为坐标原点,终点 A 的坐标为 e e i j A(x ,y ),P(x ,y )为加工点,若P 点正好处在直线 OA 上,那么下式成立: e j i e x y - x y 0= 若任意点 i j P(x ,y )在直线 OA 的上方(严格地说,在直线 OA 与y 轴 所成夹角区域内),那么有下述关系成立: j e i e y y x x > 亦即: e j i e x y - x y 0> 由此可以取偏差判别函数 ij F 为: ij e j i e F x y - x y = 由 ij F 的数值(称为“偏差” )就可以判别出P 点与直线的相对位置。即: 当 ij F =0时,点 i j P(x ,y )正好落在直线上; 当 ij F >0时,点 i j P(x ,y )落在直线的上方; 当 ij F <0时,点 i j P(x ,y )落在直线的下方。 从图2—1看出,对于起点在原点,终点为A ( e e x ,y )的第Ⅰ象限直线OA 来说,当点P 在直线上方(即 ij F >0)时,应该向+x 方向发一个脉冲,使机床 刀具向+x 方向前进一步,以接近该直线;当点P 在直线下方(即 ij F <0)时, 应该向+y 方向发一个脉冲,使机床刀具向+y 方向前进一步,趋向该直线;当点P 正好在直线上(即 ij F =0)时,既可向+x 方向发一脉冲,也可向+y 方向发一 脉冲。因此通常将 ij F >0和 ij F =0归于一类,即 ij F ≥0。这样从坐标原点开始,

激光原理第四章习题解答..

1 静止氖原子的4223P S →谱线中心波长为632.8纳米,设氖原子分别以0.1C 、O.4C 、O.8C 的速度向着观察者运动,问其表观中心波长分别变为多少? 解答: 根据公式(激光原理P136) c c υυ νν-+=110 υλν= 由以上两个式子联立可得: 0λυ υλ?+-=C C 代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ 解答完毕(验证过) 2 设有一台麦克尔逊干涉仪,其光源波长为λ,试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期性的变化λL 2次。 证明: 对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度υ移动,存在多普勒效应。在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。以上是分析内容,具体解答如下: 无多普勒效应的光场:()t E E ?=πνν2cos 0 产生多普勒效应光场:()t E E ?=''02cos ''πνν 在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上) 第一次多普勒效应:?? ? ?? +=c υνν1' 第二次多普勒效应:?? ? ??+≈??? ??+=??? ??+=c c c υνυνυνν21112'''

VB软件_模拟逐点比较法逆圆弧插补的程序设计

宿迁学院 课程设计说明书 设计题目: 基于VB数字积分法一、二象限逆圆插补计算与仿真 系(部):机电工程系 专业:自动化(数控技术) 班级: 09数控本(2) 姓名:李伟 学号: 200907052 指导老师(签名):刘萍 起止时间:20 12年12月3日至2012年12月7 日共1周 20 12年12 月6 日

正文: 数控原理与系统课程设计说明书 一、课程设计的目的 1)了解连续轨迹控制数控系统的组成原理。 2) 掌握逐点比较法插补的基本原理。 3)握逐点比较法插补的软件实现方法。 二.课程设计的任务 逐点比较法插补是最简单的脉冲增量式插补算法之一,其过程清晰,速度平稳,但一般只用于一个平面内两个坐标轴的插补运算。其基本原理是在刀具按要求轨迹运动加工零件轮廓的过程中,不断比较刀具与被加工零件轮廓之间的相对位置,并根据比较结果决定下一步的进 给方向,使刀具向减小偏差的方向进给, 且只有一个方向的进给。也就是说,逐点 比较法每一步均要比较加工点瞬时坐标 与规定零件轮廓之间的距离,依此决定 下一步的走向。如果加工点走到轮廓外 面去了,则下一步要朝着轮廓内部走;如 果加工点处在轮廓的内部,则下一步要 向轮廓外面走,以缩小偏差,这样周而复 始,直至全部结束,从而获得一个非常接 近于数控加工程序规定轮廓的轨迹。逐 点比较法插补过程中的每进给一步都要 经过偏差判别、坐标进给、偏差计算和终点判别四个节拍的处理,其工作流程图如图所示。 三.逐点比较法基本原理 逐点比较法I象限逆圆插补

在加工圆弧过程中,人们很容易联想到使用动点到圆心的距离与该圆弧的名义半径进行比较来反映加工偏差。 假设被加工零件的轮廓为第Ⅰ象限逆走向圆弧SE,,圆心在O(0,0),半径为R,起点为S(XS,YS ),终点为E(Xe,Ye),圆弧上任意加工动点为N (X i,Yi)。当比较该加工动点到圆心的距离ON 与圆弧半径R的大小时,可获得刀具与圆弧轮廓之间的相对位置关系。 当动点N(Xi,Yi )正好落在圆弧上时,则有下式成立 22222R Y X Y X e e i i =+=+ 当动点N(Xi ,Y i)落在圆弧外侧时,则有下式成立 22222R Y X Y X e e i i =+>+ 当动点N (X i,Y i)落在圆弧内侧时,则有下式成立 22222R Y X Y X e e i i =+<+ 由此可见,取逐点比较法圆弧插补的偏差函数表达式为 222R Y X F i i -+= 当动点落在圆外时,为了减小加工误差,应向圆内进给,即向(-X )轴方向走一步;当动点落在圆内时,应向圆外进给,即向(+Y )轴方向走一步。当动点正好落在圆弧上且尚未到达终点时,为了使加工继续下去,理论上向(+Y)轴或(-X)轴方向进给均可以,但一般情况下约定向(-X )轴方向进给。 综上所述,现将逐点比较法第Ⅰ象限逆圆插补规则概括如下: 当F>0时,即2 22 R Y X F i i -+=>0,动点落在圆外,则向(-X )轴方向进给一 步; 当F=0时,即2 22 R Y X F i i -+==0,动点正好落在圆上,约定向(-X)轴方向

逐点比较法——直线插补

电 子 教 案 § 逐点比较法——直线插补 一、概述 二 、直线插补 偏差判别: (1)动点m 在直线上: (2)动点m 在直线上方: (3)动点m 在直线下方: 偏差判别函数 坐标进给 动点m 在直线上: ,可沿+⊿x 轴方向,也可沿+⊿y 方向; 动点m 在直线上方: ,沿+⊿x 方向; 动点m 在直线下方: ,沿+⊿y 方向。 m e m e 0 y x x y -=m e m e 0 y x x y ->m e m e 0 y x x y -

新偏差计算 +⊿x 轴方向进给 +⊿y 轴方向进给 终点比较:用Xe +Ye 作为计数器,每走一步对计数器进行减 1计算,直到计数器为零为止。 m 1m 1e m 1e m e F y x x y F y +++=-=-m 1m e F F x +=+

教学程序教学内容及教学双边活动与 教学方法 导入 新课讲授 探究总结 在刀具按要求轨迹运动加工零件轮廓的过程中,不断比较刀具 与被加工零件轮廓之间的相对位置,并根据比较结果决定下一步的 进给方向,使刀具向减小误差的方向进给。其算法最大偏差不会超 过一个脉冲当量δ。 §逐点比较法——直线插补 一、概述 初称区域判别法,又称代数运算法或醉步式近似法。这种方法 应用广泛,能实现平面直线、圆弧、二次曲线插补,精度高。 每进给一步需要四个节拍: (1)偏差判别:判别加工点对规定图形的偏离位置,决定拖 板进给的走向。 (2)坐标进给:控制某个坐标工作台进给一步,向规定的图 形靠拢,缩小偏差。 (3)偏差计算:计算新的加工点对规定图形的偏差,作为下 一步判别的依据。 (4)终点判断:判断是否到达终点。若到达则停止插补,若 介绍 讲授 图示 分析 讲授法 理解 记忆

直线及圆弧插补程序--逐点比较法

此程序是根据《微型计算机控制技术》(第二版)清华大学出版社 第三章数字控制技术——3.2插补原理中的3.2.1逐点比较法的直线插补,3.2.2逐点比较法圆弧插补编写的。其中的变量定义,原理依据均来源于此,如有疑问,请参考书中的讲解。尤其是例子,以下两个程序的第一个运行图均与例题中的一致。 一、四象限直线插补程序 分别加工第一、二、三、四象限直线,起点均为(0,0),终点坐标为(NX,NY),进行插补计算。 程序中(NX,NY)为终点坐标;NXY为总步数;XOY=1,2,3,4,分别为第一、二、三、四象限; ZF=1,2,3,4,分别代表+x,-x,+y,-y走步方向;FM为加工点偏差,初值为0。 源程序: # include "stdio.h" # include "string.h" # include "math.h" void main() { int NX,NY,NXY,BS,XOY,ZF; int FM=0; char a[10]="+X",b[10]="-X",c[10]="+Y",d[10]="-Y",e[10]; printf("\n\n请输入NX,NY\n"); scanf("%d %d",&NX,&NY); {if(NX>0) if(NY>0)

XOY=1; else XOY=4; else if(NY>0) XOY=2; else XOY=3;} printf("终点在第%d象限\n",XOY); printf("\n 步数坐标进给偏差计算终点判断\n\n"); BS=fabs(NX) + fabs(NY); for(NXY= fabs(NX) + fabs(NY)-1;NXY>=0;NXY--) { if(FM>=0) {if(XOY==1||XOY==4) { ZF=1; strcpy(e,a);} else { ZF=2; strcpy(e,b); } FM=FM-fabs(NY); printf(" %d %s FM=%d NXY=%d\n\n",BS-NXY,e,

插补原理

插补 开放分类: 技术 数控技术 高新技术 数控装置根据输入的零件程序的信息,将程序段所描述的曲线的起点、终点之间的空间进行数据密化,从而形成要求的轮廓轨迹,这种“数据密化”机能就称为“插补”。 编辑摘要 插补 - 概述 系统的主要任务之一,是控制执行 机构按预定的轨迹运动。一般情况 是一致运动轨迹的起点坐标、终点坐标和轨迹的曲线方程,由数控系 统实施地算出各个中间点的坐标。 在数控机床中,刀具不能严格地按 照要求加工的曲线运动,只能用折 线轨迹逼近所要加工的曲线。 机床 数控系统依照一定方法确定刀具运 动轨迹的过程。也可以说,已知曲 线上的某些数据,按照某种算法计 算已知点之间的中间点的方法,也 称为“数据点的密化”。 数控装置根据输入的零件程序的信 息,将程序段所描述的曲线的起点、 终点之间的空间进行数据密化,从 而形成要求的轮廓轨迹,这种“数据密化”机能就称为“插补”。 插补 计算就是数控装置根据输入的基本 数据,通过计算,把工件轮廓的形状描述出来,边计算边根据计算结果向各坐标发出进给脉冲,对应每个脉冲,机 床在响应的坐标方向上移动一个脉冲当量的距离,从而将工件加工出所需要轮廓的形状。 插补 - 分类 1、直线插补 直线插补(Llne Interpolation )这是车床上常用的一种插补方式,在此方式中,两点间的插补沿着直线的点群来逼近,沿此直线控制刀具的运动。 一个零件的轮廓往往是多种多样的,有直线,有圆弧,也有可能是任意曲线,样条线等. 数控机床的刀具往往是不能以曲线的实际轮廓去走刀的,而是近似地以若干条很小的直线去走刀,走刀的方向一般是x 和y 方向. 插补方式有:直线插补,圆弧插补,抛物线插补,样条线插补等 所谓直线插补就是只能用于实际轮廓是直线的插补方式(如果不是直线,也可以用逼近的方式把曲线用一段段线段去逼近,从而每一段线段就可以用直线插补了).首先假设在实际轮廓起始点处沿x 方向走一小段(一个脉冲当量),发现终点在实际轮廓的下方,则下一条线段沿y 方向走一小段,此时如果线段终点还在实际轮廓下方,则继续沿y 方向走一小段,直到在实际轮廓上方以后,再向x 方向走一小段,依次循环类推.直到到达轮廓终点为止.这样,实际轮廓就由一段段的折线拼接而成,虽然是折线,但是如果我们每一段走刀线段都非常小(在精度允许范围内),那么此段折线和实际轮廓还是可以近似地看成相同的曲线的--------这就是直线插补. 2、圆弧插补 圆弧插补(Circula : Interpolation )这是一种插补方式,在此方式中,根据两端点间的插补数

激光原理第四章答案1

第四章 电磁场与物质的共振相互作用 1 静止氖原子的4223P S →谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0.4c 、0.8c 的速度向着观察者运动,问其表观中心波长分别变为多少? 解:根据公式νν=c λν= 可得:λλ=代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,0.4414.3C nm λ=,nm C 9.2109.0=λ 2.设有一台迈克尔逊干涉仪,其光源波长为λ。试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。 证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。由于M 和 1M 均为固定镜,所以I 光的频率不变, 仍为ν。将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为: 因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为 这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。在屏P 上面,I 光和II 光的广场可以分别表示为: S 2 M (1) v c νν'=+2(1)(1)(12) v v v c c c νννν'''=+=+≈+00cos(2)cos 2(12)I II E E t v E E t πνπν=? ?=+

因而光屏P 上的总光场为 光强正比于电场振幅的平方,所以P 上面的光强为 它是t 的周期函数,单位时间内的变化次数为 由上式可得在dt 时间内屏上光强亮暗变化的次数为 (2/)mdt c dL ν= 因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S 式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的 2M 镜的空间坐标,并且有21L L L -=。 得证。 3.在激光出现以前,86 Kr 低气压放电灯是很好的单色光源。如果忽略自然加宽和碰撞加宽,试估算在77K 温度下它的605.7nm 谱线的相干长度是多少,并与一个单色性8 /10λλ-?=的氦氖激光器比较。 解:这里讨论的是气体光源,对于气体光源,其多普勒加宽为 1 12 2 7 002 22ln 27.1610D KT T mc M ννν-?????==? ? ????? 式中,M 为原子(分子)量,27 1.6610 (kg)m M -=?。对86Kr 来说,M =86,相干长度为 02cos(22)cos(2) I II v v E E E E t t t c c πνπνπν=+=+021cos 22v I I t c πν?? ????=+?? ???????? ?22v dL m c c dt νν== 2 2 1 1 212222()t L t L L S mdt dL L L L c c c νννλ== =-==??

激光原理第四章习题

思考练习题4 1.腔长30 cm 的氦氖激光器荧光线宽为1500MHz ,可能出现三个纵横。用三反射镜法选取单纵横,问短耦合腔腔长(23L L +)应为若干。 答:L L L c ??=+?2103)(28 32μν=短; m L L L 2.02105.1329<+=?> (L l 紧靠腔的输出镜面),

逐点比较插补算法设计

学院 毕业论文(设计) 2015 届机械设计制造及其自动化专业 13 班级 题目逐点比较插补算法设计 姓名学号 1 指导教师职称教授 二О一五年五月二十一日

摘要 逐点比较法是数控加工中常用的插补方法,通过控制刀具每次移动的位置与理想位置的误差函数进而实现零件加工,鉴于VB编程简单、直观,采用VB可以实现逐点比较插补原理的相关程序设计及加工过程虚拟化。插补技术是机床数控系统的核心技术,逐点比较法可以实现直线和圆弧插补算法,其算法的优劣直接影响零件直线和圆弧轮廓的加工精度和加工速度。文章在传统的逐点比较直线插补与圆弧插补算法的基础上,提出以八方向进给取代传统的四方向进给,研究了偏差最小的走步方向的实现方法,同时研究了保证数控机床坐标进给连续的偏差递推计算过程。结果表明,新算法可以提高零件轮廓的逼近精度且减少了插补计算次数,从而提高了零件直线和圆弧轮廓的加工精度和加工速度。 关键词 数控;插补;逐点比较;逼近;偏差函数 The algorithm design of point-to-point comparison Author: LI Zhiyuan Tutor: Chen Liangji Abstract Abstract: The algorithm of point-to-point comparison is a typical plugging method in processing of numerical control,manufacturing parts by controlling error function between the position the cutting tool moves to and the perfect program is simple and visual,which can visualize the programming and processing of The algorithm of point-to-point comparison. Interpolation technology is the core technology of machine tool’s CNC system. The algorithm of point-to-point comparison can achieve the algorithms of linear and circular algorithm of point-to-point comparison

逐点比较法直线插补原理的实现

武汉理工大学华夏学院 课程设计报告书 题目: 系名: 专业班级: 姓名: 学号: 指导教师: 2011 年 6 月14 日

摘要 本文主要讨论利用逐点比较法实现第一象限的直线插补。所谓逐点比较插补,就是刀具或绘图笔每走一步都要和给点轨迹上的坐标值进行比较,看这点在给点轨迹的上方还是下方,从而决定下一步的进给方向。对于本设计所要求的直线轨迹,如果该点在直线的上方,则控制步进电机向+X方向进给一步,如果该点在直线的下方,那么控制步进电机向+Y轴方向进给一步。如此,走一步、看一看,比较一次,决定下一步的走向,以便逼近给定轨迹,即形成逐点比较插补。 插补计算时,每走一步,都要进行以下四个步骤的计算过程,即偏差判别、坐标进给、偏差计算、终点判断。设计具体算法时,首先根据直线轨迹参数,计算出偏差计算公式及递推公式。由程序判断出偏差的正负号,从而决定坐标的进给方向,再根据递推公式计算出坐标进给后的偏差,若未到达终点,则返回偏差判别,如此循环。可以根据起点和终点的坐标位置,计算出总的进给步数Nxy,X或Y的坐标每进给一步,这个值就减一,若Nxy=0,就到达了终点,这就是终点判别的方法。

设计任务及要求 设计一个计算机控制步进电机系统,该系统利用PC 机的并口输出控制信号,其信号驱动后控制X 、Y 两个方向的三相步进电机转动,利用逐点比较法插补绘制出各种曲线。 1)设计硬件系统,画出电路原理框图; 2)定义步进电机转动的控制字; 3)推导出用逐点比较法插补绘制出下面曲线的算法; 4)编写算法控制程序线; 5)撰写设计说明书。 每人选一个曲线,曲线均为第一象限,屏幕左下角为坐标原点,箭头表示曲线绘制的方向,直线参数为:起点、终点坐标。圆弧参数为:起点、终点坐标和半径。 直线一: 直线二: 直线三 直线四 圆弧一 圆弧二 X Y O X Y O X Y O X Y O X Y O X Y O

相关文档
最新文档