高考生物重要概念汇总

高考生物重要概念汇总
高考生物重要概念汇总

2019年高考生物重要概念汇总1。多肽与肽链:由多个氨基酸分子经脱水缩合形成的含有多个肽键(—CO—NH—)的化合物叫多肽,其合成场所是核糖体。多肽通常呈链状结构,叫做肽链。

2。原生质体与原生质层

①原生质体:植物细胞去掉细胞壁后剩下的结构,只在细胞工程中使用此概念。

②原生质层:包括细胞膜、液泡膜以及这两层膜之间的细胞质,用在植物细胞的渗透吸水中。

3。生物膜与生物膜系统转载请注明出处:天星教育试题调研《考前抢分必备》

①生物膜:细胞膜、核膜以及内质网、高尔基体、线粒体膜等,这些膜的化学组成相似,基本结构大致相同,统称为生物膜。

②生物膜系统:细胞膜、核膜以及内质网、高尔基体、线粒体等由膜围成的细胞器,在结构、功能上是紧密联系的统一整体,它们形成的结构体系叫生物膜系统。

4。与染色体有关的一组概念

①染色体和染色质:细胞核内被碱性染料染成深色的物质,主要由蛋白质和DNA组成,是遗传物质的主要载体。

②姐妹染色单体:姐妹染色单体是由一个着丝点连着的并行的两条染色单体,是在细胞分裂的间期由同一条染色体经复

制后形成的,其大小、形态、结构及来源完全相同,DNA分子的结构相同,所包含的遗传信息也一样,其分离发生在有丝分裂后期和减数第二次分裂的后期。

③同源染色体:配对的两条染色体,形态和大小一般都相同,一条来自父方,一条来自母方(体细胞、有丝分裂和减数第一次分裂的细胞中有同源染色体;染色体组中无同源染色体),切不能将着丝点分裂后形成的两条子染色体认为是同源染

色体。?④染色体组:细胞中的一组非同源染色体,它们的形态和功能各不相同,但是携带着控制一种生物生长发育、遗传和变异的全部遗传信息,这样的一组染色体,叫做一个染色体组。染色体组组数可以根据染色体的形态、数目和基因型进行判断。

5。细胞周期:连续分裂的细胞,从上一次分裂完成时开始到下一次分裂完成时为止,这是一个细胞周期。细胞周期反映了细胞增殖速度。测定细胞周期的方法有很多,有同位素标记法、细胞计数法等。细胞周期的表示方法图示如图所示:方法一:细胞周期:B→B;间期:B→A;分裂期:A→B。方法二:细胞周期:a+b或c+d;间期:a或c;分裂期:b 或d。

6。细胞分化:在个体发育中,相同细胞的后代在形态、结构、生理功能上发生稳定性差异的过程。

细胞分化的原因:基因的选择性表达。(同一生物体细胞中的

基因是相同的,细胞分化不会导致遗传物质改变)

7。癌细胞:有的细胞由于受到致癌因子的作用,细胞中遗传物质发生改变,不能正常地分化,而变成了不受机体控制的、连续进行分裂的恶性增殖细胞,这种细胞叫癌细胞。癌细胞的特征:无限增殖,能够扩散和转移(因为细胞膜表面的糖蛋白减少)。

8。植物体细胞杂交:用两个来自不同植物的体细胞融合成一个杂种细胞,并且把杂种细胞培育成新的植物体的方法。在此过程中不遵循孟德尔的遗传规律。

9。细胞株与细胞系

①细胞株:原代培养的细胞中有极少数细胞能度过生长停滞及衰老死亡的危机而继续传下去,这些存活的细胞一般能传代40~50代,这种传代细胞是细胞株。这种细胞的遗传物质没有发生改变。

②细胞系:细胞株传至50代以后有部分细胞的遗传物质发生改变并带有癌变的特点,有可能在培养条件下无限制地传代下去,这种传代细胞称为细胞系。

10。酶:活细胞产生的一类具有生物催化作用的有机物,绝大多数酶是蛋白质,少数酶是RNA。

酶的催化作用具有高效性和专一性,并且需要适宜的温度和pH等条件。过酸、过碱、高温使酶分子结构不可逆破坏而失活,而低温抑制酶活性,可恢复。

11。自养型与异养型

①自养型:直接从外界环境摄取无机物,通过光合作用或化能合成作用将无机物制造成复杂的有机物,并且储存能量,来维持自身生命活动的进行,这种新陈代谢类型属于自养型。此类型生物属于生态系统中的生产者。

②异养型:只能依靠摄取外界环境中的现成的有机物来维持自身的生命活动,这种新陈代谢类型属于异养型。

12。化能合成作用与硝化作用

①化能合成作用:利用体外环境中的某些无机物氧化时所释放出的能量,以环境中的CO2为碳源来合成有机物并储存能量。如硝化细菌、铁硫细菌等。

②硝化作用:硝化细菌将氨氧化为亚硝酸或硝酸的过程。硝化细菌的代谢类型是自养需氧型,无线粒体但能够进行有氧呼吸。

13。渗透作用:水分子透过半透膜,从低浓度溶液向高浓度溶液的扩散。典型的渗透作用装置需要两个条件:①半透膜,②半透膜两侧溶液具有浓度差。

14。质壁分离与复原的概念及条件

质壁分离:指原生质层与细胞壁发生分离的现象(而不是指细胞质)。

质壁分离与复原的条件:①内因——活的、结构完整的以及具有大液泡的成熟植物细胞。②外因——外界溶液浓度大于

细胞液浓度。当外界溶液浓度>细胞液浓度时→细胞失水→原生质层与细胞壁分离(质壁分离);当外界溶液浓度<细胞液浓度时→细胞吸水→液泡和原生质层恢复原状(质壁分离复原)。

15。光合作用:光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并且释放出氧的过程。光合作用释放的氧全部来自水。

16.C3植物与C4植物

①C3植物:光合作用碳同化的最初光合产物是三碳化合物的植物,如水稻、小麦等。淀粉的形成部位是叶肉细胞。其C 的转移途径是CO2?→C3?→(CH2O)等有机物。

②C4植物:光合作用碳同化的最初光合产物是四碳化合物的植物,如甘蔗、玉米、高粱等。具有典型的“花环状”结构,淀粉的形成部位是维管束鞘细胞。其C的转移途径是

CO2?→C4?→C3?→(CH2O)等有机物;能够利用较低浓度的CO2?进行光合作用。

17。光能利用率与光合作用效率

①光能利用率:单位土地面积上,农作物光合生产的有机物中所含能量[]该土地所接收的太阳能

②光合作用效率:单位土地面积上,农作物光合生产的有机物中所含能量[]光合作用中作物吸收的光能

18。生物固氮:[固氮微生物将大气中的氮还原成NH3?的过

程。固氮微生物包括共生固氮微生物(如根瘤菌)和自生固氮微生物(如圆褐固氮菌)。它们都是原核生物,固氮基因位于质粒DNA上。

19。有氧呼吸与无氧呼吸

①有氧呼吸:细胞在氧的参与下,通过酶的催化作用,把糖类等有机物彻底氧化分解,产生出二氧化碳和水,同时释放出大量能量的过程。进行该过程的场所是细胞质基质和线粒体。

②无氧呼吸:细胞在无氧条件下,通过酶的催化作用,把葡萄糖等有机物分解成为不彻底的氧化产物,同时释放出少量能量的过程。无氧呼吸的整个过程都在细胞质基质中进行。20。个体发育:从受精卵开始,经过细胞分裂、组织分化和器官形成,直到发育成性成熟个体的过程。个体发育的起点是受精卵,而不是胚胎、幼体或种子。

①胚胎发育:指从受精卵发育成幼体的过程。

②胚后发育:幼体从卵膜孵化出来或从母体内生出来以后,发育成为性成熟的个体的过程。

21。四分体:减数分裂时,联会后的每对同源染色体含有四条染色单体,叫做四分体。四分体中的非姐妹染色单体之间常常发生交叉且相互交换一部分染色体,这在遗传学上有着重要的意义。

22。复制、转录与翻译

①复制:以亲代DNA分子为模板合成子代DNA的过程。

②转录:以DNA的一条链为模板按照碱基互补配对原则合成信使RNA的过程。

③翻译:在细胞质中核糖体上进行的,以信使RNA为模板合成具有一定氨基酸顺序的蛋白质的过程。

23。半保留复制:新合成的每个DNA分子中,都保留了原来DNA分子中的一条链,这种复制方式叫半保留复制。24。基因:有遗传效应的DNA片段,是一个独具遗传作用的功能单位(而不是DNA分子上的任一片段)。真核生物的基因结构是间隔的、不连续的,分外显子和内含子。

①内含子:真核生物编码区中不能够编码蛋白质的序列。

②外显子:真核生物编码区中能够编码蛋白质的序列。25。遗传性状、遗传信息、密码子

①遗传性状:生物表现出来的形态特征和生理特征,由遗传信息决定,体现者是蛋白质。

②遗传信息:基因中能控制生物性状的脱氧核苷酸的排列顺序。

③密码子:指mRNA上能决定一个氨基酸的3个相邻的碱基。密码子共有64个,而能决定氨基酸的密码子只有61个,有3个终止密码子不决定任何氨基酸。

26。基因诊断与基因治疗

①基因诊断:用探针利用DNA分子杂交的原理,鉴定被检

测样本上的遗传信息,从而达到检测疾病的目的。DNA探针是带有荧光素或放射性同位素标记的人工合成的单链DNA 分子。

②基因治疗:把健康的外源基因导入有基因缺陷的细胞中,用于治疗疾病等。基因治疗只能把健康的外源基因导入有基因缺陷的细胞中,而不能修复有缺陷的基因。

27。一组与性状有关的概念

①相对性状:同种生物同一性状的不同表现类型。

②显性性状:两个纯合亲本杂交,把杂种F1中显现出来的那个亲本性状叫做显性性状。

③隐性性状:两个纯合亲本杂交,把杂种F1中未显现出来的那个亲本性状叫做隐性性状。

④性状分离:在杂种后代中;同时显现出显性性状和隐性性状(如高茎和矮茎)的现象。

28。一组与基因有关的概念

①显性基因:控制显性性状的基因。

②隐性基因:控制隐性性状的基因。

③等位基因:在一对同源染色体的同一位置上控制着相对性状的基因。

④非等位基因:位于非同源染色体上或同源染色体的不同位置上控制着不同性状的基因。

29。纯合子与杂合子

①纯合子:由含有相同基因的配子结合成的合子发育而成的个体。纯合子自交后代全为纯合子,没有性状分离,可稳定遗传。

②杂合子:由含有不同基因的配子结合成的合子发育而成的个体。杂合子自交后代会发生性状分离,不能稳定遗传。30。一组与交配类型有关的概念

①杂交:基因组成不同的生物个体之间的相交方式,如

Aa×aa,Cc×CC。常用来判断生物性状的显隐性。

②自交:植物的自花传粉和同株异花传粉;基因组成相同的个体之间的相交。判断植物是否是显性纯合子的最简单的方法。

③正交与反交:正交与反交是相对而言的。若甲(♀)×乙(♂)为正交,则甲(♂)×乙(♀)为反交。常用来判断细胞核遗传与细胞质遗传。

④测交:让杂种子一代与隐性纯合类型杂交,用来测定F1的基因型。

31。基因突变、基因重组与染色体变异

①基因突变:由于DNA分子中发生碱基对的增添、缺失或改变,而引起的基因结构的改变。

②基因重组:指在生物体进行有性生殖的过程中,控制不同性状的基因的重新?组合。

③染色体变异:指可以用显微镜直接观察到的比较明显的染

色体变化,如染色体结构的改变、染色体数目的增减等。

分子生物学基本概念

[1]The Shine-Dalgarno sequence(AGGAGG), proposed by Australian scientists John Shine and Lynn Dalgarno,[1] is a ribosomal binding site located upstream of the start codon AUG. It is a consensus sequence that helps recruit the ribosome to the mRNA to initiate protein synthesis by aligning it with the start codon. The complementary sequence (CCUCCU), is called the anti-Shine-Dalgarno sequence and is located at the 3' end of the 16S rRNA in the ribosome.Mutations in the Shine-Dalgarno sequence can reduce translation. This reduction is due to a reduced mRNA-ribosome pairing efficiency, as evidenced by the fact that complementary mutations in the anti-Shine-Dalgarno sequence can restore translation.When the Shine-Dalgarno sequence and the anti-Shine-Dalgarno sequence pair, the translation initiation factors IF2-GTP, IF1, IF3, as well as the initiator tRNA fMet-tRNA(fMET) are recruited to the ribosome.Shine-Dalgarno sequence vs. ribosomal S1 protein in Gram-negative bacteria, however, Shine-Dalgarno sequence presence is not obligatory for ribosome to locate initiator codon, since deletion of anti-Shine-Dalgarno sequence from 16S rRNA doesn't lead to translation initiation at non-authentic sites. Moreover, numerous prokaryotic mRNAs don't possess Shine-Dalgarno sequences at all. What principally attracts ribosome to mRNA initiation region is apparently ribosomal protein S1, which binds to AU-rich sequences found in many prokaryotic mRNAs 15-30 nucleotides upstream of start-codon. It should be noted, that S1 is only present in Gram-negative bacteria, being absent from Gram-positive species.SD序列(16S互补区)是位于原核生物mRNA 起始密码子(AUG)上游5~10个核苷酸处,一段富含嘌呤的序列。 其与核糖体小亚基中的16S rRNA的3’末端互补配对,促进mRNA 的翻译。 [2]ORF:An open reading frame (ORF) is a portion of a gene’s sequence that contains a sequence of bases, uninterrupted by stop sequences, that could potentially encode a protein. When a new gene is identified and its DNA sequence deciphered, it is still unclear what its corresponding protein sequence is. This is because, in the absence of

重点高中生物重要核心概念80个

重点高中生物重要核心概念80个

————————————————————————————————作者:————————————————————————————————日期:

高中生物重要的80个核心概念 1.诱变育种的意义:提高变异的频率,创造人类需要的变异类型,从中选择培育出优良的生物品种。 2.原核细胞与真核细胞相比最主要特点:没有核膜包围的典型细胞核。 3.细胞分裂间期最主要变化:DNA的复制和有关蛋白质的合成。 4.构成蛋白质的氨基酸的主要特点是: (a-氨基酸)都至少含一个氨基和一个羧基,并且都有一氨基酸和一个羧基连在同一碳原子上。 5.核酸的主要功能:一切生物的遗传物质,对生物的遗传、变异及蛋白质的生物合成有重要意义。 6.细胞膜的主要成分是:蛋白质分子和磷脂分子。 7.选择透过性膜主要特点是: 水分子可自由通过,被选择吸收的小分子、离子可以通过,而其他小分子、离子、大分子却不能通过。 8.线粒体功能:细胞进行有氧呼吸的主要场所。 9.叶绿体色素的功能:吸收、传递和转化光能。 10.细胞核的主要功能:遗传物质的储存和复制场所,是细胞遗传性和代谢活动的控制中心。 新陈代谢主要场所:细胞质基质。 11.细胞有丝分裂的意义:使亲代和子代细胞之间保持遗传性状的稳定性。 12.ATP的功能:生物体生命活动所需能量的直接来源。 13.与分泌蛋白形成有关的细胞器:核糖体、内质网、高尔基体、线粒体。 14.能产生ATP的细胞器(结构):线粒体、叶绿体、(细胞质基质(结构)) 能产生水的细胞器*(结构):线粒体、叶绿体、核糖体、(细胞核(结构)) 能碱基互补配对的细胞器(结构):线粒体、叶绿体、核糖体、(细胞核(结构)) 15.渗透作用必备的条件是:一是半透膜;二是半透膜两侧要有浓度差。 16.内环境稳态的生理意义:机体进行正常生命活动的必要条件。 17.呼吸作用的意义是:(1)提供生命活动所需能量;(2)为体内其他化合物的合成提供原料。 18.减数分裂和受精作用的意义是: 对维持生物体前后代体细胞染色体数目的恒定性,对生物的遗传和变异有重要意义。19.DNA是主要遗传物质的理由是:绝大多数生物的遗传物质是DNA,仅少数病毒遗传物质是RNA。 20.DNA规则双螺旋结构的主要特点是: (1)DNA分子是由两条反向平行的脱氧核苷酸长链盘旋成的双螺旋结构。 (2)DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。 (3)DNA分子两条链上的碱基通过氢键连接成碱基对,遵循碱基互补配对原则。21.DNA结构的特点是:稳定性——DNA两单链有氢键等作用力;多样性——DNA碱基对的排列顺序千变万化;特异性——特定的DNA分子有特定的碱基排列顺序。 22.遗传信息:DNA(基因)的脱氧核苷酸排列顺序。 遗传密码或密码子:mRNA上决定一个氨基酸的三个相邻的碱基。

分子生物学与基因工程主要知识点

分子生物学与基因工程复习重点 第一讲绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代”; 目前,分子生物学进入了“后基因组时代”或“蛋白质组时代”。 3、分子生物学与基因工程的专业地位与作用:从专业基础课角度阐述对专业课程的支 撑作用 第二讲核酸概述 1、核酸的化学组成(图画说明) 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链;

(4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。增色效应:它是指在DNA的变性过程中,它在260 nm的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复性的速度与DNA的浓度有关,因为两互补序列间的配对决定于它们碰撞频率。DNA复性的应用-分子杂交:由DNA复性研究发展成的一种实验技术是分子杂交技术。杂交可发生在DNA和DNA或DNA与RNA间。 5、Tm的含义与影响因素 Tm的含义:是指吸收值增加的中点。 影响因素: 1)DNA序列中G + C的含量或比例含量越高,Tm值也越大(决定性因素);2)溶液的离子强度 3)核酸分子的长度有关:核酸分子越长,Tm值越大

(完整版)高中生物概念大全

1.生命系统:能够独立完成生命活动的系统叫做生命系统。由大到小依次为生物圈、生态系统、群落、种群、个体、系统、器官、组织、细胞。 PAT:单细胞生物不具有系统、器官、组织层次,细胞即是个体;植物没有(消化、呼吸、循环等)系统;病毒是生物,但不是生命系统 2.病毒:是由一个核酸分子(DNA或RNA)与蛋白质构成的非细胞形态的营寄生生活的生命体。 3.原核细胞:是组成原核生物的细胞。这类细胞主要特征是没有以核膜为界的细胞核, 同时也没有核膜和核仁, 只有拟核,进化地位较低。 分类:根据外表特征,可把原核生物粗分为“三菌三体”6种类型,即细菌(狭义的)、放线菌、蓝细菌、支原体、立克次氏体和衣原体。注:支原体是最小的细胞生命结构 4.真核细胞:指含有真核(被核膜包围的核)的细胞。其染色体数在一个以上,能进行有丝分裂。 5.显微结构:在普通光学显微镜中能够观察到的细胞结构。细胞中的结构如染色体、叶绿体、线粒体、中心体、核仁等结构的大小均超过0.2微米,用普通光学显微镜都能看到,因而这些结构属于细胞的显微结构。 6.亚显微结构:又称为超微结构。指在普通光学显微镜下观察不能分辨清楚的细胞内各种微细结构。(普通光学显微镜的分辨力极限约为0.2微米,细胞膜、内质网膜和核膜的厚度,核糖体、微体、微管和微丝的直径等均小于0.2微米,因而用普通光学显微镜观察不到这些细胞结构,要观察细胞中的各种亚显微结构,必须用分辨力更高的电子显微镜。) 能够在电子显微镜下看到的直径小于0.2微米的细微结构,叫做亚显微结构。 7.水:水是生命的源泉。人对水的需要仅次于氧气。人体细胞的重要成分是水,水占成人体重的60~70%,占儿童体重的80%以上。 作用:水有利于体内化学反应的进行,在生物体内还起到运输物质的作用。水对于维持生物体温度的稳定起很大作用。 结合水:水在细胞中以两种形式存在。一部分与细胞内的其他物质结合,叫结合水。结合水是细胞结构的组成成分。 自由水:大部分以游离的形式存在,可以自由流动,叫自由水 8.无机盐:其中大量元素有钙Ca、磷P、钾Ka、硫S、钠Na、氯Cl、镁Mg,微量元素有铁、锌、硒、钼、氟、铬、钴、碘等 无机盐作用:1)、是细胞的结构成分。 有些无机盐是细胞内某些复杂化合物的重要组成部分。 实例:Mg2+是叶绿素分子必需的成分;Fe2+是血红蛋白的主要成分;碳酸钙是动物和人体的骨、牙齿中的重要成分。 (2)、参与并维持生物体的代谢活动。 实例:哺乳动物血液中必须含有一定量的Ca2+,如果某个动物血液中钙盐的含量过低就会出现抽搐。Ca2+对于血液的凝固也是非常重要的,没有Ca2+,血液就不能凝固。生物体内的无机盐离子必须保持一定的比例,这对维持细胞的渗透压和酸碱平衡是非常重要的,是生物体进行正常生命活动的必要条件。如HCO3-对于维持血液正常,pH值具有重要的作用。含Zn的酶最多,有七十多种酶的活性与Zn有关。Co是维生素B12的必要成分,参与核酸的合成过程。 (3)、维持生物体内的酸碱平衡 (4)、维持细胞的渗透压。尤其对于植物吸收养分有重要作用 9.糖类:麦芽糖、蔗糖、乳糖是双糖。葡萄糖和果糖是单糖。多糖:淀粉、纤维素和糖原 作用:1 作为生物能源 2 作为其他物质生物合成的碳源 3 作为生物体的结构物质4 糖蛋白、糖脂等具有细胞识别、免疫活性等多种生理活性功能。 10.脂质:生物体中一大类不溶于水而溶于有机溶剂的有机化合物。分类:1. 油脂即甘油三酯或称之为脂酰甘油,是油和脂肪的统称。一般将常温下呈液态的油脂称为油,而将其呈固态时称为

分子生物学基本知识(下)

蛋白质合成后的分泌及加工修饰 不论是原核还是真核生物,在细胞浆内合成的蛋白质需定位于细胞特定的区域,有些蛋白质合成后要分泌到细胞外,这些蛋白质叫做分必蛋白。在细菌细胞内起作用的蛋白质一般靠扩散作用而分布到它们的目的地。如内膜含有参与能量代谢和营养物质转运的蛋白质;外膜含有促进离子和营养物质进入细胞的蛋白质;在内膜与外膜之间的间隙称为周质,其中含有各种水解酶以及营养物质结合蛋白。 真核生物细胞结构更为复杂,而且有多种不同的细胞器,它们又具有各不相同的膜结构,因此合成好的蛋白质还要面临跨越不同的膜而到达细胞器械,有些蛋白质在翻译完成后还要经过多种共价修饰,这个过程叫做翻译后处理。 (一)细菌中蛋白质的越膜 细胞的内膜蛋白,外膜蛋白和周质蛋白是怎样越过内膜而到其目的地的呢?绝大多数越膜蛋白的N端都具有大约15-30个以疏水氨基酸为主的N端信号序列或称信号肽。信号肽的疏水段能形成一段α螺旋结构。在信号序列之后的一段氨基酸残基也能形成一段α螺旋,两段α螺旋以反平行方式组成一个发夹结构,很容易进入内膜的脂双层结构,一旦分泌蛋白质的N端锚在膜内,后续合成的其它肽段部分将顺利通过膜。疏水性信号肽对于新生肽链跨膜及把它固定的膜上起一个拐掍作用。之后位于内膜外表面的信号肽酶将信号肽序列切除。当蛋白质全部翻译出来后,羧端穿过内膜,在周质中折叠成蛋白质的最终构象(图1)。

图1蛋白质合成后的分泌过程 (二)真核生物蛋白质的分泌 真核生物不但有细胞核、细胞质和细胞膜,而且还有许多膜性结构的细胞器,在细胞须内合成的蛋白质怎样的到达细胞的不同部位呢?了解比较清楚的是分泌性蛋白质的转运。 像原核细胞一要,真核细胞合成的蛋白质N端也有信号肽也能形成两个α螺旋的发夹结构,这个结构可插入到内质网的膜中,将正在合成中的多肽链带和内质网内腔。80年代中期在胞浆中发现一种由小分子RNA和蛋白质共同组成的复合物,它能特异地与信号肽识别而命名为信号肽识别颗粒。它的作用是识别信号肽与核糖体结合并暂时阻断多肽链的合成。内质网外膜上的SRP受体,当ARP与受体结合后,信号肽就可插入内质网进入内腔,被内质网内膜壁上的信号肽酶水解除去SRP与受体结合后,信号肽就可插入内质网进入内腔,被内质网内腔壁上的信号肽酶水解除去SRP与受体解离并进入新的循环,而信号肽后序肽段也进入内质网内腔,并开始继续合成多肽链(图2)。

高中生物核心概念汇总

高中生物核心概念汇总 1.系统:指彼此间相互作用、相互依赖的组分有规律地结合而形成的整体。【P4】 2.种群:在一定的区域内,同种生物的所有个体是一个种群。【P5】 3.群落:同一时间内聚集在一定区域中各种生物种群的集合,叫做群落。【P5】 4.真核生物:由真核细胞构成的生物。【P8】 5.原核生物:由原核细胞构成的生物。【P8】 6.生命体:一个可以独立生活、生长和增殖的细胞。【P12】 7.大量元素:指含量占生物总重量万分之一以上的元素。(初中教材) 8.微量元素:指含量占生物总重量万分之一以下的元素。(初中教材) 9.必需氨基酸:人体细胞不能合成,必须从外界环境中直接获取的氨基酸。【P21】 10.非必需氨基酸:人体细胞能够合成的氨基酸。【P21】 11.多肽:由多个氨基酸(≥3)分子缩合而成的,含有多个肽键的化合物。【P22】

12.核酸:细胞内携带遗传信息的物质,在生物体的遗传、变异和蛋白质的生物合成中具有重要的作用。【P26】 12.单糖:不能水解的糖类。【P30】 13.二糖:由两分子单糖脱水缩合而成的糖类。【P30】 14.碳水化合物:糖类都是由C、H、O三种元素构成的,多数糖类分子中氢原子和氧原子之比为2:1,类似水分子,因而糖类又称为“碳水化合物”。【P30】 15.多聚体:由许多基本的组成单位(单体)连接而成的生物大分子。【P33】 16.结合水:与细胞内的其他物质相结合的水。【P35】 17.自由水:细胞中绝大部分的水以游离的形式存在,可以自由流动,叫做自由水。【P35】 18.染色排除法:科研上,利用诸如台盼蓝等染色剂能将死细胞染上颜色,而活的细胞不着色的现象来鉴别死细胞和活细胞的方法。【P43】 19.差速离心法:将细胞膜破坏后,形成由各种细胞器和细胞中其他物质组成的匀浆;将匀浆放入离心管中,用高速离心机在不同的转速下进行离心处理,将各种细胞器分离开的方法。【P44】

高中生物35个重要概念梳理

高中生物35个重要概念梳理 1.多肽与肽链 由多个氨基酸分子经脱水缩合形成的含有多个肽键(—CO—NH—)的化合物叫多肽,其合成场 所是核糖体。多肽通常呈链状结构,叫作肽链。 2.原生质体与原生质层 ①原生质体:植物细胞去掉细胞壁后剩下的结构,只在细胞工程中使用此概念。 ②原生质层:包括细胞膜、液泡膜以及这两层膜之间的细胞质,用在植物细胞的渗透吸水中。 3.生物膜与生物膜系统 ①生物膜:细胞膜、核膜以及内质网、高尔基体、线粒体膜等,这些膜的化学组成相似,基 本结构大致相同,统称为生物膜。 ②生物膜系统:细胞膜、核膜以及内质网、高尔基体、线粒体等由膜围成的细胞器,在结构、功能上是紧密联系的统一整体,它们形成的结构体系叫生物膜系统。 4.与染色体有关的一组概念 ①染色体和染色质:细胞核内被碱性染料染成深色的物质,主要由蛋白质和DNA组成,是遗传物质的主要载体。 ②姐妹染色单体:姐妹染色单体是由一个着丝点连着的并行的两条染色单体,是在细胞分裂的间期由同一条染色体经复制后形成的,其大小、形态、结构及来源完全相同,DNA分子 的结构相同,所包含的遗传信息也一样,其分离发生在有丝分裂后期和减数第二次分裂 的后期。 ③同源染色体:配对的两条染色体,形态和大小一般都相同,一条来自父方,一条来自母方(体细胞、有丝分裂和减数第一次分裂的细胞中有同源染色体;染色体组中无同源染色体),切不能将着丝点分裂后形成的两条子染色体认为是同源染色体。 ④染色体组:细胞中的一组非同源染色体,它们的形态和功能各不相同,但是携带着控制一种生物生长发育、遗传和变异的全部遗传信息,这样的一组染色体,叫作一个染色体组。染色体组组数可以根据染色体的形态、数目和基因型进行判断。 5.细胞周期 连续分裂的细胞,从上一次分裂完成时开始到下一次分裂完成时为止,这是一个细胞周期。 细胞周期反映了细胞增殖速度。测定细胞周期的方法有很多,有同位素标记法、细胞 计数法等。

50个生物学重要概念

义务教育《生物学课程标准》2011版50个生物学重要概念 主题一科学探究 1.科学探究是人们获取科学知识、认识世界的重要途径; 2.提出问题是科学探究的前提,解决科学问题常常需要作出假设; 3.科学探究需要通过观察和实验等多种途径来获得事实和证据。设置对照实验,控制单一变量,增加重复次数等是提高实验结果可靠性的重要途径; 4.科学探究既需要观察和实验,又需要对证据、数据等进行分析和判断; 5.科学探究需要利用多种方式呈现证据、数据,如采用文字、图表等方式来表述结果,需要与他人交流和合作。 主题二生物体的结构层次 6.细胞是生物体结构和功能的基本单位。 7.动物细胞、植物细胞都具有细胞膜、细胞质、细胞核和线粒体等结构,以进行生命活动。8.相比于动物细胞,植物细胞具有特殊的细胞结构,例如叶绿体和细胞壁。 9.细胞能进行分裂、分化,以生成更多的不同种类的细胞用于生物体的生长、发育和生殖。10.一些生物由单细胞构成,一些生物由多细胞组成。 11.多细胞生物体具有一定的结构层次,包括细胞、组织、器官(系统)和生物个体。 主题三生物与环境 12.生物与环境相互依赖、相互影响。 13.一个生态系统包括一定区域内的所有的植物、动物、微生物以及非生物环境。 14.依据生物在生态系统中的不同作用,一般可分为生产者、消费者和分解者。 15.生产者通过光合作用把太阳能(光能)转化为化学能,然后通过食物链(网)传给消费者、分解者,在这个过程中进行着物质循环和能量流动。 16.生物圈是最大的生态系统。 主题四生物圈中的绿色植物 17.植物的生存需要阳光、水、空气和无机盐等条件。 18.绿色开花植物的生命周期包括种子萌发、生长、开花、结果与死亡等阶段。 19.绿色植物能利用太阳能(光能),把二氧化碳和水合成贮存了能量的有机物,同时释放氧气。 20.在生物体内,细胞能通过分解糖类等获得能量,同时生成二氧化碳和水。 21.植物在生态系统中扮演重要角色,它能制造有机物和氧气;为动物提供栖息场所;保持水土;为人类提供许多可利用的资源。 主题五生物圈中的人 22.人体的组织、器官和系统的正常工作为细胞提供了相对稳定的生存条件,包括营养、氧气等以及排除废物。 23.消化系统包括口腔、食道、胃、小肠、肝、胰、大肠和肛门,主其要功能是从食物中获取营养物质,经备运输到身体的所有细胞中。 24.呼吸系统包括呼吸道和肺,其功能是从大气中摄取代谢所需要的氧气,排出代谢所产生的二氧化碳。 25.血液循环系统包括心脏、动脉、静脉、毛细血管和血液,其功能是运输氧气、二氧化碳、营养物质、废物和激素等物质。

高中生物概念总结讲解学习

高中生物概念总结

1、活化能:分子从常态转变为容易发生化学反应的活跃状态所需要的能量 2、酶:是活细胞产生的具有催化作用的有机物,其中绝大多数是蛋白质 3、酶的活性:酶催化一定化学反应的能力 4、酶的活力单位:U(1U表示在温度为25°C,其他反应条件均为最适的情况下,在1min内转化1mmmol的底物所需的酶量) 5、细胞呼吸:指有机物在细胞内经过一系列的氧化分解,生成二氧化碳或其他产物,释放出能量并生成ATP的过程 6、有氧呼吸:指细胞在氧的参与下,通过多种酶的催化作用,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放能量,生成大量ATP的过程 7、无氧呼吸:指在无氧条件下,通过多种酶的催化作用,把葡萄糖糖类等有机物分解成为不彻底的氧化产物,释放出少量能量,生成少量ATP的过程 8、光合作用:指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧气的过程 9、化能合成作用:指少数细菌利用体外环境中的某些无机物氧化时所释放的能量来制造有机物 10、细胞周期:指连续分裂的细胞从一次分裂完成时开始,到下一次分裂完成时为止时经历的时间 11、细胞分化:在个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定性差异的过程 12、细胞的全能性:指已经分化的细胞,仍然具有发育成完整个体的潜能 13、细胞凋亡:由基因决定的细胞自动结束生命的过程 14、癌细胞:受到致癌因子的作用,细胞中遗传物质发生变化,不受机体控制的、连续进行分裂的恶性增殖细胞 15、原癌基因作用:调节细胞周期,抑制细胞生长和分裂;抑癌基因作用:阻止细胞不正常增殖

高中生物重要概念梳理

会有不少同学表示。初中生物很好学,为什么高中生物那么难学?学习生物就要掌握生物学基础知识。深入理解和灵活运用生物学基本原理、基本概念和基本规律是培养科学思维方法、完成探究性实验的基础。做好高三生物探究性实验大题,就要认真分析教材涉及的实验,理解每一个实验的原理与目的要求,弄清材料用具的选择方法与原则,学会对已知实验进行变式。发展求异思维,有助于提高实验综合能力。所以说,高三生物不难,说难的同学概念你都明白了吗?知识什么是多肽与肽链吗?知道什么是原生质体与原生质层名吗?下面为你整理了生物重要概念梳理,速来领取! 1.多肽与肽链 由多个氨基酸分子经脱水缩合形成的含有多个肽键(—CO—NH—)的化合物叫多肽,其合成场所是核糖体。多肽通常呈链状结构,叫作肽链。 2.原生质体与原生质层 ①原生质体:植物细胞去掉细胞壁后剩下的结构,只在细胞工程中使用此概念。 ②原生质层:包括细胞膜、液泡膜以及这两层膜之间的细胞质,用在植物细胞的渗透吸水中。 3.生物膜与生物膜系统 ①生物膜:细胞膜、核膜以及内质网、高尔基体、线粒体膜等,这些膜的化学组成相似,基本结构大致相同,统称为生物膜。 ②生物膜系统:细胞膜、核膜以及内质网、高尔基体、线粒体等由膜围成的细胞器,在结构、功能上是紧密联系的统一整体,它们形成的结构体系叫生物膜系统。 4.与染色体有关的一组概念 ①染色体和染色质:细胞核内被碱性染料染成深色的物质,主要由蛋白质和DNA组成,是遗传物质的主要载体。 ②姐妹染色单体:姐妹染色单体是由一个着丝点连着的并行的两条染色单体,是在细胞分裂的间期由同一条染色体经复制后形成的,其大小、形态、结构及来源完全相同,DNA分子的结构相同,所包含的遗传信息也一样,其分离发生在有丝分裂后期和减数第二次分裂的后期。

生物学概念教学

课堂教学中如何构建生物学重要概念 房立明 在教学过程中,如何让学生准确而灵活地掌握基本概念,从而达到使学生充分认识、了解生物学知识的目的,是每一位生物教师必须高度重视的问题,更是中学生物教学成功的关键。 近几年来,为全面提升学生的自主学习能力,很多学校都在进行新一轮的课堂教学改革,本人也在不断的探索,结合我们学校的“自学──合作──训练”的课堂教学模式,利用教师的主导作用,充分调动学生的自主学习潜能,利用小组合作学习的教学模式,在生物学科中进行课堂教学改革,从而有效地实施课堂教学,经过本人近十年的实践教学研究和近三年的小组合作学习的课堂教学研究,在这样的课堂教学模式下采取以下一些方法进行教学取得了较好的效果,本人对初中生物学的教学也积累了不少的经验。现就如何提高初中生物概念教学的有效性,谈谈在生物学概念教学实践中的一些做法。 一.利用生物学的谚语引出概念 生物学基本概念很多,如何使这些枯燥无味的基本概念的教学变得丰富多彩?在日常生活中,流传着许多脍炙人口的民间谚语中蕴藏着许多生物学的知识。"老鼠过街,人人喊打"--生物的竞争。“龙生龙,凤生凤,老鼠儿子会打洞”这是生物的遗传,是生物界普遍存在的现象。“一母生九子,连母十个样”这反映了生物的变异现象。"一方水土育一方人"--生物与环境的关系。“大树底下好乘凉”──生物影响环境。“一朝被蛇咬,三年怕草绳”──生物的复杂反射。“麻屋子,红帐子,里面住个白胖子”--- 果实、种子的形成。在备课过程中有意识地挖掘,在教学过程中恰当的运用,一定能增加生物教学的趣味性,起到激发学生兴趣,促进学生学习的作用。 二.从观察到的现象提问引出概念 教师在教学过程中,若能将相关概念与学生的感性生活经验有机结合,根据学生的智力水平和认知水平设计出问题,让学生通过阅读教材和观察现象回答,及时归纳总结,从而达到掌握和理解基本概念的目的。结合学生基础知识水平,教师可通过设计难易适度的问题进行提问,让学生在回答问题的过程中归纳出这一基本概念。例如:"植物的蒸腾作用"实验,教师指导学生课前分别作了三个实验:(1)将植物的叶和较粗的茎分别用塑料袋罩住,置于强光下观察,可见袋内水珠较多;(2)将一盆花的叶用凡士林涂抹在正、背两面后,罩上塑料袋观察,袋内水珠较少;(3)分别选择一个晴天、一个阴雨天在上午同一时间在同一植物上罩上塑料袋,观察、对比袋中的水珠量,可以看到塑料袋内的水珠明显多于阴雨天。在学生观察到这些现象后,我提问:(1)塑料袋中的水珠是从哪里来的?(2)为什么罩叶的塑料袋水珠多?植物体内的水分主要从哪个器官散发出来?(3)晴天、雨天植物蒸腾作用的速度是否相同?(4)温度与植物的蒸腾作用有关吗?教师对重点、疑点进行启发点拨,学生通过分析综合而掌握重要知识点。 三.抓住关键词对概念的掌握 一个完整的概念,往往是由几个要素构成,引导学生把概念的几个要素找出来,解剖要素并把各要素关键词串联起来,就会形成一个简化的概念。如,“仿生”概念中关键词为“结构和功能”、“仪器和设备”;“生态平衡”概念中关键词为“数量和所占比例”,“相对稳定”等等。在此基础上,进一步分析关键词分别代表的内容、含义及关系。通过找概念的关键词,

新课标高中生物核心概念

新课标高中生物核心概念必修一:

::自然界中少数种类的细菌,虽然细胞内没有叶绿素,不能进行光合作用,但是,叫做化能合成作用,这些细菌也属于自养生物。如:硝化细菌,不能利用光能,但能将土壤中的NH3氧化成HN02进而将HNO氧化成HN03硝化细菌能利用这两个化学反应中释放出来的化学能,将C02和水合成为糖类,这些糖类可供硝化细菌维持自身的生命活动? 举例:硝化细菌、硫细菌、铁细菌、氢细菌 细胞周期:指连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止。 细胞的分化:在个体发育中,相同细胞的后代,在形态、结构和生理功能上发生稳定性差异的过程。 过程:受精卵―增殖为多细胞―分化为组织、器官、系统―发育为生物体 特点:持久性、稳定不可逆转性、普遍性 细胞全能性:指已经分化的细胞,仍然具有发育成完整个体的潜能。体细胞具有全能性的原因:由于体细胞一般是通过有丝分裂增殖而来的,一般已分化的细胞都有一整套和受精卵相同的DNA分子,因此,分化的细胞具有发育成完整新个体的潜能。

植物细胞全能性:高度分化的植物细胞仍然具有全能性。例如:胡萝卜跟根组织的细胞可以发育成完整的新植株 动物细胞全能性:高度特化的动物细胞,从整个细胞来说,全能性受到限制。但是,细胞核仍然保持着全能性。例如:克隆羊多莉 全能性大小:受精卵>生殖细胞>体细胞 细胞的分化:是指在个体发育中,由一个或一种细胞的后代,在形态、结构和生理功能上发生稳定性差异的过程。 细胞衰老:细胞的生理状态和化学反应发生复杂变化的过程,最终表现在细胞的形态、结构和功能发生变化。衰老的细胞特征:细胞内的水分减少,细胞萎缩,体积变小新陈代谢的速率减慢;细胞内多种酶的活性降低, 色素逐渐积累,妨碍细胞内物质的交流和传递;细胞内呼吸速率减慢。细胞核的体积增大,核膜内折,染色质收缩,染色加深;细胞膜通透性改变,使物质运输功能降低。 癌细胞:细胞受到致癌因子(三种)的作用,细胞中遗传物质发生变化,变成不受机体控制的、连续进行分裂的恶性增殖细胞. 癌细胞特征:无限增殖;形态结构发生显着变化;细胞膜表面的糖蛋白等物质减少,使癌细胞彼此之间的黏着性显着降低,易在体内分散和转移。 细胞的凋亡:由基因所决定的细胞自动结束生命的过程。由于细胞凋亡受到严格的由遗传机制决定的程序性调控,所以也常常被称为细胞编程性死亡. 意义:完成正常发育,维持内部环境的稳定,抵御外界各种因素的干扰。 必修二 减数分裂:进行有性生殖的生物, 在形成成熟生殖细胞进行的细胞分裂, 在分裂过程中, 染色体复制一次, 而细胞连续分裂两次. 减数分裂的结果是, 成熟生殖细胞中的染色体数目比原始生殖细胞减少一半。意义:对于进行有性生殖的生物来说,减数分裂和受精作用,对于维持每种生物前后代体细胞中染色体数目的恒定性,对于生物的遗传变异都是十分重要的基因是有遗传效应的DNA片段,基因在染色体上呈线性排列,染色体是基因的主要载体(叶绿体和线粒体中的DNA上也有基因存在)。密码子:指信使RNA上的决定一个氨基酸的三个相邻的碱基。信使RNA上密码子有64种,其

生物学重要概念教学策略研究结题报告

生物学重要概念教学策略研究结题报告 张少斌 本课题主要研究高中重要概念的教学策略,并对不同的概念采取怎样教学方法问题进行分析和研究,从而优化生物课堂教学。 一、课题背景及界定 1.课题研究背景 生物学概念是支撑生物学科科学体系的关键所在,学好重要概念是学生学好生物学知识,建立自我生我学体系的根本。介于此原因初中新课程标准已经对重要概念进行了界定,而高中目前还没相应的提法,这是本课题组最初确定这个课题为研究方向的主要原因。 《普通高中生物课程标准》明确提出:要求学生获得生物学基本事实,概念,原理,规律和模型等方面的基础知识,知道生物科学和技术的主要发展方向和成就,知道生物科学发展史上的重要事件。说明概念教学无论在初中还是高中都很重要。高中《生物课程标准》还指出:要“注重学生在现实生活的背景中学习生物学,倡导学生在解决实际问题的过程中深入理解生物学的核心概念”。高中生物新教材重视以生物学概念构建知识体系。在课本的章末自我检测中都要求学生在理解本章概念的基础上画概念图,这是旧教材中没有的。 高中生物学必修教材中比较重要的概念约有450个,有具体定义的概念有近200个,平均每节课中都要涉及4~5个重要概念。特别是近年来高考命题特别重视回归课本,避免学生陷入题海战术,而是更加注重考察学生对概念的理解和掌握情况。而事实上学生的学习情况如何呢?经多年调研我们发现:大部分学生概念记忆不牢,理解不清,概念的应用能力差,生物基础不差,生物学科素养低下。 2.课题研究的意义 生物的概念教学是生物学科建立和发展的基础,它能深刻地体现生物教学过程最本质的特征。对于生物概念的正确理解和运用,不仅有助于学生掌握基础知识,提高解题技能,而且能够提高学生的生物学素养。同时理解生物的基本概念也是教学大纲的基本能力要求,同时搞好生物学概念教学也是提高课堂教学质量的重要手段。因此学生只有深刻理解和准确把握生物学概念,才能构建良好的生物学知识结构,才能在考试中灵活运用,从而达到在生活实践中学以致用。更进一步完成课标提出的提高学生的生物学素养这个目标。 3.课题名称的界定和解读

分子生物学基本含义

分子生物学 分子生物学的基本含义(p8) 分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。 分子生物学与其它学科的关系 分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同学科专长的科学家的共同努力。它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。 生物化学与分子生物学关系最为密切: 生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各种生物分子的结构、转变与新陈代谢。传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、以及能量代谢等与生理功能的联系。 分子生物学则着重阐明生命的本质----主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。 细胞生物学与分子生物学关系也十分密切: 传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。探讨组成细胞的分子结构比单纯观察大体结构能更加深入认识细胞的结构与功能,因此现代细胞生物学的发展越来越多地应用分子生物学的理论和方法。 分子生物学则是从研究各个生物大分子的结构入手,但各个分子不能孤立发挥作用,生命绝非组成成分的随意加和或混合,分子生物学还需要进一步研究各生物分子间的高层次组织和相互作用,尤其是细胞整体反应的分子机理,这在某种程度上是向细胞生物学的靠拢。 第一章序论 1859年发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。 指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。达尔文第一个认识到生物世界的不连续性。 意义:达尔文关于生物进化的学说及其唯物主义的物种起源理论,是生物科学史上最伟大的创举之一,具有不可磨灭的贡献。

《分子生物学》教学大纲

《分子生物学》教学大纲 总学时:90学时,讲授:72学时,实习:18学时 适用专业:生物技术及应用专业 一、课程的性质及任务 《分子生物学》是我院应用生物技术专业一门重要的专业必修课。分子生物学是一门近年来发展迅速并且在生命科学领域里应用越来越广泛、影响越来越深远的一个学科。从学科角度来讲,分子生物学函盖面非常广,与生物化学和细胞生物学等生命科学主干课程有一些交叉。为了避免重复,本课程主要从生物大分子的水平来阐述遗传信息的传递(DNA复制和突变修复等),及基因表达(DNA 到RNA到蛋白质)这两个重要的生命过程;将突出生物大分子结构与功能的关系及其如何操作这两个重要的生命过程。通过与实践教学相结合,系统地介绍与基因克隆相关的DNA技术,使学生们掌握一些基本的分子生物学技术。 二、课程的基本要求 设置本课程目的是让学生比较全面、系统地学习分子生物学基本理论、基础知识和基本操作技术,了解和认识分子生物学研究及发展方向,为今后进一步学习和从事本专业相关工作奠定基础。教学上要求:1.授课内容逻辑清晰、主次分明;2.语言简明、易懂、生动;3.幻灯等多媒体制作精细;4.讲课态度认真、负责,让学生听明白,领会。教学方法:多媒体教学,多途径考核(平时小考、作业、课堂讨论和期末考试等结合)。 三、教学内容 第一章绪论 目的要求:了解和学习分子生物学概况,为进一步学习本课程后续内容做铺垫。重点、难点:分子生物学的研究内容、分子生物学发展前景。 教学内容:分子生物学发展简史、人类基因组计划简介、分子生物学的研究内容、分子生物学发展前景。

第二章分子生物学技术 目的要求:介绍核酸的提取和纯化、凝胶电泳技术、PCR技术、核酸分子杂交技术等。 重点、难点:核酸的提取和纯化、凝胶电泳技术、PCR技术、核酸分子杂交技术、蛋白质分析技术。 教学内容:核酸的提取和纯化、凝胶电泳技术、DNA序列测定、PCR技术、核酸分子杂交技术、蛋白质分析技术、基因克隆技术。 第三章 DNA的结构与性质 目的要求:介绍核酸的一些基本性质,为了解遗传信息遗传、基因表达与调控和掌握DNA技术做铺垫。 重点、难点:DNA结构、DNA的光谱和热性质、RNA结构、基因组的复杂性、DNA 超螺旋。 教学内容:DNA结构、DNA的化学和物理性质、DNA的光谱和热性质、染色体、RNA结构、DNA 超螺旋。 第四章 DNA复制 目的要求:使学生掌握DNA复制的基本概念和机制,为学生理解和掌握DNA技术打下基础 重点、难点:DNA聚合酶、细菌DNA复制、真核DNA复制、DNA复制的调控。 教学内容:DNA复制概览、细菌DNA复制、真核DNA复制、DNA复制的调控。 第五章 DNA损伤与修复 目的要求:使学生了解和掌握DNA损伤的原因、类型和修复机制。 重点、难点:DNA损伤、DNA修复。 教学内容:DNA突变、DNA损伤、DNA修复、基因重组 第六章 RNA的转录与加工 目的要求:使学生掌握转录的基本概念、真核转录的三种主要RNA聚合酶和原核转录的主要参与者(RNA聚合酶和启动子)以及原核转录的过程(起始、延伸和终止),使学生了解不同前体RNA的加工机制。 重点、难点:真核转录的三种RNA聚合酶基本特征和功能、大肠杆菌RNA聚合酶、大肠杆菌s70启动子,原核转录的起始、延伸和终止、真核转录后的加工机制、选择性剪切。

高中生物学基础概念

生物学基础概念 1.细胞的生物膜系统,细胞中有细胞膜,细胞器膜,核膜,共同构成细胞的生物膜系统。 2.细胞呼吸,有机物在细胞内经过一系列的氧化分解,生成二氧化碳或其他产物,释放出 能量并生成的过程。 3.有氧呼吸,细胞在氧的参与下,通过多种酶的催化作用,把葡萄糖等有机物彻底氧化分 解,产生二氧化碳和水,释放能量,生成大量的过程。 4.无氧呼吸,细胞在无氧条件下,在多种酶的催化作用下,将葡萄糖等有机物不彻底分解, 生成乳酸或酒精与二氧化碳,释放少量能量的过程。 5.光合作用,绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机 物,并释放氧气的过程。 6.细胞分化,在个体发育中由一个或一种细胞增殖产生的后代,在形态结构和生理功能上 发生稳定性差异的过程。 7.细胞的全能性,已分化的细胞,仍然具有发育成完整个体的潜能。 8.干细胞,动物和人体内仍保留着少数具有分裂和分化能力的细胞。 9.细胞凋亡,由基因所决定的细胞自动结束生命的过程。 10.癌细胞,细胞受到致癌因子的作用,细胞中遗传物质发生改变,就变成不受机体控制的, 连续进行分裂的恶性增殖细胞。 11.细胞周期,连续分裂的细胞,从上一次分裂完成开始,到下一次分裂完成时为止,为一 个细胞周期。 12.受精作用:卵细胞和精子相互识别融合成为受精卵的过程。 13.性状:生物体可以鉴别的,形态特征与生理特征的总称,是遗传与环境共同作用的结果, 由蛋白质体现。 14.相对性状:同种生物同一性状的不同表现类型。 15.形状分离:杂种后代中同时出现显性性状和隐性性状的现象。 16.显性基因:决定显性性状的基因。 17.隐性基因:决定隐性性状的基因。 18.相同基因:位于一对同源染色体的相同位置,控制相同性状的基因。 19.等位基因:位于一对同源染色体的相同位置,控制相对性状的基因。 20.表现型:生物个体表现出来的性状。 21.纯合子:由相同基因配子结合成的合子发育成的个体。 22.杂合子:由不同基因配子结合成的合子发育成的个体。 23.自交:基因型相同的生物间相互交配。 24.杂交:基因型不同的生物间相互交配。 25.伴性遗传:位于性染色体上的基因所控制的性状,在遗传上总是与性别相关联的现象。 26.人类遗传病:由于遗传物质改变而引起的人类疾病。 27.单基因遗传病:受一对等位基因控制的遗传病。 28.多基因遗传病:受两对以上的等位基因控制的人类遗传病。 29.染色体异常遗传病:由染色体异常引起的遗传病。 30.分子的复制,以亲代为模板,合成子代的过程。 31.基因的本质基因是有遗传效应的片段,一个分子有许多基因,基因在染色体上呈线性排 列。 32.转录,以双链中的一条链为模板,按碱基互补配对原则合成的过程。 33.翻译,以为模板,按碱基互补配对原则,合成具有一定氨基酸顺序的蛋白质。 34.直接控制,基因通过控制蛋白质的结构,直接控制生物体的性状。

相关文档
最新文档