第1章原子模型和单电子原子

第1章原子模型和单电子原子

第1章原子模型和单电子原子

电子云

电子云 1简介 电子云是物理学、化学中的一项概念。 电子云是近代对电子用统计的方法,在核外空间分布方式的形象描绘,它的区别在于行星轨道式模型。电子有波粒二象性,它不像宏观物体的运动那样有确定的轨道,因此画不出它的运动轨迹。不能预言它在某一时刻究竟出现在核外空间的哪个地方,只能知道它在某处出现的机会有多少。为此,就以单位体积内电子出现几率,即几率密度大小,用小白点的疏密来表示。小白点密处表示电子出现的几率密度大,小白点疏处几率密度小,看上去好像一片带负电的云状物笼罩在原子核周围,因此叫电子云。在量子化学中,用一个波函数Ψ(x,y,z)表征电子的运动状态,并且用它的模的平方|Ψ|2值表示单位体积内电子在核外空间某处出现的几率,即几率密度,所以电子云实际上就是|Ψ|2在空间的分布。研究电子云的空间分布主要包括它的径向分布和角度分布两个方面。径向分布探求电子出现的几率大小和离核远近的关系,被看作在半径为r,厚度为dr的薄球壳内电子出现的几率。角度分布探究电子出现的几率和角度的关系。例如s态电子,角度分布呈球形对称,同一球面上不同角度方向上电子出现的几率密度相同。p态电子呈8字形,不同角度方向上几率密度不等。有了pz的角度分布,再有n=2时2p的径向分布,就可以综合两者得到2pz的电子云图形。由于2p和3p的径向分布不同,2pz和3pz的电子云图形也不同。 2概念 电子云就是用小黑点疏密来表示空间各电子出现概率大小的一种图形。 电子云出现的几率大小 电子在原子核外很小的空间内作高速运动,其运动规律跟一般物体不同,它没有明确的轨道。根据量子力学中的测不准原理,我们不可能同时准确地测定出电子在某一时刻所处的位置和运动速度,也不能描画出它的运动轨迹。因此,人们常用一种能够表示电子在一定时间内在核外空间各处出现机会的模型来描述电子在核外的的运动。在这个模型里,

1章原子结构单元检测(附答案)

化学鲁科3第1章原子结构单元检测 (时间:60分钟,满分:100分) 第Ⅰ卷选择题(共40分) 一、选择题(本题包括10小题,每小题4分,共40分。每小题只有一个选项符合题意) 1.为揭示原子光谱是线状光谱这一事实,玻尔提出了核外电子的分层排布理论。下列说法中不符合这一理论的是() A.电子绕核运动具有特定的半径和能量 B.电子在特定半径的轨道上运动时不辐射能量 C.电子跃迁时,会吸收或放出特定的能量 D.揭示了氢原子光谱存在多条谱线 2.下列能表示基态硅原子的是() 3.下列关于主族元素的说法正确的是() A.主族元素的原子核外电子最后填入的能级是s能级 B.主族元素的原子核外电子最后填入的能级是s能级或p能级 C.主族元素的最高正价一定等于主族的序数 D.主族元素的价电子数有可能超过最外层电子数 4.在最外层电子排布为①3s23p5;②2s22p2;③3s23p4;④3s23p3的几种元素中,其最高价氧化物对应水化物的酸性由强到弱的顺序是() A.②③④①B.①③④② C.②④③①D.①②③④ 5.下列4种元素中,其单质氧化性最强的是() A.原子含有未成对电子最多的第2周期元素 B.位于元素周期表中第3周期ⅢA族的元素 C.原子最外电子层排布为2s22p6的元素 D.原子最外电子层排布为3s23p5的元素 6.A原子的结构示意图为。则x、y及该原子3p能级上的电子数可能为() A.18、6、4 B.20、8、6 C.18、8、6 D.15~20、3~8、1~6 7.下列离子化合物中阴、阳离子间距离最大的是() A.LiCl B.NaCl C.KCl D.KBr 8.下图是第3周期11~17号元素某些性质变化趋势的柱形图,下列有关说法中正确的是()

《原子核外电子的排布》教学设计

《原子核外电子的排布》教学设计 一、教材分析 本章《物质结构元素周期律》是高中必修二第一章的内容,是在九年级化学上册第四单元《物质构成的奥秘》的理论基础上进一步的深入学习,而本节内容——原子核外电子的排布又是本章的核心内容,是后面学习元素周期律的基础。 二、学生分析 学生初中时已经学习了原子的构成和元素,对核外电子是分层排布这一知识点也做了初步了解,所以在此节内容的学习之前学生就已经具备了一些原子的相关基础知识。同时也具备一定的数学基础,能够对一些数据进行分析处理。 三、教学目标 (一)知识与技能目标 1.了解原子核外电子运动的特征。 2.了解元素原子核外电子排布的基本规律,能用原子(离子)结构示意图表示常见原子(离子)的核外电子排布。 (二)过程与方法目标 培养学生分析、处理数据的能力,尝试运用比较、归纳等方法对信息进行加工。 四、教学重难点 重点:原子核外电子分层排布、原子核外电子的排布及其规律。 难点:原子核外电子排布规律间相互制约关系。 五、教学过程 【引入】大家好,这节课我们进入到新课的学习:

【板书】原子核外电子的排布 【提问】在进入新课内容之前,我们先来复习一下以前学习的内容。初中的时候在《物质构成的奥秘》这一章当中我们就学习了原子的相关知识,下面我们来回顾一下,什么是原子?原子由什么微粒构成? 【学生回顾】…… 【板书】 外电子数 核电荷数=质子数=核的负电荷核外电子:带一个单位 中子:不带电 个单位的正电荷质子:带原子核原子????????1 【教师】原子由原子核和核外电子构成,而原子核又由质子和中子构成,其中质子带一个单位的正电荷,中子不带电。核外电子则带一个单位的负电荷。 【提问】那么为什么原子对外显电中性呢? 【学生】质子所带的正电荷数等于核外电子所带的负电荷数,所以原子不显电性。 【教师】很好,其中我们还学习到了一个重要的等式关系:核电荷数=质子数=核外电子数。所以质子所带的正电荷与核外电子所带的负电荷相互抵消,导致原子不显电性。 【过渡】好,我们都知道了原子的结构。现在我们来研究一下电子在原子核外究竟是怎么运动的。 【教师】大家来看ppt 上这张熟悉的原子结构图。我们可以看到原子核外有一圈圈的层状区域,由里往外分为好几个圈层,这就是我们以前初三所学习到的电子层——核外电子的运动有自己的特点,它不像行星绕太阳旋转有固定的轨道,但却有经常出现的区域,科学家把这些区域称为电子层。而核外电子就是在这样不同的电子层内运动,我们把这种现象称为核外电子的分层排布。这些都是同学们初中已经学习过的内容。 【过渡】那么,大家知道了核外电子的分层排布之后,是不是产生了这样的疑问:核外电子究竟是怎么分层排布的呢?好,接下来我们一起来共同解决同学们的疑问——我们来探究核外电子的排布规律。 【板书】核外电子的排布规律 【提问】我们来看这个原子结构,从黄色最里一层原子层到蓝色最外一层原子层,

第三节多电子原子的原子结构

第三节多电子原子的原子结构 外层只有一个电子时,由于该电子仅受到核的吸引如氢原子或类氢原子,可以精确求解出波函数。但多电子原子核外有2个以上的电子,电子除受核的作用外,还受到其他电子对它的排斥作用,情况要复杂得多,只能作近似处理。但上述氢原子结构的某些结论还可用到多电子原子结构中: 在多电子原子中,每个电子都各有其波函数ψi,其具体形式也取决一组量子数n、l、m。多电子原子中的电子在各电子层中可能占据的轨道数,与氢原子中各电子层轨道数相等。 多电子原子中每个电子的波函数的角度部分Y(θ,φ)和氢原子Y(θ,φ)相似,所以多电子原子的各个原子轨道角度分布图与氢原子的各个原子轨道的角度分布图相似。同理两者的Y 2图也相似。 处理多电子原子问题时,认为其他电子对某个电子i的排斥,相当于其他电子屏蔽住原子核,抵消了一部分核电荷对电子i的吸引力,称为其他电子对电子i的屏蔽作用(screening effect),引进屏蔽常数σ(screening constant)表示其他电子所抵消掉的核电荷。这样多电子原子中电子i的能量公式可表示为 式中(Z –σ)= Z′称为有效核电荷(effective nuclear charge)。多电子原子电子的能量和Z、n、σ有关。Z愈大,相同轨道的能量愈低,如基态氟原子1s电子的能量比基态氢原子1s电子的能量低;n愈大,能量愈高;起屏蔽作用的电子愈多,总的屏蔽作用愈强。σ愈大,能量愈高。影响σ有以下因素: 1. 外层电子对内层电子的屏蔽作用可以不考虑,σ=0; 2. 内层 (n-1层)电子对最外层(n层)电子的屏蔽作用较强,σ=,离核更近的内层(n-2层)电子对最外层电子的屏蔽作用更强,σ=; 3. 同层电子之间也有屏蔽作用,但比内层电子的屏蔽作用弱,σ=,1s之间σ=。n相同l 不同时,l愈小的电子,它本身的钻穿能力愈强,离核愈近,它受到其他电子对它的屏蔽作用就愈弱,能量就愈低E n s <E n p <E n d <E n f。 氢原子只有1个电子,无屏蔽作用,其激发态能量与l无关。 4. l相同,n不同时,n愈大的电子受到的屏蔽作用愈强,能量愈高: E n s <E(n+1)s <E(n+2)s <… E n p <E(n+1)p <E(n+2)p <… 5. n 、l都不同时,情况较复杂。比如3d和4s,会出现n小的反而能量高的现象,E4s<E3d,称为能级交错。 美国科学家鲍林(Pauling L C)根据大量的光谱数据计算出多电子原子的原子轨道的近似能级顺序,如下图

原子结构 原子核外电子排布

第五章原子结构元素周期律 第一节原子结构原子核外电子排布 【高考新动向】 【考纲全景透析】 一、原子的构成 1. 原子的构成 原子的组成表示式:X,其中X为原子符号,A为质量数,Z为质子数,A-Z为中子数。2.基本关系 ①质子数=核电荷数=核外电子数 ②阳离子中:质子数=核外电子数+电荷数 ③阴离子中:质子数=核外电子数-电荷数 ④质量数=质子数+中子数 3.元素、核素、同位素之间的关系如下图所示: 元素、核素和同位素的概念的比较

二、 原子核外电子排布 1.电子层的表示方法及能量变化 圆圈表示原子核,圆圈内标示出核电荷数,用弧线表示电子层,弧线上的数字表示该电子层的电子数。要注意无论是阳离子还是阴离子,圆圈内的核电荷数是不变的,变化的是最外层电子数。 离核由近及远→电子能量由低到高 2.核外电子分层排布的规律 核外电子的分层运动,又叫核外电子的分层排布,其主要规律有: (1)能量规律 原子核外电子总是先排能量最低的电子层,然后由里向外,依次排布在能量逐步升高的电子层(能量最低原理)。即排满了K 层才排L 层,排满了L 层才排M 层。 (2)分层排布规律 ①原子核外每个电子层最多容纳2n 2 个电子。 ②原子最外层电子数不超过8个电子(K 层为最外层不能超过2个电子)。 ③原子次外层电子数不超过18个电子(K 层为次外层不能超过2个电子)。 【热点难点全析】

〖考点一〗原子的构成及概念比较 1.构成原子的粒子 2.组成原子的各种粒子及相互关系 (1)原子或分子:质子数(Z)=核电荷数=核外电子数 (2)阳离子:核外电子数=质子数-所带电荷数 (3)阴离子:核外电子数=质子数+所带电荷数 3.同位素、同素异形体、同系物、同分异构体的比较 〖提醒〗(1)质子数与核外电子数之间的关系,对于原子不易出错,对于阴、阳离子容易出错。应清楚阳离子核外电子数少于质子数,阴离子核外电子数多于质子数。 (2)元素、同位素、同素异形体、同系物、同分异构体的判断关键是描述的对象。如: ①具有相同质子数的两微粒不一定是同种元素,如Ne和H2O。 ②质子数相同而中子数不同的两微粒不一定互为同位素,如14N2和13C16O。 ③2H2和3H2既不是同位素,也不是同素异形体。 【典例1】铀(U)是重要的核工业原料,其中23592U是核反应堆的燃料,下列关于23592U和23892U的说

原子核外电子排布的原理

原子核外电子排布的原理 处于稳定状态的原子,核外电子将尽可能地按能量最低原理排布,另外,由于电子不可能都挤在一起,它们还要遵守保里不相容原理和洪特规则,一般而言,在这三条规则的指导下,可以推导出元素原子的核外电子排布情况,在中学阶段要求的前36号元素里,没有例外的情况发生。 核外电子排布原理一——能量最低原理 电子在原子核外排布时,要尽可能使电子的能量最低。怎样才能使电子的能量最低呢?比方说,我们站在地面上,不会觉得有什么危险;如果我们站在20层楼的顶上,再往下看时我们心理感到害怕。这是因为物体在越高处具有的势能越高,物体总有从高处往低处的一种趋势,就像自由落体一样,我们从来没有见过物体会自动从地面上升到空中,物体要从地面到空中,必须要有外加力的作用。电子本身就是一种物质,也具有同样的性质,即它在一般情况下总想处于一种较为安全(或稳定)的一种状态(基态),也就是能量最低时的状态。当有外加作用时,电子也是可以吸收能量到能量较高的状态(激发态),但是它总有时时刻刻想回到基态的趋势。一般来说,离核较近的电子具有较低的能量,随着电子层数的增加,电子的能量越来越大;同一层中,各亚层的能量是按s、p、d、f的次序增高的。这两种作用的总结果可以得出电子在原子核外排布时遵守下列次序:1s、2s、2p、3s、3p、3d、4s、4p…… 原子轨道能量的高低(也称能级)主要由主量子数n和角量子数l决定。当l相同时,n越大,原子轨道能量E越高,例如E1s<E2s<E3s;E2p<E3p <E4p。当n相同时,l越大,能级也越高,如E3s<E3p<E3d。当n和l 都不同时,情况比较复杂,必须同时考虑原子核对电子的吸引及电子之间的相互排斥力。由于其他电子的存在往往减弱了原子核对外层电子的吸引力,从而使多电子原子的能级产生交错现象,如E4s<E3d,E5s<E4d。Pauling根据光谱实验数据以及理论计算结果,提出了多电子原子轨道的近似能级图。用小圆圈代表原子轨道,按能量高低顺序排列起来,将轨道能量相近的放在同一个方框中组成一个能级组,共有7个能级组。电子可按这种能级图从低至高顺序填入。

氢原子电子云空间分布的可视化

氢原子电子云空间分布的可视化 1 技术指标 1)设计一个用户界面,从不同角度直观揭示氢原子电子云空间几率分布的规律。要求:有用户任意输入量子数的界面; 2)根据量子力学中对氢原子的求解,设计出各个模块的参数(例如径向分布概率,角向分布概率等); 3)用Matlab来进行模拟; 4)通过给定量子数,可以弹出绘图窗口,给出该量子态下,三维空间中氢原子中电子在空间各点的几率分布。 2 基本原理 2.1 电子云模型及其量子力学实质 电子云是电子在原子核外空间概率密度分布的形象描述,电子在原子核外空间的某区域内出现,好像带负电荷的云笼罩在原子核的周围,人们形象地称它为“电子云”。用现代量子力学的观点来看,电子有波粒二象性,它不像宏观物体的运动那样有确定的轨道,因此画不出它的运动轨迹。我们不能预言它在某一时刻究竟出现在核外空间的哪个地方,只能知道它在某处出现的机会有多少。为此,就以单位体积内电子出现几率,即几率密度大小,用小黑点的疏密来表示。小黑点密处表示电子出现的几率密度大,小黑点疏处几率密度小,看上去好像一片带负电的云状物笼罩在原子核周围,因此叫电子云。用一个波函数Ψ(x,y,z)表征电子的运动状态,并且用它的模的平方|Ψ|^2的值表示单位体积内电子在核外空间某处出现的几率,即几率密度,所以电子云实际上就是几率密度|Ψ|^2在空间的分布。研究电子云的空间分布主要包括它的径向几率分布和角度几率分布两个方面。径向分布探求电子出现的几率大小和离核远近的关系,被看作在半径为r,厚度为dr的薄球壳内电子出现的几率。角度分布探究电子出现的几率和角度的关系。 2.2 用matlab软件编程实现电子云模型

原子结构—电子云与原子轨道教学设计

《电子云与原子轨道》教学设计

课堂练习复习提问电子在那里出现的概率小,点密的地方表示电子在那里出现 的概率大。 【问题2】S电子云的原子轨道都是球形的,电子只能出 现在球体内吗? 【讲解点拨】绘制电子云轮廓图常把电子出现的概率约 为90%的空间圈出来,而电子也出现在球体外,只是概率小 于90%。 【讲解】认识原子轨道能级的电子云轮廓图 演示文稿展示S能级、P能级、d能级的电子云轮廓图。 【提出概念】轨道:量子力学把电子在原子核外的一个 空间运动状态称为一个原子轨道。 PPT:不同能层的能级、原子轨道及电子云轮廓图。 教师提问(略) 1.构造原理 2.书写Cl、K、Fe元素原子的核外电子排布式。 小组合作讨论后, 小组代表发言。 加深理解 得出结论:1.所有 原子的任一能层 的S电子云轮廓都 是一个球形,只是 球的半径大小不 同。2.其他空间运 动状态的电子云 都不是球形的。P 电子云是哑铃 状…… 学生回答问题 学生回忆 Cl:1s22s22p63s23p5 K: 1s22s22p63s23p64s1 F e:1s22s22p63s23p63d64s2

教师讲解课堂练习自主构建 课堂小结 二、泡利原理和洪特规则 【讲解】上节课我们学习了电子排布式的画法,下面需 要大家学会电子排布图的画法。电子排布图中每个方框代表 一个原子轨道,每个箭头代表一个电子。 【板书】C、N的基态原子的电子排布式(略) 1.写出24号、29号元素的电子排布式、电子排布图。 2.阅读元素周期表,比较有什么不同,为什么?从元素周 期表中查出铜、银、金的外围电子层排布。它们是否符合构 造原理? 教师引导学生小组讨论,形成补充规则。 相对稳定的状态是: 全充满:(P6,d10,f14) 全空:(P0,d0,f0) 半充满:(P3,d5,f7) 【引导】原子结构示意图、电子排布式、电子排布图不 同化学用语所能反映的粒子结构情况和区别。 结论: 1.原子结构示意图能直观反映粒子核内的质子数和核外 电子层数及各能层上的电子数。 2.电子排布能直观反映粒子各能层、各能级和各轨道的能 量的高低及个轨道上的电子分布情况及电子的自旋状态。 【归纳总结】PPT 1.核外电子排布规则: (1)能量最低原理 (2)泡利原理 (3)洪特规则 2.核外电子排布表示方法: (1)原子结构示意图 (2)电子排布式 (3)电子排布图 听、看、识忆、理 解 练习 1.写O、F、 Al、Si、P原子的电 子排布图。 对比元素周期表, 产生疑问。小组讨 论。 练习2.书写C、N Ca、Cl原子结构示 意图,电子排布 式、电子排布图。 深入理解 归纳、总结、识记

原子的基态与激发态、电子云与原子轨道

第2课时 原子的基态与激发态、电子云与原子轨道 [目标定位] 1.知道原子的基态、激发态与光谱之间的关系。2.了解核外电子运动、电子云轮廓图和核外电子运动的状态。 一、能量最低原理和原子的基态与激发态 1.原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 (1)处于最低能量的原子叫做基态原子。 (2)当基态原子的电子吸收能量后,电子会跃迁到较高能级,变成激发态原子。 (3)基态、激发态相互间转化的能量变化 基态原子 吸收能量释放能量,主要形式为光 激发态原子 2.不同元素的原子发生跃迁时会吸收或释放不同的光,若用光谱仪摄取各种元素的电子的吸收光谱或发射光谱,则可确立某种元素的原子,这些光谱总称原子光谱。 (1)玻尔原子结构模型证明氢原子光谱为线状光谱。 (2)氢原子光谱为线状光谱,多电子原子光谱比较复杂。 3.可见光,如灯光、霓虹灯光、激光、焰火……都与原子核外电子发生跃迁释放能量有关。 (1)基态原子 电子按照构造原理排布(即电子优先排布在能量最低的能级里,然后依次排布在能量逐渐升高的能级里),会使整个原子的能量处于最低状态,此时为基态原子。 (2)光谱分析 不同元素的原子光谱都是特定的,在现代化学中,常利用原子光谱上的特征谱线来鉴定元素,称为光谱分析。 1.下列说法正确的是( ) A .自然界中的所有原子都处于基态 B .同一原子处于激发态时的能量一定高于基态时的能量

C.无论原子种类是否相同,基态原子的能量总是低于激发态原子的能量 D.激发态原子的能量较高,极易失去电子,表现出较强的还原性 答案 B 解析处于最低能量的原子叫做基态原子。电子由较低能级向较高能级跃迁,叫激发。激发态原子的能量只是比原来基态原子的能量高。如果电子仅在内层激发,电子未获得足够的能量,不会失去。 2.对充有氖气的霓虹灯管通电,灯管发出红色光。产生这一现象的主要原因是() A.电子由激发态向基态跃迁时以光的形式释放能量 B.电子由基态向激发态跃迁时吸收除红光以外的光线 C.氖原子获得电子后转变成发出红光的物质 D.在电流的作用下,氖原子与构成灯管的物质发生反应 答案 A 解析解答该题的关键是明确基态原子与激发态原子的相互转化及其转化过程中的能量变化及现象。在电流作用下,基态氖原子的电子吸收能量跃迁到较高能级,变为激发态原子,这一过程要吸收能量,不会发出红色光;而电子从较高能量的激发态跃迁到较低能量的激发态或基态时,将释放能量,从而产生红光,故A项正确。 理解感悟光是电子释放能量的重要形式之一,日常生活中的许多可见光,如灯光、霓虹灯光、激光、焰火等都与原子核外电子发生跃迁释放能量有关。 易错提醒电子云图与电子云轮廓图不是同一个概念,电子云轮廓图实际上是电子云图的大部分区域;量子力学把电子在原子核外的一个空间运动状态称为一个原子轨道,电子云轮廓图就是我们通常所说的原子轨道图。 二、电子云与原子轨道 1.原子核外电子的运动特点。 (1)电子的质量很小(9.1095×10-31kg),带负电荷。 (2)相对于原子和电子的体积而言,电子运动的空间很大。 (3)电子运动的速度很快,接近光速(3.0×108m·s-1)。 2.电子在核外空间做高速运动,不能确定具有一定运动状态的核外电子在某个时刻处于原子核外空间何处,只能确定它在原子核外各处出现的概率,得到的概率分布图看起来像一片云雾,因而被形象地称作电子云。

原子核外电子的排布应遵循三大规律

《原子核外电子排布应遵循的三大规律》 (一)泡利不相容原理: 1.在同一个原子里,没有运动状态四个方面完全相同的电子存在,这个结论叫泡利不相容原理。 泡利:奥地利物理学家,1945年获诺贝尔物理学奖。 2.根据这个原理,如果有两个电子处于一个轨道(即电子层电子亚层电子云的伸展方向都相同的轨道),那么这两个电子的自旋方向就一定相反。 3.各个电子层可能有的最多轨道数为,每个轨道只能容纳自旋相反的两个电子,各电子层可容纳的电子总数为2个。 (二)能量最低原理: 1.在核外电子的排布中,通常状况下,电子总是尽先占有能量最低的原子轨道,只有当这些原子轨道占满后,电子才依次进入能量较高的原子轨道,这个规律叫能量最低原理。 2.能级:就是把原子中不同电子层和亚层按能量高低排布成顺序,象台阶一样叫做能级。 (1)同一电子层中各亚层的能级不相同,它们是按s,p,d,f的次序增高。

不同亚层:ns< np< nd< nf (2)在同一个原子中,不同电子层的能级不同。离核越近,n越小的电子层能级越低。 同中亚层:1s< 2s< 3s;1p< 2p< 3p; (3)能级交错现象:多电子原子的各个电子,除去原子核对它们有吸引力外,同时各个电子之间还存在着排斥力,因而使多电子原子的电子所处的能级产生了交错现象。 例如:E3d >E4S , E4d >E5S,n≥3时有能级交错现象。 3.电子填入原子轨道顺序:1s 2s2p 3s3p 4s3d4p 5s4d5p 6s4f5d6p 7s5f6d7p,能级由低渐高。 (三)洪特规则: 1.在同一亚层中的各个轨道上,电子的排布尽可能单独分占不同的轨道,而且自旋方向相同,这样排布整个原子能量最低。 2.轨道表示式和电子排布式: 轨道表示式:一个方框表示一个轨道 电子排布式:亚层符号右上角的数字表示该亚层轨道中电子的数目

原子核外电子排布规律

原子核外电子排布规律 1、Pauli不相容原理:每个轨道最多只能容纳两个电子,且自旋相反配对 2、能量最低原理:电子尽可能占据能量最低的轨道 3、Hund规则:简并轨道(能级相同的轨道)只有被电子逐一自旋平行地占据后,才能容纳第二个电子 另外:等价轨道在全充满、半充满或全空的状态是比较稳定的,亦即下列电子结构是比较稳定的: 全充满---p6或d10 或f14 半充满----p3或d5或f7 全空-----p0 或d0或f0 还有少数元素(如某些原子序数较大的过渡元素和镧系、锕系中的某些元素)的电子排布更为复杂,既不符合鲍林能级图的排布顺序,也不符合全充满、半充满及全空的规律。而这些元素的核外电子排布是由光谱实验结构得出的,我们应该尊重光谱实验事实。 对于核外电子排布规律,只要掌握一般规律,注意少数例外即可。 处于稳定状态的原子,核外电子将尽可能地按能量最低原理排布,另外,由于电子不可能都挤在一起,它们还要遵守保里不相容原理和洪特规则,一般而言,在这三条规则的指导下,可以推导出元素原子的核外电子排布情况,在中学阶段要求的前36号元素里,没有例外的情况发生。 1.最低能量原理 电子在原子核外排布时,要尽可能使电子的能量最低。怎样才能使电子的能量最低呢?比方说,我们站在地面上,不会觉得有什么危险;如果我们站在20层楼的顶上,再往下看时我们心理感到害怕。这是因为物体在越高处具有的势能越高,物体总有从高处往低处的一种趋势,就像自由落体一样,我们从来没有见过物体会自动从地面上升到空中,物体要从地面到空中,必须要有外加力的作用。电子本身就是一种物质,也具有同样的性质,即它在一般情况下总想处于一种较为安全(或稳定)的一种状态(基态),也就是能量最低时的状态。当有外加作用时,电子也是可以吸收能量到能量较高的状态(激发态),但是它总有时时刻刻想回到基态的趋势。一般来说,离核较近的电子具有较低的能量,随着电子层数的增加,电子的能量越来越大;同一层中,各亚层的能量是按s、p、d、f的次序增高的。这两种作用的总结果可以得出电子在原子核外排布时遵守下列次序:1s、2s、2p、3s、3p、4s、3d、4p…… 2.保里不相容原理 我们已经知道,一个电子的运动状态要从4个方面来进行描述,即它所处的电子层、电子亚层、电子云的伸展方向以及电子的自旋方向。在同一个原子中没有也不可能有运动状态完全相同的两个电子存在,这就是保里不相容原理所告诉大家的。根据这个规则,如果两个电子处于同一轨道,那么,这两个电子的自旋方向必定相反。也就是说,每一个轨道中只能容纳两个自旋方向相反的电子。这一点好像我们坐电梯,每个人相当于一个电子,每一个电梯相当于一个轨道,假设电梯足够小,每一个电梯最多只能同时供两个人乘坐,而且乘坐时必须一个人头朝上,另一个人倒立着(为了充分利用空间)。根据保里不相容原理,我们得知:s亚层只有1个轨道,可以容纳两个自旋相反的电子;p亚层有3个轨道,总共可以容纳6个电子;f亚层有5个轨道,总共可以容纳10个电子。我们还得知:第一电子层(K 层)中只有1s亚层,最多容纳两个电子;第二电子层(L层)中包括2s和2p两个亚层,总共可以容纳8个电子;第3电子层(M层)中包括3s、3p、3d三个亚层,总共可以容纳

电子云与原子轨道教案

《电子云与原子轨道》教学设计 本节内容是人教版高二化学上册所学选修3第一章第一节《原子结构与性质》的第五课时。本节课的授课对象主要是高三上普通班的同学。 一、教学设计思路分析 1、教材分析 本节课的地位和作用:人教版高中化学选修3、第一章第一节“原子结构与性质”(P9页)第五课时,主要内容为“电子云与原子轨道”概念的建立;了解原子核外电子的运动规律,掌握泡利原理、洪特规则;以及掌握不同能层的能级、原子轨道以电子云轮廓图的的关系。 教学重点:通过s电子云、p电子云的轮廓图,加深对电子云、原子轨道含义的理解。 教学难点:学会从电子云模拟轮廓图取理解核外电子的排布特点及特殊性质。 2、学情分析 学生接受能力较强,已处于高二阶段;在该阶段学生对原子结构以及核外电子排布等已有一定的理解,为这节课的学习也奠定了一定的基础。但对核外电子的运动规律以及原子轨道非常陌生,而且不易将泡利原理和洪特规则熟练地运用于原子轨道的理解中。 学生的好奇心强,已具备了探究的意识;掌握了探究必备的相关知识,如知道原子的组成,物质的远动是有规律的,核外电子的运动规律要遵循能量最低原理、洪特规则和泡利原理。 3、教学思路 以学生活动为主体,探究学习方法为基本方法,理论学习与实践相结合,用多媒体展示,通过模型建立,组织学生思考与讨论,从而获得认知。 二、教学方案设计 1、教学目标 知识与技能: (1)使学生领会电子云及原子轨道的基本含义。 (2)使学生理解s电子云、p电子云的轮廓图,加深对电子云、原子轨道含义的理解进一步掌握核外电子的排布及运动规律物质。 过程与方法:

创设学习情景,空间模型,引导学生积极参与探究过程,获取知识和亲身体验。培养学 生知识迁移能力,合作学习能力,同时培养学生用普遍联系的观点分析问题。 情感态度与价值观: 培养学生的唯物观,世界是物质的;物质的运动是有规律;培养学生用普遍联系的观点 分析问题。 2、教学方法: 教法:讨论法、讲授法指导教学。 学法:自主阅读法、讨论法。 3、教学准备 多媒体设备、PowerPoint课件、 4、教学过程 教学内容教师活动学生活动设计意图 引出课题 平常我们肉眼能看到动物的奔跑、河水的流动,我 们是可以准确的测出它们在某一时刻所处的位置及速 度; 那还有一些是我们肉眼看不见的如血液、水的内部 又是怎样运动的呢? 【问】微观粒子原子核外电子是如何运动的呢?又 该怎样描述它们的运动特征呢? 【图片】宏观物体的运动和微观物体的运动。 现在,我们就来讨论关于原子核外电子的运动问题。 看图片,观 察图片,引发 思考。 了解物质 的运动是无 处不在的及 微观物体的 运动特征。 创设学习情 境,激发学习 动机,导向于 研究原子核外 电子排布。

第二章 自由离子和原子电子结构

第二章 自由离子和原子的电子结构 1.单电子体系定态薛定谔方程及其解 氢原子及类氢离子是单核单电子体系,假定核处于质心不动,在 Born-Oppenheimer 近似下电子运动的薛定谔方程为 (xyz)E )(H φφ=∧ xyz ……(2-1) 哈密顿算符r Ze m V 2 2 2 2T H - ?- =+=∧∧ ∧ 2 ? 是Laplacian 算符,2 22 22 22 z y x ?? + ?? + ?? ? = ,氢原子序数1=Z , 变换坐标解方程(2-1),得本征值:)(6 .1322 22 4 2 eV n Z n me Z E -=- = , 本征函数:)()()(θ?θ?φlm nl nlm Y r R r = ……(2-2), 径向函数)(r R nl 只与r 有关,球谐函数:)()()(?θθ?m lm lm Y ΦΘ=, m l n 、、为主量子数、角量子数和磁量子数; ∞ 、、、= 21n , 1210-n l 、、、、= , l m ±±±=、、、、 210。 单电子原子波函数)()()(θ?θ?φlm nl nlm Y r R r =,即原子轨道,若再考 虑电子自旋)(σηs m (其中s m 为)(或σβσα)(): )()()(σηθ?φθ?σψr r nlm m nlm s l =,称为自旋-轨道。 ∧ ∧ z s s 、 只与自旋坐标σ有关,∧ ∧ z l l 、2 只与空间坐标有关;故 ∧ ∧∧ ∧ ∧ z z s s l l H 、、、、2 2 彼此对易,有共同本证函数 )(θ?σψ r s l m nlm ,例如 )2 1 123θ?σψ r (、 、-、,2 11 322 11 32-=-∧ E H ,本征值:9 6 .132 Z E -=, 2 11 32)12(22 11 322 2 -+=-∧ l ,本征值:26 ,

多电子原子的结构

第8节 多电子原子的结构 第一部分 上节课复习内容: 1、主量子数n :22 22048n Z h e E n ?-=εμ .....),,n ()eV (n Z .E n 3215951322 =?-= 2、 角量子数l )n .....,,,l (h )l (l M 1321021-=? ? ? ??+=π e l l βμ)1(+= 3、磁量子数 )l ,......,,m (,h m M z ±±±==2102π )l ,......,,m (,m e z ±±±=-=210βμ 4、自旋运动 )s (h )s (s M s 2 1 21= ? ?? ??+=π )m (,h m M s sz 2 12±==π e e s )s (s g βμ1+= e s e sz m g βμ-= 5、 总量子数 π 21h ) j (j M j += s l ,......s l ,s l j --++=1 π 2h m M j jx = j ,......,,,m j ±±±±=2 5 2321 6、径向分布 第二部分 本节课授课内容:

1、多电子原子的Schrodinger 方程及其近似解 2、原子轨道能和电子结合能 3、电子互斥能 4、原子的电离能和电子亲和能 引言:由单电子体系转移到多电子体系 第四节 多电子原子的Schrodinger 方程及其近似解 一、原子单位 下面引入原子单位(自然单位)来描述方程 自然单位中所有的物理量都用符号au 或是a.u.来表示,但对于不同的物理量,它的物理意义与数值大小是不一样的,如 长度:m .a au 110102917751-?== 质量:kg .m au e 31101191-?== 电荷:C .e au 1910611-?-== 能量:eV .a e au 227410 02== πε,能量的自然单位也经常写作hartree (2个电子相距Bohr 半径时的势能) 从中也可得出:04πε=1au 角动量:s J .h au ??==-34100546121π 例:对于氢原子及类氢离子体系,它的1s 和2s 波函数为: ??? ? ??-??? ? ??=r a z s e a z 0 2 1303 1πψ ???? ? ? -???? ? ?-??? ? ????? ??=r a 2z s e r a z a z 002 1303 22241πψ 所以,上二式根据自然单位可以写成: ()zr s e z -??? ? ??=2 13 1πψ

原子核外电子排布规则

第3课时 原子核外电子排布规则 [目标定位] 知道原子核外电子排布的“两原理一规则”,会正确书写原子的电子排布式和电子排布图。 一、基态原子核外电子的排布原则 1.能量最低原理 原子核外的电子应优先排布在能量最低的能级里,然后由里到外,依次排布在能量逐渐升高的能级里。能级的能量高低顺序如构造原理所示(对于1~36号元素来说,应重点掌握和记忆“1s →2s →2p →3s →3p →4s →3d →4p ”这一顺序)。 2.泡利原理 (1)在一个原子轨道里,最多只能容纳2个电子,而且它们的自旋状态相反,这一原理被称为泡利原理。 (2)因为每个原子轨道最多只能容纳 2个电子且自旋方向相反,所以从能层、能级、原子轨道、自旋方向四个方面来说明电子的运动状态是不可能有两个完全相同的电子的。如氟原子的电 子排布可表示为1s 22s 22p 2x 2p 2y 2p 1z ,由于各原子轨道中的电子自旋方向相反,所以9个电子的 运动状态互不相同。 3.洪特规则 (1)在相同能量的原子轨道上,电子的排布将尽可能占据不同的轨道,而且自旋方向相同,这就是洪特规则。 (2)通俗地说,洪特规则可以表述为电子总是尽量自旋平行地分占不同的轨道。如碳原子的电子排布图是,而不是。 (3)洪特规则的特例 在等价轨道(同一能级)上的电子排布处于全充满、半充满和全空状态时,具有较低的能量和较大的稳定性。 相对稳定的状态????? 全充满:p 6 、d 10 、f 14 全空:p 0、d 0、f 0半充满:p 3、d 5、f 7 如24Cr 的电子排布式为1s 22s 22p 63s 23p 63d 54s 1,为半充满状态,易错写为1s 22s 22p 63s 23p 63d 44s 2。

高中物理原子结构电子教师用书教科版

1.电子 学 习目标知识脉络 1.知道阴极射线的概念, 了解汤姆孙对阴极射线的 研究方法及电子发现的意 义.(重点) 2.知道比荷的概念,知道 电子是原子的组成部 分.(重点) 3.知道电子的电荷量的测 量方法——密立根油滴实 验,知道电子的电荷 量.(重点) 带负电的微粒 [先填空] 1.阴极射线 由阴极发出撞击到玻璃壁上产生荧光的射线,称为阴极射线. 2.汤姆孙实验结论 实验表明:阴极射线在磁场和电场中产生偏转,说明阴极射线是带负电的粒子流.[再判断] 1.阴极射线是由真空玻璃管中的感应圈发出的.(×) 2.阴极射线撞击玻璃管壁会发出荧光.(√) 3.阴极射线在真空中沿直线传播.(√) [后思考] 产生阴极射线的玻璃管为什么是真空的? 【提示】在高度真空的放电管中,阴极射线中的粒子主要来自阴极,对于真空度不高的放电管,粒子还有可能来自管中的气体,为了使射线主要来自阴极,一定要把玻璃管抽成

真空. 1.阴极射线带电性质的判断方法 (1)方法一:在阴极射线所经区域加磁场,根据射线的偏转情况确定其带电的性质. (2)方法二:在阴极射线所经区域加一电场,根据射线的偏转情况确定其带电的性质. 2.结论 根据阴极射线在磁场中和电场中的偏转情况,判断出阴极射线是带负电的粒子流. 1.如图2-1-1所示,在阴极射线管正下方平行放置一根通有足够强直流电流的长直导线,且导线中电流方向水平向右,则阴极射线将会向________偏转. 图2-1-1 【解析】阴极射线方向水平向右,说明其等效电流的方向水平向左,与导线中的电流方向相反,由左手定则,两者相互排斥,阴极射线向上偏转. 【答案】上 2.如图2-1-2是电子射线管示意图.接通电源后,电子射线由阴极沿x轴方向射出,在荧光屏上会看到一条亮线.要使荧光屏上的亮线向下(z轴负方向)偏转,可采用加磁场或电场的方法. 【导学号:11010016】 图2-1-2 若加一磁场,磁场方向沿________方向,若加一电场,电场方向沿________方向.【解析】若加磁场,由左手定则可判定其方向应沿y轴正方向;若加电场,根据受力情况可知其方向应沿z轴正方向. 【答案】y轴正z轴正 注意阴极射线电子从电源的负极射出,用左手定则判断其受力方向时四指的指向和射线的运动方向相反.

单电子原子

5.3 角動量、磁矩、能階的精細構造 5.3.1 軌角動量算機及其本徵值 □ 軌角動量算機(orbital angular momentum operator ) 軌角動量p r L ?=. 在量子力學裡??-=?=→r i p r L L ???.有三個分量: ???? ? ???-??-=y z z y i L x ?, etc.. 不難證:φ ??-= i L z ?, =++≡2222????z y x L L L L ??? ? ?????? ????+??? ??????-2222sin 1sin sin 1φθθθθθ , 而[] .,??????,?etc L i L L L L L L z x y y x y x =-≡ 因此,x L ?, y L ?, z L ?三者不能對易,意指角 動量的三個分量不能同時測準(除非是遇到角動量為零的特殊情況)。0?,?2=??????L L z , 因此,角動量的大小與角動量的一個分量可同時測準。 比對上節知:()l l lm lm Y l l Y L 221? +=,l l lm l lm z Y m Y L =?。因此2?L 與z L ?的本徵值各為()21 +l l 與 l m 。給定一l ,可有12+l 個l m 。 □ 以向量模型(vector model )顯示量子力學裡角動量的性質──角動量的大小 與取向都是分立的,且沿z 軸「旋轉」: ──z 軸方向乃由測量決定(例如外加磁場或電場) □ 又,[] 0?,?=z L H , 0?,?2=?? ????L H . 所以,z L L H ?,?,?2 三者有共同的本徵函l nlm ψ: l l nlm n nlm E H ψψ=?, ()l l nlm nlm l l L ψψ221? +=, l l nlm l nlm z m L ψψ =? .

原子核外电子排布规则

第3课时 原子核外电子排布规则 [学习目标定位] 知道原子核外电子排布的“两原理一规则”,会正确书写原子的电子排布式和电子排布图。 一 基态原子核外电子的排布原则 1.能量最低原理 原子核外的电子应优先排布在能量最低的能级里,然后由里到外,依次排布在能量逐渐升高的能级里。能级的能量高低顺序如构造原理所示(对于1~36号元素来说,应重点掌握和记忆“1s →2s →2p →3s →3p →4s →3d →4p ”这一顺序)。 2.泡利原理 (1)在一个原子轨道里,最多只能容纳2个电子,而且它们的自旋状态相反,这一原理被称为泡利原理。 (2)因为每个原子轨道最多只能容纳2个电子且自旋方向相反,所以从能层、能级、原子轨道、自旋方向四个方面来说明电子的运动状态是不可能有两个完全相同的电子的。如氟原子 的电子排布可表示为1s 22s 22p 2x 2p 2y 2p 1z ,由于各原子轨道中的电子自旋方向相反,所以9个电 子的运动状态互不相同。 3.洪特规则 (1)在相同能量的原子轨道上,电子的排布将尽可能占据不同的轨道,而且自旋方向相同,这就是洪特规则。 (2)通俗地说,洪特规则可以表述为电子总是尽量自旋平行地分占不同的轨道。如碳原子的 电子排布图是 ,而不是。 (3)洪特规则的特例 在等价轨道(同一能级)上的电子排布处于全充满、半充满和全空状态时,具有较低的能量和较大的稳定性。 相对稳定的状态????? 全充满:p 6 、d 10 、f 14 全空:p 0、d 0、f 0半充满:p 3、d 5、f 7 如24Cr 的电子排布式为1s 22s 22p 63s 23p 63d 54s 1,为半充满状态,易错写为1s 22s 22p 63s 23p 63d 44s 2。 [归纳总结] 原子核外电子排布“两原理一规则” (1)能量最低原理:电子在原子轨道上的分布要尽可能地使原子的能量为最低。 (2)泡利原理:每个原子轨道最多容纳两个电子且自旋方向必须相反。

高中化学竞赛题--原子电子结构

中学化学竞赛试题资源库——原子电子结构 A组 1.氢原子的电子云图中的小黑点表示的意义是 A 一个小黑点表示一个电子 B 黑点的多少表示电子个数的多少 C 表示电子运动的轨迹 D 电子在核外空间出现机会的多少 2.在化学反应中,会发生变化的是 A 质子数 B 中子数 C 电子数 D 质量数 3.某元素原子L层电子数是K层电子数的2倍,那么此元素是 A F B C C O D N 4.某元素原子L层电子数是K层电子数的2倍,那么此元素是 A F B C C O D N 5.在第n电子层中,当它作为原子的最外层时,容纳电子数最多与n-1层相同;当它作为原子的次外层时,其电子数比n+1层最多容纳电子数多10个,则此电子层是 A K层 B L层 C M层 D N层 6.按照核外电子排布规律:各电子层最多容纳电子数为2n2(n为电子层数);最外层电子数不超过8个;次外层电子数不超过18个,预测核电荷数为118的元素的原子核外电子层排布是 A 2,8,18,32,32,18,8 B 2,8,18,32,50,8 C 2,8,18,32,18,8 D 2,8,18,32,50,18,8 7.在下列分子中,电子总数最少的是 A H2S B O2 C CO D NO 8.下列离子中,所带电荷数与该离子的核外电子层数相等的是 A Al3+ B Mg2+ C Be2+ D H+ 9.下列离子中,电子数大于质子数且质子数大于中子数的是 A D3O+ B Li+ C ODˉ D OHˉ 10.下列各组微粒中,核外电子总数相等的是 A K+和Na+ B CO2和NO2 C CO和CO2 D N2和CO 11.下列各组粒子中,含有相同的电子总数的是 A S2-与HF B H2O与F- C H2O与NH4+ D Na+与K+ 12.下列各组微粒中,核外电子总数相等的是 A K+和Na+ B CO2和NO2 C CO和CO2 D N2和CO 13.下列四组物质中,两种分子不具有相同核外电子总数的是 A H2O2和HCl B CO和NO C H2O和CH4 D H2S和F2 14.下列各组粒子中,核外电子排布相同的是 A Al和Al3+ B Na和F- C Na+和Ne D S2-和Cl 15.已知硼化物B x H y z-与B10C2H12的电子总数相同,则B x H y z-的正确表达式为 A B9H152- B B10H142- C B11H132- D B12H122- 16.A元素的离子A n-,其核外共有x个电子,该原子的质量数为y,则原子核内含有的中子数为

相关文档
最新文档