辽工大仿真技术综合设计_Matlab

辽工大仿真技术综合设计_Matlab
辽工大仿真技术综合设计_Matlab

课程设计

报告

题目:Matlab报告

班级:

姓名:

学号:

指导教师:

成绩:

电子与信息工程学院

信息与通信工程系

1求最大值和最小值

1.1题目

输入10个数,求其中最大数和最小数。要求分别用循环结构和调用MATLAB 的max函数、min函数来实现。

1.2 用到的函数

input:请求用户输入

max:取数组中的最大值

min:取数组中最小值

1.2流程图

图1-1求最大值最小值流程图

1.4 运行截图

图1-2调用max和min函数运行截图

图1-2运用循环方法运行截图

2求Fibonacci数列

2.1 题目

求Fibonacci数列。(1)大于4000的最小项.(2)5000之内的项数

2.2什么是Fibonacci数列

即斐波那契数,亦称之为斐波那契数列(意大利语:Successione di Fibonacci),又称黄金分割数列、费波那西数列、费波拿契数、费氏数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,F n=F n-1+F n-2(n>=2,n∈N*),用文字来说,就是斐波那契数列列由0 和 1 开始,之后的斐波那契数列系数就由之前的两数相加。(百度百科)

2.2 用到的函数

length取得一个对象的长度

2.3 流程图

图2-1 2 求Fibonacci数列流程图

2.4 运行截图

图2-2 Fibonacci运行截图

3用求逆解法和直接解法解方程组

3.1 题目

解方程组Ax=b,分别用求逆解法与直接解法求其解3.2 用到的函数

inv 矩阵求逆

3.3 流程图

图3-1用求逆解法和直接解法解方程组流程图3.4 运行截图

图3-2用求逆解法和直接解法解方程组运行截图

4求N阶方阵A的行列式

4.1 题目

编一个m程序,求N阶方阵A的行列式的值。

4.2 用到的函数

size(A):获取矩阵的行数和列数,当只有一个输出参数时,返回一个行向量,该行向量的第一个元素是数组的行数,第二个元素是数组的列数(多维,而length 是取最大的那一维)。

4.3流程图

图4-1求N阶方阵A的行列式流程图

4.4运行截图

图4-2求N阶方阵A的行列式运行截图

MATLAB系统仿真设计课程介绍

MATLAB系统仿真设计课程介绍Matlab是一种广泛应用于工程运算及数值分析领域的高级仿真平台。它功能强大、简单易学、编程效率高,深受宽敞科技工作者的喜爱。专门是Matlab还具有针对不同学科领域的工具箱,不需具备专门强的编程能力,就能够专门方便地进行各种系统的分析、处理和设计,它对数学建模、信号处理、系统分析等领域的学习,有着重要实践价值。 本课程是电子信息科学与技术、通信工程专业本科生的学科基础选修课。该课程的学习要求学生具有一定的MATLAB编程基础、数学思维能力、和专业基础知识。课程通过分析若干实际咨询题,建立符合实际情形的数学模型,并利用MA TLAB的强大功能,实现对实际系统的直观仿真,使学生在熟练把握MATLAB常用函数和专门的编程思想的同时,提升分析和解决实际咨询题的实践能力,以便为学生以后处理工程咨询题,从事科研活动和连续深造打下扎实的基础。 “科技创新实践”课程介绍 科技创新实践课程是一门以制造学为基础,以发明、设计、制作创新实体作品(包括专利申请文件)为目标的实践性专业选修课。旨在培养和提升学生运用制造学和本专业理论知识,进行创新实践的能力,为学生参加校内外的各类科技创新实践活动提供必要的预备。 本课程是电类专业本科学生的一门专业实践性课程,要紧针对我校电子信息类专业各年级的学有余力、乐于创新的本科生。通过本课程的学习和实践,能够培养学生良好的创新精神和创新能力,加深并扩大所学的理论知识范畴,强化学生运用差不多理论分析和处理实际咨询题的能力,同时有助于学生养成实事求是,一丝不苟,严谨的科学态度和独立工作能力。 “自动测试系统及接口技术课程设计”介绍 本课程要求学生自己设计并制作一个简单的测试仪器或系统,学生要按照教师指定或自己选择的题目,深入领会设计要求,自己动手查找资料,确定设计方案,画出电路图,选择并购买所用器件和材料,对硬件进行组

协同仿真的一些资料

现代中国制造业的发展主旋律是“以信息化带动工业化,以工业化促进信息化”。产品研制过程的信息化瞄准“数字”和“协同”两个目标。以日新月异的网络技术和计算机技术为基础,采用产品数字化虚拟研发技术,重组企业产品研发流程,大力推行并行工程,组建产品研发和制造的网络化虚拟环境。 现代制造业信息化主旋律将仿真带入了协同时代。企业间产品协同开发的需求、仿真工作融入研发流程的呼吁,保存企业智力资产的渴求,都使我们无法不加快协同仿真技术发展的步伐。 CAE 仿真技术通过开发吻合研发流程的协同仿真平台,建立流畅的仿真通道,帮助企业打通从设计、仿真、试验、制造的全数字化生产线。从而,企业可以非常方便地进行数字化工程的统筹规划,并在CAE 上的所有投入物有所值,物尽其用。同时,在开发过程中,使企业的智力资产得到完美的融台。 传统的产品研制,都是以试验的方式对设计方法和产品进行验证,以确保产品的性能。往往试验需要人为控制,对于环境、仪器、人员等条件要求非常高,需要资金、人员、设备等大量投入,有些大型试验风险很难以预测,产品的研制周期长,研制成本高。CAE仿真技术的产生之后,可以通过CAE技术完成部分物理试验无法完成的产品性能分析工作。但是仿真只是作为产品检验的手段,没有真正成为产品设计的一个必要阶段,只能在产品设计的后期,甚至产品试验过程或使用阶段发现问题之后才进行分析。仿真不能对产品设计起到指导性作用,没有最大限度发挥自身价值。 目前,随着仿真技术的发展,仿真已经融入产品的设计过程,成为产品设计的一部分。通过仿真不仅能在产品设计后期进行设计性能校核,同时在产品试验前期通过虚拟仿真模拟实验结果,指导产品物理试验,并在产品试验后期验证物

【完整版】仿真软件在机械系统设计中的应用

机械系统中仿真软件的使用现状分析 1.计算机仿真概述 所谓计算机仿真就是建立系统模型的仿真模型进而在电子计算机上对该仿真模型进行模拟实验(仿真实验)研究的过程。计算机仿真方法即以计算机仿真为手段,通过仿真模型模拟实际系统的运动来认识其规律的一种研究方法。计算机仿真作为分析和研究系统运行行为、揭示系统动态过程和运动规律的一种重要手段和方法, 随着系统科学研究的深入、计算机技术的发展,而成为一门新兴的学科。近年来, 随着信息处理技术的突飞猛进, 使仿真技术得到迅速发展。计算机仿真主要有以下三种仿真形式: (1)物理仿真:按照实际系统的物理性质构造系统的物理模型,并在物理模型上进行试验研究。直观形象,逼真度高,但代价高,周期长。在没有计算机以前,仿真都是利用实物或者它的模型来进行研究的。 (2)半物理仿真:即物理数学仿真,一部分以数学模型描述,并把它仿真计算模型,一部分以实物方式引入仿真回路。针对存在建立数学模型困难的子系统的情况,必须使用此类仿真,如航空航天、武器系统等研究领域。 (3)数字仿真(计算机仿真):首先建立系统的数学模型,并将数学模型转化为仿真计算模型,通过仿真模型的运行达到对系统运行的目的。现代计算机仿真由仿真系统的软件/硬件环境,动画与图形显示、输入/输出等设备组成。作为新兴的技术方法,与传统的物理实验相比较,计算机仿真有着很多无可替代的优点: 1)模拟时间的可伸缩性由于计算机仿真受人的控制,整个过程可控性比较强,仿真的时间可以进行人为的设定,因此时间上有着很强的伸缩性,也可以节约实验的时间,提高实验的效率。 2)模拟运行的可控性由于计算机仿真以计算机为载体,整个实验过程由计算机指令控制进程,所以可以进行认为的设定和修改,这个实验模拟过程有较强的可控性。 3)模拟试验的优化性由于计算机仿真技术可以重复进行无限次模拟实验,因此可以得出不同的结果,各种结果相互比较,可以找到一个更理想更优的问题的解决方案,可以作为优化实验,选择相应的方案。

控制系统仿真

5.2设222(x,y,z)4y z f x x y z =+++,求函数f 在(0.5,0.5,0.5)附近的最小值。 解: >> fun=inline('x(1)+x(2)^2/(4*x(1))+x(3)^2/x(2)+2/x(3)','x'); >> x0=[0.5,0.5,0.5]; >> [x fval]=fminsearch(fun,x0) x = 0.5000 1.0000 1.0000 fval = 4.0000 → 函数f 在(0.5,0.5,0.5)附近的最小值为:4.0000 6.8求方程组1221x y z x y z x y z ++=??-+=??--=? 的解。 解: >> A=[1 1 1;1 -1 1;2 -1 -1]; >> b=[1;2;1]; >> B=[A,b]; >> rank(A),rank(B) ans = 3 ans = 3 >> X=A\b X = 0.6667 -0.5000 0.8333 → 方程组的解为:0.6667x =,=-0.5000y ,=0.8333z 6.11求函数3()sin t f t e t -=的拉普拉斯变换。 解: >> syms t; >> ft=exp(-3*t)*sin(t); >> Fs=laplace(ft) Fs = 1/((s + 3)^2 + 1) → 函数3()sin t f t e t -=的拉普拉斯变换为:21(s 3)1 ++

7.11单位负反馈系统的开环传递函数为 1000(s)(0.1s 1)(0.001s 1) G s =++ 应用Simulink 仿真系统构建其阶跃响应曲线。 解: 模型仿真图 1 单位阶跃响应曲线图 1 7.7用S 函数创建二阶系统0.20.40.2(t)y y y u =+=,0y y ==,()u t 为单位阶跃信号,使用Simulink 创建和仿真系统的模型。 解: function [sys,x0,str,ts] = sfun1(t,x,u,flag) switch flag, case 0 [sys,x0,str,ts]=mdlInitializeSizes; case 3 sys=mdlOutputs(t,x,u); case {1,2,4,9} sys=[]; end function [sys,x0,str,ts]=mdlInitializeSizes() sizes=simsizes;

车辆综合的半实物仿真平台解决方案设计设计

车辆综合半实物仿真平台解决方案 车辆综合电子电气系统涉及到电子、总线、控制、人机交互等多个领域,功能复杂,研制难度大,研制单位往往缺乏系统级的验证平台。本方案依托国内外先进的开发工具(Tesis、Altia)以及自主研发的软硬件系统(HiGale),采用基于模型的设计理念,构建了车辆综合半实物仿真实验室,能够高效的解决用户复杂的电子系统仿真和测试的问题。 平台技术挑战 为车辆综合电子系统提供半实物仿真验证环境,以适应不同型号不同研制周期的综合电子系统设计验证、功能验证及性能测试的需要。平台建设的主要挑战如下: ?完整实现虚拟车辆动力传动系统、控制系统、车辆电器及防护系统四大系统的实时模型?通过真实物理信号实现虚拟车辆系统与综电系统的信号交换 ?系统具备故障注入功能,实现综电系统的故障注入测试及诊断功能测试 ?实现系统的友好人机交互、自动测试以及虚拟车辆运动三维及乘员视景 ?实现车际通讯指挥控制的仿真测试 平台解决方案

车辆综合半实物仿真平台按功能可划分为仿真控制中心、虚拟车辆、信号适配及故障注入系统、人在环系统四大部分。 在以上四大系统开发建设中,包含了很多先进的工具、开发流程及恒润多年积累的核心技术,主要包括:高性能仿真机系统、定制的硬件系统、定制模型开发、先进的人机交互终端解决方案、三维视景软件、实验管理系统软件等。 ?仿真控制中心 仿真控制中心为半实物仿真平台的管理中心,负责提供人机交互界面、电源管理、系统管理及仿真过程管理,可将仿真数据生成三维实时动画软件,并通过显示设备给予实验人员真实被控系统运动情况显示。

?虚拟车辆 虚拟车辆为仿真平台的核心,提供基于实时仿真计算机系统的动力系统、武器系统、电器系统、防护系统、环境系统的实时模型,并连接各种真实电器设备,包括控制开关、电控单元及各类执行设备,为电子控制系统提供了闭环测试环境、各类负载及显示环境。 ?虚拟实时仿真系统 虚拟实时仿真系统采用了国外仿真机和恒润自主研发的实时仿真机HiGale。其中,HiGale实时仿真系统基于高实时性、高可靠性的操作系统,提供了兵器行业专用的板卡,同时能够实现自动化测试的功能。 ?实时车辆仿真模型 实时车辆仿真模型是整个半实物仿真系统的核心,依靠先进的建模方法和丰富的建模经验,搭建了装甲车辆模型、伺服电机系统模型、武器系统模型以及三防系统模型。 ?信号适配及故障注入系统 信号适配及故障注入设备是半实物仿真系统与测试环境间的接口,不但提供了各种输入/输出信号的调理、负载模拟功能,同时也提供了进行常见电气故障注入的功能以及用于系

对汽车控制系统建模与仿真

对汽车控制系统建模与仿真 摘要:PID 控制是生产过程中广泛使用的一种最基本的控制方法,本文分别采用用简单的比例控制法和用PID控制来控制车速,并用MATLAB对系统进行了动态仿真,具有一定的通用性和实用性。 关键词:MATLAB 仿真;比例控制;PID 控制 1 MATLAB和PID概述 MATLAB是matrix和laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 2车辆行驶过程车速的数学模型 对行驶在斜坡上的汽车的车速进行动态研究,可以分析车辆的性能,指导车辆的设计。MATLAB软件下的SIMULILNK模块是功能强大的系统建模和动态仿真的软件,为车辆行驶过程车速控制分析提供了一种有效的手段。 汽车行驶如图7.4.1所示的斜坡上,通过受力分析可知在平行于斜面的方向上有三个力作用于汽车上:发动机的力、空气阻力和重力沿斜面的分量下滑力。

现代仿真技术的应用及其发展

东华理工大学信息工程学院 课程论文 课程:计算机仿真技术基础 题目:仿真技术的应用与发展 学生姓名: 学号: 班级:10204102 专业:计算机科学与技术 指导教师:谢小林 二零一三年六月四日

摘要 作为信息技术核心的计算机技术自其诞生之日起经历了60多年的发展,已广泛应用于国民经济和社会生活中。并与仿真技术相结合,形成了计算机仿真技术这一新的研究方法。计算机仿真作为分析和研究系统运行行为、揭示系统动态过程和运动规律的一种重要手段和方法, 随着系统科学研究的深入、控制理论、计算技术、计算机科学与技术的发展而形成的一门新兴学科。近年来, 随着信息处理技术的突飞猛进, 使仿真技术得到迅速发展。 本文系统全面地介绍了计算机仿真技术,阐述了计算机仿真技术的概念、原理、优点,简要介绍了计算机仿真技术的发展历程,文章最后重点探讨了现代仿真技术的研究热点,即计算机仿真技术在社会各个领域中的应用:面向对象仿真、定性仿真、智能仿真、分布交互仿真、可视化仿真、多媒体仿真、虚拟现实仿真等。 关键词:计算机仿真、发展、应用、模拟

目录 摘要 (2) 第一章前言 (4) 第二章计算机仿真技术概述 (4) 2.1计算机仿真技术简介 (4) 2.2计算机仿真技术原理 (5) 2.2.1模型的建立 (6) 2.2.2模型的转换 (6) 2.2.3模型的仿真实验 (6) 第三章计算机仿真技术发展 (6) 3.1发展趋势 (7) 3.2 现代仿真技术 (8) 3.3计算机仿真技术发展方向 (10) 3.3.1.网络化仿真 (10) 3.3.2.虚拟制造技术 (10) 第四章计算机仿真技术的应用 (11) 4.1.交通领域 (11) 4.2.制造领域 (11) 4.3.教育领域 (12) 结语 (13) 参考文献 (14)

基于Simulink仿真双闭环系统综合课程设计报告书

课程设计 双闭环直流调速系统设计及仿真验证 学院年级:工程学院08级 组长:陈春明学号200830460102 08自动化1班成员一:陈木生学号 200830460103 08自动化1班 指导老师: 日期: 2012-2-28 华南农业大学工程学院

摘要 转速、电流双闭环调速系统是应用最广的直流调速系统,由于其静态性能良好,动态响应快,抗干扰能力强,因而在工程设计中被广泛地采用。现在直流调速理论发展得比较成熟,但要真正设计好一个双闭环调速系统并应用于工程设计却有一定的难度。 Matlab是一高性能的技术计算语言,具有强大的科学数据可视化能力,其中Simulink具有模块组态简单、性能分析直观的优点,方便了系统的动态模型分析。应用Simulink来研究双闭环调速系统,可以清楚地观察每个时刻的响应曲线,所以可以通过调整系统的参数来得出较为满意的波形,即良好的性能指标,这给分析双闭环调速系统的动态模型带来很大的方便。 本研究采用工程设计方法,并利用Matlab协助分析双闭环调速系统,依据自动控制系统快、准、稳的设计要求,重点分析系统的起动过程。 关键词:双闭环直流调速 Simulink 自动控制

目录 1、直流电机双闭环调速系统的结构分析....................... 1.1 双闭环调速系统的组成............................... 1.2 双闭环调速系统的结构.................................... 2 、建立直流电机双闭环调速系统的模型............................ 2.1 小型直流调速系统的指标及参数......................... 2.2 电流环设计............................................... 2.3 转速环设计................................................ 3、直流电动机双闭环调速系统的MATLAB仿真.................... 3.1 系统框图的搭建............................................. 3.2 PI控制器参数的设置...................................... 3.3 仿真结果.................................................... 4、结论与总结....................................................... 5、参考资料.......................................................

自动控制系统仿真教案

控制系统仿真技术实验指导书 实验课程 专业班级 学生姓名 学生学号 指导教师 年月日

实验报告须知 实验的最后一个环节是实验总结与报告,即对实验数据进行整理,绘制波形和图表,分析实验现象,撰写实验报告。每次实验,都要独立完成实验报告。撰写实验报告应持严肃认真、实事求是的科学态度。实验结果与理论有较大出入时,不得随意修改实验数据结果,不得用凑数据的方法来向理论靠拢,而要重新进行一次实验,找出引起较大误差的原因,同时用理论知识来解释这种现象。并作如下具体要求: 1. 认真完成实验报告,报告要用攀枝花学院标准实验报告册,作图要用坐标纸。 2. 报告中的电路图、表格必须用直尺画。绘制电路图要工整、选取合适比例,元件参数标 注要准确、完整。 3. 应在理解的基础上简单扼要的书写实验原理,不提倡大段抄书。 4. 计算要有计算步骤、解题过程,要代具体数据进行计算,不能只写得数。 5. 绘制的曲线图要和实验数据吻合,坐标系要标明单位,各种特性曲线等要经过实验教师 检查,曲线图必须经剪裁大小合适,粘附在实验报告相应位置上。 6. 应结合具体的实验现象和问题进行讨论,不提倡纯理论的讨论,更不要从其它参考资料 中大量抄录。 7. 思考题要有自己理解实验原理后较为详尽的语言表述,可以发挥,有的要画图说明, 不能过于简单,不能照抄。 8. 实验报告的分数与报告的篇幅无关。 9. 实验报告页眉上项目如实验时间、实验台号、指导教师、同组学生等不要漏填。

目录 目录 实验一:MATLAB语言的基本命令实验二:控制系统模型与转换 实验三:Simulink 仿真应用 实验四:控制系统工具箱的使用实验五:磁盘驱动系统综合分析实验六:单级倒立摆控制仿真设计

控制系统仿真课程设计

控制系统数字仿真课程设计 1.课程设计应达到的目的 1、通过Matlab仿真熟悉课程设计的基本流程; 2、掌握控制系统的数学建模及传递函数的构造; 3、掌握控制系统性能的根轨迹分析; 4、学会分析系统的性能指标; 2.课程设计题目及要求 设计要求 1、进行系统总体设计,画出原理框图。(按给出的形式,自行构造数学模型,构造成1 个零点,三个极点的三阶系统,主导极点是一对共轭复根) G(s)=10(s+2)/(s+1)(s2+2s+6) 2、构造系统传递函数,利用MATLAB绘画系统的开环和闭环零极点图;(分别得 到闭环和开环的零极点图)参考课本P149页例题4-30 clear; num = [10,20]; den =[1 3 8 6]; pzmap(num,den) 3、利用MATLAB绘画根轨迹图,分析系统随着根轨迹增益变化的性能。并估算超 调量=16.3%时的K值(计算得到)。参考课本P149页例题4-31 clear num=[10,20]; den=[1 3 8 6]; sys=tf(num,den); rlocus(sys) hold on jjx(sys); s=jjx(sys); [k,Wcg]=imwk(sys)

set(findobj('marker','x'),'markersize',8,'linewidth',1.5,'Color','k'); set(findobj('marker','o'),'markersize',8,'linewidth',1.5,'Color','k'); function s=jjx(sys) sys=tf(sys); num=sys.num{1}; den=sys.den{1}; p=roots(den); z=roots(num); n=length(p); m=length(z); if n>m s=(sum(p)-sum(z))/(n-m) sd=[]; if nargout<1 for i=1:n-m sd=[sd,s] end sysa=zpk([],sd,1); hold on; [r,k]=rlocus(sysa); for i=1:n-m plot(real(r(i,:)),imag(r(i,:)),'k:'); end end else disp; s=[]; end function [k,wcg]=imwk(sys) sys=tf(sys) num=sys.num{1} den=sys.den{1}; asys=allmargin(sys); wcg=asys.GMFrequency; k=asys. GainMargin;

卫星单机仿真系统及方法与制作流程

本技术提供了一种卫星单机仿真系统及方法,一种卫星单机仿真系统,所述卫星单机仿真系统与星上软件、动力分系统和能源分系统连接,所述卫星单机仿真系统模拟卫星单机进行建模,所述卫星单机包括传感器和执行器,所述卫星单机仿真系统将所述卫星单机建模为读数据操作或写数据操作,并按指令设定的算法,做相应的数据处理,所述卫星单机仿真系统包括可配置单元、编码单元和配置文件,其中:所述可配置单元中的设计参数和产生数据根据配置文件进行初始化;所述编码单元中的指令动作通过代码固定为函数,所述函数发送、接受或处理所述产生数据。 权利要求书 1.一种卫星单机仿真系统,所述卫星单机仿真系统与星上软件、动力分系统和能源分系统连接,其特征在于,所述卫星单机仿真系统模拟卫星单机进行建模,所述卫星单机包括传感器和执行器,所述卫星单机仿真系统将所述卫星单机建模为读数据操作或写数据操作,并按指令设定的算法,做相应的数据处理; 所述卫星单机仿真系统包括可配置单元、编码单元和配置文件,其中: 所述可配置单元中的设计参数和产生数据根据配置文件进行初始化; 所述编码单元中的指令动作通过代码固定为函数,所述函数发送、接受或处理所述产生数

据。 2.如权利要求1所述的卫星单机仿真系统,其特征在于,所述传感器包括星敏感器、太阳敏感器和陀螺,所述执行器包括飞轮和推力器。 3.如权利要求1所述的卫星单机仿真系统,其特征在于,所述可配置单元包括单机指令与算法模块、单机发送数据包格式模块、单机数据库模块与单机分系统数据包模块,其中: 所述单机指令与算法模块用于接收配置文件配置的单机指令与算法的初始化值,形成单机指令与算法; 所述单机发送数据包格式模块用于接收配置文件配置的单机发送数据包格式的初始化值,形成单机发送数据包格式; 所述单机数据库模块用于接收配置文件配置的单机数据库的初始化值,形成单机数据库; 所述单机分系统数据包模块用于接收配置文件配置的单机分系统数据包的初始化值,形成单机分系统数据包。 4.如权利要求3所述的卫星单机仿真系统,其特征在于,所述编码单元包括指令数据接收函数模块、指令数据处理函数模块、单机数据发送函数模块和定时器交互接口模块,其中: 所述指令数据接收函数模块用于接收所述单机指令与算法,以及所述星上软件发送的数据,并将所述单机指令与算法和星上软件发送的数据发送至所述指令数据处理函数模块; 所述指令数据处理函数模块处理所述单机指令与算法和星上软件发送的数据,并将处理结果发送至所述单机数据发送函数模块; 所述单机数据发送函数模块接收所述处理结果、所述单机发送数据包格式和所述单机数据库中的数据,并发送至所述星上软件;

系统仿真技术

系统仿真技术 摘要:介绍了我国仿真技术的发展过程及美国科学局为建立集成的综合仿真环境和仿真系统归纳的五个层次的使能技术。着重探讨了模型的校核,验证与确认,环境仿真,分布交互仿真等关键技术. 关键词:模型校核;建模;验模;环境仿真;分布交互方真;虚拟技术 1概述 仿真技术综合集成了计算机、网络技术、图形图像技术、多媒体、软件工程、信息处理、自动控制等多个高新技术领域的知识。 仿真技术是以相似原理、信息技术、系统技术及其应用领域有关的专业技术为基础,以计算机和各种物理效应设备为工具,利用系统模型对实际的或设想的系统进行试验研究的一门综合性技术。 仿真技术的应用已不仅仅限于产品或系统生产集成后的性能测试试验,仿真技术已扩大为可应用于产品型号研制的全过程,包括方案论证、战术技术指标论证、设计分析、生产制造、试验、维护、训练等各个阶段。仿真技术不仅仅应用于简单的单个系统,也应用于由多个系统综合构成的复杂系统。 对于国外仿真技术的发展和应用,本文拟引用九十年代初美国国防科学局(Defense Science Board)对建模与仿真的使能技术(Enabling Technologies)(即应能解决实现的技术)作出的归纳,可以作为我们思考问题的参考。美国国防科学局认为建立集成的综合仿真环境和仿真系统,应解决实现以下五个层次的使能技术。 第一层次——基础技术 包括:光纤通讯,集成电路,软件工程工具,人的行为模型,环境模型。 第二层次——元、部件级技术 包括:内存,海量存贮器,显示器,局域网,微处理器,数据库管理系统,数/模/数转换器,建模与仿真构建工具,测试设备。 第三层次——系统级技术 包括:微计算机系统,远距离通讯/广域网,人-机界面,计算机图像生成系统,高性能计算机系统,仪器装备系统,数据库,协议/标准/保密。 第四层次——应用级技术 包括:制造过程仿真工程设计建模与仿真,含人仿真系统,随机作战仿真,半自动兵力。 第五层次——集成综合环境和建模与仿真工具 包括:需求定义,原型机,规划,设计与制造,训练与备战,测试与评估。 上述使能技术有些由商业市场解决,有些主要由美国国防部组织解决,如下表所示: 2仿真技术发展和应用中的几个问题探讨 1.建模与验模 数学模型是仿真的基础。对被仿真的对象或系统,应根据其运动定律、约束条件

哈工大 计算机仿真技术实验报告 仿真实验四基于Simulink控制系统仿真与综合设计

基于Simulink 控制系统仿真与综合设计 一、实验目的 (1) 熟悉Simulink 的工作环境及其功能模块库; (2) 掌握Simulink 的系统建模和仿真方法; (3) 掌握Simulink 仿真数据的输出方法与数据处理; (4) 掌握利用Simulink 进行控制系统的时域仿真分析与综合设计方法; (5) 掌握利用 Simulink 对控制系统的时域与频域性能指标分析方法。 二、实验内容 图2.1为单位负反馈系统。分别求出当输入信号为阶跃函数信号)(1)(t t r =、斜坡函数信号t t r =)(和抛物线函数信号2/)(2t t r =时,系统输出响应)(t y 及误差信号)(t e 曲线。若要求系统动态性能指标满足如下条件:a) 动态过程响应时间s t s 5.2≤;b) 动态过程响应上升时间s t p 1≤;c) 系统最大超调量%10≤p σ。按图1.2所示系统设计PID 调节器参数。 图2.1 单位反馈控制系统框图

图2.2 综合设计控制系统框图 三、实验要求 (1) 采用Simulink系统建模与系统仿真方法,完成仿真实验; (2) 利用Simulink中的Scope模块观察仿真结果,并从中分析系统时域性能指标(系统阶跃响应过渡过程时间,系统响应上升时间,系统响应振荡次数,系统最大超调量和系统稳态误差); (3) 利用Simulink中Signal Constraint模块对图2.2系统的PID参数进行综合设计,以确定其参数; (4) 对系统综合设计前后的主要性能指标进行对比分析,并给出PID参数的改变对闭环系统性能指标的影响。 四、实验步骤与方法 4.1时域仿真分析实验步骤与方法 在Simulink仿真环境中,打开simulink库,找出相应的单元部件模型,并拖至打开的模型窗口中,构造自己需要的仿真模型。根据图2.1 所示的单位反馈控制系统框图建立其仿真模型,并对各个单元部件模型的参数进行设定。所做出的仿真电路图如图4.1.1所示。

运动仿真技术经验

精心整理 一SW 运动仿真 1.简介 二十世纪八十年代以来,设计工程中首次使用计算机辅助工程(CAE )方法后,有限元分析(FEA )就成了最先被广泛采用的模拟工具。多年来,该工具帮助设计者在研究新产品的结构性能时节约了大量时间。 由于机械产品日渐复杂,不断加剧的竞争加快了新设计方案投入市场的速度。设计者迫切感到必须使模拟超出FEA 的局限范围,除使用FEA 模拟结构性能外,还需要在构建物理原型之前确定新产品的运动学和动力学性能。 用。 2.装配当几何体发生改变时,可在几秒内更新所有结果。图4为急回机构中滑杆和驱动连杆之间的干涉。 图4急回机构中滑杆和驱动连杆之间的干涉 运动模拟可在短时间内对任何复杂程度的机构进行分析,可能包含刚性连接装置、弹簧、阻尼器和接触面组。如雪地车前悬架、健身器、CD 驱动器等的运动。 图5复杂机构的运动仿真 除机构分析外,设计者还可通过将运动轨迹转换成CAD 几何体,将运动模拟用于机构合成。例如,设计一个沿着导轨移动滑杆的凸轮,用运动仿真生成该凸轮的轮廓。首先将所需滑杆位置表达为时间和滑杆在旋转凸轮上移动轨迹的函数,然后将轨迹路径转换为CAD 几何体,以创建凸轮轮廓。 图6滑杆沿导轨移动的位移函数

图7滑杆沿旋转盘移动绘制的凸轮轮廓 设计者还可将运动轨迹用于很多用途,例如,验证工业机器人的运动、测试工具路径以获取选择机器人大小所需的信息,以及确定功率要求。 图8工业机器人在多个位置之间的移动 运动模拟的另外一项重要应用是模拟零部件之间的碰撞和接触,以研究零部件之间可能形成的缝隙,得出机构的精确结果。例如,通过模拟碰撞和接触,可以研究阀提升机构中凸轮和曲线仪(摇杆)之间可能形成的缝隙。 3.将运动仿真与FEA结合 想了解运动仿真和FEA在机构仿真中如何结合使用,首先要了解每种方法的基本假设。 FEA是一种用于结构分析的数字技术,已成为研究结构的主导CAE方法。它可以分析任何固定支撑的弹性物体的行为,此处弹性是指物体可变性。如图8所示托架,在静态载荷作用下会变形, 形。FEA FEA (1 点反作用力和惯性力。在此步骤中,所有机构连接装置均视为刚性实体。图13中的曲线为曲柄转动一周连杆上接点的反作用力。 图13曲柄转动一周连杆上接点的反作用力 (2).找出与连杆接点上最大反作用力相对应的机构位置。因为施加最大载荷情况下进行的分析将得到连杆所承受的最大应力。如有必要,可选择多个位置进行分析。 图14与连杆上最大反作用力相对应的位置 (3).将这些反作用力载荷以及惯性载荷从CAD装配体传输到连杆CAD零件模型。 (4).作用于从装配体分离出来的连杆上的载荷包括接点反作用力和惯性力,如图15所示。

建模与仿真课程设计

目录 第一章系统描述与仿真目的 (7) 第二章系统分析 (7) 第三章数据统计 (9) 第四章数据分析 (10) 第五章建模与仿真 (15) 第六章输出分析 (20) 第七章心得体会 (22) 第八章参考文献 (22)

一、系统描述与仿真目的 1、系统描述 所选系统为二院签到系统,二院是戒律规范,作风强硬,严禁向前,学风优良的模范学院。要做好签到工作,保证出现问题可以对相关人员进行追究。该处有负责签到的工作人员一名。学生到1号宿舍楼门前之后,若签到处无人,则学生立刻开始签到,若签到处繁忙,则学生需排队等待签到,签完之后才能离开。该系统为一单服务台服务系统,在系统中,学生的到达是随机的,每两个学生到达的时间间隔时间是不一样的,学生签到的时间也是不一样的,由此组成的队列长度也是随机的。 该排队系统的基本结构是: 到来离开学生排队签到 2、仿真目的 1)了解排队系统的设计; 2)通过仿真分析,掌握witness软件的操作; 3)通过仿真分析,研究签到处的排队系统,提高系统的运行效率; 4)了解建模与仿真在系统分析中的重要作用。 二、系统分析 1、分析系统的实体、事件、状态、活动 (1)实体: 临时实体:学生 永久实体:工作人员 特殊实体:队列 (2)事件: 学生到达、学生结束排队、学生签到完毕离开。

(3)状态: 工作人员:忙、闲 游客: 等待签到、签到 队列: 队列长度 (4)活动: 排队、签到 (5)排队规则: 先到的先签到,后来的排在后面,依次签到离开。 2、以学生流动为主线,画出流程图 N Y 学生到达 签到空闲 置签到处忙 学生开始签到 学生签完离开 置签到处闲 排队

系统仿真

系统仿真 1系统仿真概述 1.1定义及实质 所谓系统仿真(system simulation),就是根据系统分析的目的,在分析系统各要素性质及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信息。 系统仿真的实质是 ①它是一种对系统问题求数值解的计算技术。尤其当系统无法通过建立数学模型求解时,仿真技术能有效地来处理。 ②仿真是一种人为的试验手段。它和现实系统实验的差别在于,仿真实验不是依据实际环境,而是作为实际系统映象的系统模型以及相应的“人造”环境下进行的。这是仿真的主要功能。 ③仿真可以比较真实地描述系统的运行、演变及其发展过程。 1.2系统仿真的分类 根据仿真所采用的模型划分,可将仿真分为数学仿真和物理仿真两大类。 物理仿真亦称为实物仿真,它是在系统生产出样机后,将系统实物全部或部分的引入回路,由于物理仿真能将系统的实际参数、数学仿真中难以考虑到的非线性因素和干扰因素引入仿真回路,因此物理仿真更接近系统的实际情况,通过仿真可以检验实物系统工作的可靠性,可以准确地调整系统元部件的参数。 数学仿真就是将数学模型编排成模拟计算机的排题图或数值计算机的程序。这一过程是将原始数学模型转换成仿真模型,通过对计算机模型的运行达到对原始系统研究的目的,数学仿真在系统设计阶段和分析阶段是十分重要的,通过数学仿真可以检验理论设计的正确性。 1.3系统仿真的作用 ①仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。 ②对一些难以建立物理模型和数学模型的对象系统,可通过仿真模型来顺利地解决预测、分析和评价等系统问题。 ③通过系统仿真,可以把一个复杂系统降阶成若干子系统以便于分析。 ④通过系统仿真,能启发新的思想或产生新的策略,还能暴露出原系统中隐藏着的一些问题,以便及时解决。 1.4适合于系统仿真的问题 ①难以用数学公式表示的系统,或者没有建立和求解数学模型的有效方法。 ②虽然可以用解析的方法解决问题,但数学的分析与计算过于复杂,这时计算机仿真可能提供简单可行的求解方法。 ③希望能在较短的时间内观察到系统发展的全过程,以估计某些参数对系统行为的影响。 ④难以在实际环境中进行实验和观察时,计算机仿真是唯一可行的方法,例如太空飞行的研究。 ⑤需要对系统或过程进行长期运行比较,从大量方案中寻找最优方案。

控制系统仿真课程设计

控制系统仿真课程设计 (2014级) 题目控制系统仿真课程设计学院 专业 班级 学号 学生姓名 指导教师 完成日期

实验一 交流异步电机动态仿真 一.设计目的 1.了解交流异步电机的原理,组成及各主要单元部件的原理。 2. 设计交流异步电机动态结构系统; 3.掌握交流异步电机调速系统的调试步骤,方法及参数的整定。 二.设计原理 异步电机工作在额定电压和额定频率下,仿真异步电机在空载启动和加载过程中的转速和电流变化过程。仿真电动机参数如下: 1.85, 2.658,0.2941,0.2898,0.2838s r s r m R R L H L H L H =Ω=Ω===, 2 0.1284Nm s ,2,380,50Hz p N N J n U V f =?===,此外,中间需要计算的参数如下:2 1m s r L L L σ=-, r r r L T R =,22 2 s r r m t r R L R L R L +=,10N m TL =?。αβ坐标系状态方程: 其中,状态变量: 输入变量: 电磁转矩: 2p m p s r s L r d ()d n L n i i T t JL J βααωψψβ=--r m r r s r r d 1d L i t T T ααβαψψωψ=--+r m r r s r r d 1d L i t T T ββαβψψωψ=-++22s s r r m m m s r r s s 2r r r r d d i R L R L L L L i u t L T L L ααβαα σψωψ+=+-+22 s s r r m m m s r r s s 2 r r r r d d i R L R L L L L i u t L T L L ββαββ σψωψ+=--+[ ] T r r s s X i i αβαβωψψ=[ ] T s s L U u u T αβ=() p m e s s s s r n L T i i L βααβ ψψ=-

仿真技术简介

何为仿真? 1定义 仿真技术是利用计算机并通过建立模型进行科学实验的一门多学科综合性技术。它是它具有经济、可靠、实用、安全、可多次重用的优点。 仿真是对现实系统的某一层次抽象属性的模仿。人们利用这样的模型进行试验,从中得到所需的信息,然后帮助人们对现实世界的某一层次的问题做出决策。仿真是一个相对概念,任何逼真的仿真都只能是对真实系统某些属性的逼近。仿真是有层次的,既要针对所欲处理的客观系统的问题,又要针对提出处理者的需求层次,否则很难评价一个仿真系统的优劣。 传统的仿真方法是一个迭代过程,即针对实际系统某一层次的特性(过程),抽象出一个模型,然后假设态势(输入),进行试验,由试验者判读输出结果和验证模型,根据判断的情况来修改模型和有关的参数。如此迭代地进行,直到认为这个模型已满足试验者对客观系统的某一层次的仿真目的为止。 模型对系统某一层次特性的抽象描述包括:系统的组成;各组成部分之间的静态、动态、逻辑关系;在某些输入条件下系统的输出响应等。根据系统模型状态变量变化的特征,又可把系统模型分为:连续系统模型——状态变量是连续变化的;离散(事件)系统模型——状态变化在离散时间点(一般是不确定的)上发生变化;混合型——上述两种的混合。

2发展历程 仿真是一种特别有效的研究手段。20世纪初仿真技术已得到应用。例如在实验室中建立水利模型,进行水利学方面的研究。40~50年代航空、航天和原子能技术的发展推动了仿真技术的进步。60年代计算机技术的突飞猛进,为仿真技术提供了先进的工具,加速了仿真技术的发展。利用计算机实现对于系统的仿真研究不仅方便、灵活,而且也是经济的。因此计算机仿真在仿真技术中占有重要地位。50年代初,连续系统的仿真研究绝大多数是在模拟计算机上进行的。50年代中期,人们开始利用数字计算机实现数字仿真。计算机仿真技术遂向模拟计算机仿真和数字计算机仿真两个方向发展。在模拟计算机仿真中增加逻辑控制和模拟存储功能之后,又出现了混合模拟计算机仿真,以及把混合模拟计算机和数字计算机联合在一起的混合计算机仿真。在发展仿真技术的过程中已研制出大量仿真程序包和仿真语言。70年代后期,还研制成功专用的全数字并行仿真计算机。仿真技术来自于军事领域,但它不仅用于军事领域,在许多非军事领域也到了广泛的应用。例如:在军事领域中的训练仿真;商业领域中的商业活动预测、决策、规划、评估;工业领域中的工业系统规划、研制、评估及模拟训练;农业领域中的农业系统规划、研制、评估,灾情预报、环境保护;在交通领域中的驾驶模拟训练和交通管理中的应用;医学领域中的临床诊断及医用图像识别等。 3主要仿真技术 1>仿真建模

辽工大仿真技术综合设计_Matlab

课程设计 报告 题目:Matlab报告 班级: 姓名: 学号: 指导教师: 成绩: 电子与信息工程学院 信息与通信工程系

1求最大值和最小值 1.1题目 输入10个数,求其中最大数和最小数。要求分别用循环结构和调用MATLAB 的max函数、min函数来实现。 1.2 用到的函数 input:请求用户输入 max:取数组中的最大值 min:取数组中最小值 1.2流程图 图1-1求最大值最小值流程图 1.4 运行截图

图1-2调用max和min函数运行截图 图1-2运用循环方法运行截图

2求Fibonacci数列 2.1 题目 求Fibonacci数列。(1)大于4000的最小项.(2)5000之内的项数 2.2什么是Fibonacci数列 即斐波那契数,亦称之为斐波那契数列(意大利语:Successione di Fibonacci),又称黄金分割数列、费波那西数列、费波拿契数、费氏数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,F n=F n-1+F n-2(n>=2,n∈N*),用文字来说,就是斐波那契数列列由0 和 1 开始,之后的斐波那契数列系数就由之前的两数相加。(百度百科) 2.2 用到的函数 length取得一个对象的长度 2.3 流程图 图2-1 2 求Fibonacci数列流程图 2.4 运行截图

图2-2 Fibonacci运行截图 3用求逆解法和直接解法解方程组 3.1 题目 解方程组Ax=b,分别用求逆解法与直接解法求其解3.2 用到的函数 inv 矩阵求逆 3.3 流程图

气浮台在卫星控制系统仿真中的应用

航 天 控 制A e r o s p a c e C o n t r o l O c t .2008 V o l .26,N o .5 气浮台在卫星控制系统仿真中的应用 李季苏1  牟小刚1  张锦江1  王晓磊2  宗 红2  孙宝祥 2 1.北京控制工程研究所空间智能控制技术国家级重点实验室,北京100190 2.北京控制工程研究所,北京100190 摘 要 本文叙述单轴和三轴气浮台仿真设备在卫星控制系统仿真中的应用,主要包括空间太阳望远镜高精度姿控系统单轴气浮台物理仿真试验研究、大型 卫星平台单框架控制力矩陀螺(C G C M G )控制系统三轴气浮台物理仿真试验研究、东方红四号卫星控制系统全物理仿真试验。 关键词 单轴气浮台;三轴气浮台;卫星控制系统;物理仿真中图分类号:V 448.2;O 411.3 文献标识码:A 文章编号:1006-3242(2008)05-0064-05 A p p l i c a t i o no f A i r B e a r i n g T a b l e i nS a t e l l i t e C o n t r o l S y s t e m S i m u l a t i o n L I J i s u 1  M UX i a o g a n g 1  Z H A N GJ i n j i a n g 1  W A N GX i a o l e i 2  Z O N GH o n g 2  S U NB a o x i a n g 2 1.N a t i o n a l L a b o r a t o r y o f S p a c e I n t e l l i g e n t C o n t r o l ,B e i j i n g I n s t i t u t e o f C o n t r o l E n g i n e e r i n g , B e i j i n g 100190, C h i n a 2.B e i j i n g I n s t i t u t e o f C o n t r o l E n g i n e e r i n g ,B e i j i n g 100190,C h i n a A b s t r a c t T h e p a p e r p r e s e n t s t h e a p p l i c a t i o n o f s i n g l e -a x i s a n d t h r e e -a x i s a i r b e a r i n g t a b l e i ns a t e l l i t e c o n t r o l s y s t e m s i m u l a t i o n ,i n c l u d i n g h i g h a c c u r a c y s i m u l a t i o n o f c o n t r o l s y s t e mf o r s p a c e t e l e s c o p e ,t h r e e -a x i s s i m u l a t i o n o f S G C M Gc o n t r o l s y s t e mf o r l a r g e s a t e l l i t e a n d p h y s i c a l s i m u l a t i o n t e s t o f c o n t r o l s y s t e mf o r D O N G F A N G H O N G -4s a t e l l i t e . K e y w o r d s S i n g l e a x i s a i r b e a r i n gt a b l e ;T h r e e a x i s a i r b e a r i n gt a b l e ;S a t e l l i t e c o n t r o l s y s t e m ;P h y s i c a l s i m u l a t i o n 收稿日期:2007-12-20 作者简介:李季苏(1941-),男,湖南人,研究员,研究方向为卫星控制系统仿真;牟小刚(1969-),男,四川人,高级 工程师,研究方向为卫星控制系统仿真;张锦江(1973-),男,黑龙江人,高级工程师,研究方向为航天器控制、制导与仿真,非线性控制。王晓磊(1972-),男,山东人,高工,研究方向为导航、制导与控制;宗 红(1971-),女,北京人,高工,研究方向为导航、制导与控制;孙宝祥(1944-),男,江苏人,研究员,研究方向为空间控制。 气浮台依靠压缩空气在气浮轴承与轴承座之间形成的气膜,使模拟台体浮起,从而实现近似无摩擦的相对运动条件,以模拟卫星在外层空间所受干扰力矩很小的力学环境。作为卫星运动模拟器,如采用球面气浮轴承支持的三轴气浮台,不但能模拟三轴方向所需要的姿态运动,还能模拟卫星三轴姿态耦合动力学。卫星动力学由气浮台来模拟,控制系统采用部分或全部实物部件组成,并置于气浮台上, 组成与卫星控制系统相同的仿真回路,使用星上实际的控制规律和实际的运行软件,完成对气浮台的姿态控制。执行机构产生的控制力矩直接作用在气浮台上,如气浮台各轴与对应卫星各轴具有相等的转动惯量,实现转动惯量的1∶1模拟,则执行机构的控制力矩矢量与实际卫星的相同。在进行气浮台缩比模型试验时,气浮台各轴与对应卫星各轴的转动惯量比等于试验时执行机构与实际卫星执行机构控 · 64·

相关文档
最新文档