振动与冲击 JOURNAL OF VIBRATION AND SHOCK

振动与冲击 JOURNAL OF VIBRATION AND SHOCK
振动与冲击 JOURNAL OF VIBRATION AND SHOCK

第26卷第4期

Vol. 26 No. 4 2007

动与冲击 JOURNAL OF

VIBRATION AND SHOCK

运用小波分析方法进行结构模态参数识别

朱宏平,翁顺

(1.华中科技大学土木工程与力学学院,武汉430074)

摘要结构的模态参数反映了结构自身特性,是基于动态特性的结构损伤识别和健康评估的重要因子。本文首 先介绍了环境激励下基于小波分析的模态参数识别方法,针对土木工程结构的前几阶自振频率处于低频区域以及环境激 励下结构响应信号信噪比很低的特点,着重论述了采用小波方法抑制原始测量信号中的高频成分(即噪音),从而突出结 构低频特性的降噪处理方法的基本原理。通过比较传统傅里叶变换、短时傅里叶变换和小波变换三种方法对一实际高层 建筑结构现场测试信号的处理结果以及有限元分析结果,认为小波分析方法可以更精确、更有效地识别工程结构的模态 参数。

关键词:傅里叶变换,短时傅里叶变换,小波变换,降噪,模态参数

中图分类号:TN911.6; TU311.4 文献标识码:A

在高层建筑抗震、抗风、健康监测及损伤诊断等研 究中,结构模态参数是非常重要的设计参数之一,基于 环境激励的模态参数识别方法越来越受到人们的重 视[1]

。目前国内外在结构模态参数识别方面的研究方 法有很多,主要可以分为:①频域方法:它是建立在频 响函数的理论基础上的,频域法的最大优点是利用频 域平均技术,最大限度地抑制了噪声影响,使模态定阶 问题容易解决,但也存在着如功率泄露、频率混叠、离 线分析等问题)②时域方法:是直接利用响应的时域信 号进行模态参数识别。与频域法相比,时域法对于分 离密集模态有更好的效果;③小波分析法[2(

:比短时傅 里叶变换具有更好的时频窗口特性,克服了傅里叶变 换中时-频分辨率恒定的弱点,因此它能在具有足够 时间分辨率的前提下分析信号中的短时高频成分,又 能在很好的频率分辨率下估计信号中的低频。④基于 H HT 变换的非平稳信号的处理方法:它以瞬时频率 为基本量,以固有模态信号为基本信号,用于非平稳 信号处理;⑤基于模拟进化的模态参数识别的方法:

该方法实现了基于达尔文进化理论的整体优化算法 用于识别线性振动结构的模态参数。基于模拟进化 的模态参数识别方法用于测试噪音是很可靠的,但该 方法用于识别更复杂模态的现实问题上,还需要更进 一步研究。

本文针对实际工程,对环境激励下的高层建筑振 动响应信号采用小波方法进行分析[3 (

,有效地识别高 层建筑固

有模态参数,并同传统傅里叶变换、短时傅里 叶变换的结果相比较,证实了小波分析方法在处理随

基金项目:国家自然科学基金(50378041)和教育部新世纪优秀人才基金 (2004年)资助

收稿日期:2006 -06 -21修改稿收到日期:2006 -07 -27

第一作者朱宏平博士,教授,博士生导师,1965年11月生 机信号方面的优

越性。由于环境激励下的振动测试信 号信噪比低[4(,对信号分析造成一定的干扰,本文用小 波分析方法对测试信号进行降噪处理,结果表明小波 方法能有效抑制噪音,还原真实信号,提取更多有用 信息。

1小波分析方法基本理论

傅里叶变换的实质是把波形分解成许多不同频率 正弦

波的叠加,是傅里叶级数在连续情况下的推广,函 数!") "L 1

($)的傅里叶变换为:

%(!) = fV !

/( ( D

J — A

短时傅里叶变换在傅里叶分析基础上引入时域信 息的最初尝试,它的基本思想是:把信号划分成许多小 的时间间隔,用傅里叶变换分析每一个时间间隔,以便 确定该时间间隔存在的频率。以高斯函数g a (/)=

为窗的短时傅里叶变换可定义为[;(

考虑信号"(t) = A( t) COS (!)的解析信号"(t)=

2 !&a

从频域上看,用不同尺度作小波变换相当于用一 组带通滤波器对信号进行带通滤波处理。在表达式 (6 )中.求得信号在固定小波函数l#,b( t)上的分量.对 参数a 和b 进行展开后,就得到任何时刻,任意精度的 频谱了。但是对实际计算来讲,这样的代价太高,类似 傅里叶级数的想法,把参数a 或6或(a, b )同时做离 散,得到离散小波变换。离散小波函数可表示为:

#3 = a '#( a ' - 40 ),j,4 " 6 (7 )

离散小波变换的系数可表示为:

1,4 ( t) = \_A f( t) #3,4 ( t) dt (8 )

设函数##( t) " L 2 ($),如果存在两个常数 A.B. 且0<4

A % 3"6 #(2'!) I 2 %

B (9)

几乎处处立,如果A=B 则称为最稳定条件。那 么函数序

列丨12,(4)丨叫做函数/的二进小波变换: 1/(4) = [/(t),#2,(4)]

1 广 =去f /(t )#$ (2-t - 4)dt (10)

2 J-A 由小波的定义可知,小波函数和其傅里叶变换

#o ,b( !)满足窗函数的条件,小波函数的时间窗和频率 窗可以表示为: #a ,b (t) : [ b + at 0 - a $#,b + at 0 + a $# ] #" t)经伸缩和平移所产生的函数族:

#a.b( () &

~dr :t )的小波变换的关系

(12)

! A( b) 2

(13)

w f (a,b) (17)

LA >

[ 1( a

,b) ] = !d b 2 &0

单自由度粘性阻尼系统脉冲响应函数经过小波变换 后,由其模及相位可以得到:

-db(ln I 1= a ,b) I

%! (1 = )

j a >[ 1( a ,b)]

!d

db

同理,多自由度粘性阻尼振动系统脉冲响应函数可以 写成:

(19)

+ o

a

式中a >0是尺度参数,6是平移参数.其值可正可 负。小波变换实际上是将待分析信号向一系列小波基 #a,b ( t)上进行正交投影。

函数! t)的连续小波变换定义为:

1( *.0) = # ^ /(() #$(() dt (5 #

式中#:’b ( t)是>#a,b ( t)的复共轭函数。小波变换 必须满足式

(3 ) *容许条件”。因此,基本小波函数

#( t)也必须满足#( !) 1!=。= 0 ,就是说#( t )可以看作 带通滤波器。在频域中.小波变换可以写为: #a ,b ( t)的时间-频率窗面积相同,随la I 越大,频 率窗越小,时间窗越大。通过选取不同的a .时间窗和 频率窗的比例可自行调节。 2基于小波变换的模态参数识别

f (!) # $ (a!) e i

d ? (6) ,(!):[' (4 ) a a

;[A(b) ]

1 #$ (!

忽略小量;(A(b )),得到

1*( a ,b) = !*A( b) #$ ( a!) e 一 (14)

如果将单自由度粘性阻尼系统脉冲响应函数表 示为:

"(t) = A 0e"-!°!cos (!01 2 &0)

(15)

式中人为振动幅值,!<&!: = ! --2 !<分别是系统在 无阻尼和有阻尼情况下的圆频率,%是相对阻尼比,&0 是初始相位。那么单自由度粘性阻尼系统脉冲响应函 数的小波变换为:

1(a

,b) -iw (一e — (16)

对于给定的尺度参数a ,小波变换的模与相位分别是:

{ I a ,b) I = !T Ae -!

?( t) = & A A t) COS ( !dA 2 &A

i = 1

A( t) = A0e--!"A

式中,W 是需要考虑的模态阶数,A0i&!

分别是系统第i 阶振幅、无阻尼情况固有频率、 有阻尼情况固有频率和相对阻尼比。

对多自由度粘性阻尼振动系统脉冲响应函数作小 波变换

"(t) +3["( t) ] = A (t) e !t ,式中 9["(t)]是"(t)的 Hilbert 变换[5]:

1 广 / 、 1

9[

"⑴]

& J -A 信号"(t )与其解析信号 可表示为:

1(a

,b) 二丁1"(a ,b) 1( a ,b)

)e J!!dt

(11)

t

小波函数#>( t)具有紧支撑性,可以将a( t )在 4附近泰勒级数展开 1

,(!,") = # e_1!/( (ga(t — ") d( (2)

J —A

随着"的变化,ga (/"确定的时间窗在整个实轴上移动,这样就可以对不同时段的信号逐段进行分析,,(!,")就大致反映了在"时刻,频率为!的信号的相对含量。a越小的情况下,高斯函数的时间精度越高,用作短时傅里叶变换的时间窗越小,频率精度越低。

设#( t) " L2 ($)( L2($)表示平方可积的实数空

间,即能量有限的信号空间),其傅里叶变换为^ ( !)。

当#( !)满足允许条件:-=#/ A ⑶

中JR I ! I

我们称#((为一个基本小波或母小波(Mother Wavelet)。一般所讨论的小波,是指将一个基本小波函数

DIN_EN61373-1999铁路设备_机车车辆设备冲击和振动试验(德标)

德国标准 1999年11月(铁路设备机车车辆设备冲击和振动试验) 非卖的赠阅本 即使是内部需要也不得翻印。 ICS 17.160;45.060.01 铁路应用- 机车车辆设备- 冲击和振动试验 (IEC 61373:1999) 德文版 EN 61373:1999 欧洲标准EN 61373:1999有着等同于德国标准的地位。 开始生效的时间 欧洲标准EN 61373已于1999年4月1日通过。 出版的标准内容形成E DIN IEC 9/335/CD(VDE 0115第106部分)。 续第2和第3页,该标准共33页德国标准化研究所DIN和VDE(DKE)中的德国电工委员会 ?DIN指的是德国标准化研究所协会 VDE指的是电工技术、电子技术和信息技术协会 版权所有,不得翻印。任何形式的翻印必须征得DIN,柏林,和VDE,美茵河畔的法兰克福的同意。

DIN EN 61373(VDE 0115第106部分):1999-11 前言 该标准为欧洲标准EN 61373“铁路应用-机车车辆设备-振动和冲击试验”的德文版,出版日期为1999年4月。 国际标准IEC 61373:1999-01的条款由IEC/TC9“电气铁路设备”起草,CENELEC未作任何修改将其采纳为欧洲标准。在德国,该标准由DIN(德国标准化研究所)和VDE(DKE)( 电工技术、电子技术和信息技术协会)中的德国电工委员会的K351“铁路的电力设备”的AK 351.0.5“绝缘配合和环境条件”归口。 至于标准条款中非详细引用(例如引用的标准没有给出出版日期,没有指出章节号、某张表格、某个图等)的情况,引用标准指的是相关标准的最新版本。 随后再次给出了引用的标准与相关德国标准的关系。到该标准出版之日为止,给出的这些版本有效。 IEC已于1997年修改了IEC标准的编号。在至今仍使用的标准号前加上60000。例如,IEC 68现在就变成了ICE 60068。 附录NA(供参考) 文献引用 DIN EN 60068-2-27 环境试验—第2部分:试验;Ea试验和导则:冲击 (IEC 60068-2-27:1987); DIN EN 60068-2-47 环境试验-第2部分:试验;元件、设备和其它技术产品在冲 击(Ea)、碰撞(Eb)、振动(Fc和Fd)和加速等动态试验中的 固定和导则(IEC 60068-2-47:1982); EN 60068-2-47:1993 德文版 DIN EN 60068-2-64 环境试验-第2部分:试验方法;Fh试验:振动、宽频带随机 振动(数字控制的)和导则(IEC 60068-2-64:1993+1993报 告);EN 60068-64:1994德文版

振动与冲击

机械振动与冲击的隔离 机械振动是4件受到交变力的作用,在某一位置附近的往复运动,而冲击则是一个能量(动能)在一个极短的时间内传递绘某一系统,并且传递过后,系统的运动(振动)会自然衰减,由于这个过程极短,所以能量传递的过程中会产生根大的冲击力,造成产品的破坏。 这是对电子产品产生破坏的两种主要因素,必须研究防护方法。而在这两种因柬中,振动造成的破坏占80A6,而冲击占20%,这主要是因为振动力虽小,但反复进行,引起材料的疲劳破坏之故。本节将以振动为主要对象进行讨论。亿宾微电子 4.1 推动和冲去叶电子产品产生的危害 1.危害 振动和冲击可能使电子产品受到的危害有很多种,此处列出主要的几种: ①没有时加紧固零件的插装元器件会从插座中跳出来,碰到其他元器件造成损坏; ⑧振动引起弹性零件变形,使具有触点的元件(电位器、波段开关、插头插座)可能产生接触不良或完全开路, ③指示灯忽暗忽亮,仪表指针的不断抖动,使观察员读数不推,视力疲劳; ④零件固有频率与激振频率相同时,会产生共振现象,例如可变电容器片子共振时,使电容量发生周期性变化,振动使调谐电感的铁粉芯移动,引起电感量变化,造成回路失谐,工作状态破坏; ⑤导线变形移位,引起分布参数的变化,造成电容、电感的招台干扰; ⑥锡焊或熔焊处断开; ⑦材料变形,脆性材料破裂; ⑧密封和防潮措施破坏; ⑨螺钉、螺母松开。 2.破坏形式 破坏形式分为两种。 ①强度破坏。产品在某一激振频率作用下产生共振,其振幅越来越大,最后因振动 加速度超过产品的极限加速度而破坏,或者由于冲击所产生的冲击力超过了产品的强度 极限而使产品破坏。 ②疲劳破坏。振动加速度或冲击引起的应力虽远远低于材科在静载荷下的强度极 限,但由于长期振动冲击使产品疲劳破坏。 产品破坏的原因,除了零部件的设计、制造和装配质量等不合格以外,主要是在设计整机或串部件时,没有考虑防振和缓冲的措施,或者因振动、隔离系统设计不正确所造 成的。 3.防护措施 为了减小振动和冲击的影响,保证电子产品在振动和冲击的情况下仍能可取地工作,常采用以下两个方面的措施。 (1)提高电子产品各元器件及结构件本身的抗振动、冲击的能力 采用各种方法使元器件及结构件有足够的强度与刚度,如图5—48所示。图5—48(a) 是改变元器件的安装方式;图5—48(b)将元器件紧贴印制板,井用环氧树脂贴牢;图5—48(c)是将元器件用固定夹固定;图5—48(d)是用穿心螺钉或固定支架来固定大功率穿 心电阻;因5—48(e)是用压板螺钉或特制支架来固定插入式元器件或变压器。

冲击和振动

冲击和振动 作者: Jonas Steibert 文件名: Shock and Vibration Basic.doc

1. 什么是冲击和振动? 3 1.2 怎样保护产品以防受到冲击和振动?3 2. 何时冲击?3 2.1 产品易碎性的判定 3 2.2 产品可能遇到的情况判定 4 2.3 振动 5 3. 减震材料 6 3.1 多孔聚乙烯EPE 8 3.1.1 模压材料9 3.1.2 挤压材料9 3.2 多孔聚丙烯EPP 11 3.3 多孔聚苯乙烯EPS 12 3.4 聚亚安酯PU 13 3.5 纤维减震材料15 作者: Jonas Steibert 文件名: Shock and Vibration Basic.doc

1.什么是冲击和振动? 冲击和振动指的是一种环境,在这种环境下产品处于运输当中,或处于包装箱的装卸过程中。 1.2 怎样保护产品以防受到冲击和振动? 为了保护产品,可在冲击和振动有发生可能性的几个地方采取措施。但为了减少冲击和振动发生的可能性,还有些问题需要考虑。产品是否易碎?产品价值是多少?产品是怎样运输的?产品的体积估计有多大?这些都是在选择包装材料前需要考虑的问题。 2. 何时冲击? 当产品的包装箱突然以某种方式掉落,冲击就会发生。大多数时间冲击都发生在意外事件中,但冲击也会在列车更换装运车厢或产品/包装箱的野蛮装卸过程中发生。 2.1 产品易碎性的判定 确定产品需要多大减震量的第一步是确定产品自身所能承受的机械冲击量,对于这一判定有一些常用术语,其中“易碎性”和“G因数”是最常用的。 易碎性通常用单位“G”表示,表明产品在不被损坏的条件下所能承受的最大负加速度。产品越易碎,其G因数越小。 [ G是加速度的单位,其值等于重力加速度:1g=9.81m/s2 。 负加速度是“负的加速度”,指在制动,减速到0,物体下落撞击地面时。 抗冲击垫物作用是通过压缩,延长速度v(m/s)降低的时间t (s),从而减小负加速度a (m/s2):A= v / t 给定质量m(kg)所承受的负加速度a (m/s2) 越小,产品所受的撞击力F (N)就越小: F= m * a] 理论上,易碎性的判定是将产品置于一系列剧烈度递增的冲击中(负加速度)以找出足以破坏产品的最小冲击力。产品在不被损坏条件下所能承受的最大负加速度,即为产品的G因数。 作者: Jonas Steibert 文件名: Shock and Vibration Basic.doc

振动试验理论基础与方法培训

奥 申 检 测 振动试验理论基础与方法培训 主讲人:洪城明 上海奥申检测科技有限公司 培训目的: (1)基本了解振动试验相关的基础理论(2)掌握理解振动试验相关的核心理论 (3)了解振动试验设备结构、功能,掌握其主要参数范围 (4)了解振动试验传感器关键参数、掌握核查方法与使用注意点(5)理解并掌握正弦振动、随机振动的试验方法(6)理解并掌握冲击试验方法 (7)了解夹具要求、开发验证过程,掌握共振搜寻确认方法(8)掌握GMW17010对零件振动试验的要求、流程和方法

奥 申 检 测 1.1振动试验目的 在实验室内模拟一连串实际的振动现象,测试产品在寿命周期中,是否能承受运输、储存或使用过程的振动环境的考验。 1.2应用 (1)耐久测试——获得临界使用条件,确定产品设计和功能的使用边界、制定要求标准。 (2)质控测试——考核产品耐振动性能是否达标、提前筛检出不良品,确认质量和提升产品的可靠性。 (3)失效分析——模拟失效环境,分析失效模式,助力改进。 1.3测试原理 通过振动硬件(振动台、夹具、控制器、传感器),按照目标振动条件输入振动参数,对目标施加外部振动激励,目标产生振动响应,通过采集和分析响应信号,分析目标振动状态和耐振性。 2测试硬件 2.1振动试验台 2.1.1分类 振动试验设备分机械振动试验台、电液振动试验台、电动振动试验台、模拟汽车运输试验台。 (1) 机械式振动试验台:适宜于低频定振试验或低频定位移扫频试验。 (2) 电液式振动试验台:适宜于低频定振试验或中低频扫频试验及随机试验和冲击实验。 (3) 电动式振动试验台:适宜于任何形式的给定信号的振动及冲击试验。 (4) 模拟汽车运输试验台:可代替实际跑车试验 2.1.2电动振动台结构(振动台-振动发生器、控制器、功放、冷却器) 2.1.3电动振动台原理 励磁线圈如图示2-2在振动台台体内建立磁场,励磁线圈与直流电源相连,在环行气隙里产生一个高磁通量。动圈部件,包括台面、骨架和驱动线圈,悬挂在振动台的环行气隙里,当交流电流通过驱动线圈时,电磁力会在驱动线圈的绕组上产生,使得台面产生向上和向下的往复移动,如图示2-2中双向箭头处显示。台面的移动量取决于振动控制器输出的驱动信号的大小和频率以及扩展台面(如果有的话)的质量、所加的负载质量和台面悬挂系统的刚度。

冲击与振动对人体的影响

冲击与振动对人体的影响 201012466 徐文超 人体是一个相当复杂的且具有生物活性主动调节的系统。从医学角度看,人体是由多节骨骼和肌肉或器官组成的,其中肌肉和骨骼是运动的主动与被动的关系。从机械的角度看,人体是一个复杂的柔弹性多体系统,人体的骨骼框架具有一定的刚性。因此,近似条件下,人体是可用若干柔性或弹性与刚性体组成的系统模型予以描述[1-3],人体可视为一种机械系统。通过对人体的振动实验来看,2Hz以下振动时,人体可视为一个整体;2Hz带宽时,机械能将通过人体以波的形式传播,波长远大于人体尺寸,基于此种原因,人体可以简化为多自由度的集中参数模型。坐姿时,人体系统基频为4~6Hz,立姿时为5Hz和12~15Hz。在100Hz以上时,人体可作为具有分布参数的复杂系统,机械能可能以剪切波、表面波或复杂波得形式传播。人体波传播的形式取决于频率成分和传播条件。 人体可视为一个多自由度的振动系统。人体是具有弹性的组织,因此对振动反应与一个弹性系统相当。为了准确预测动态环境下人体系统的响应,对于人体坐姿来说,通常可以分为头部,上躯干、下躯干(包括臀部)、左下肢、右下肢五个部分。如不考虑水平、侧向振动的影响,可把人体系统动力学模型简化为5-DOF的垂直振动模型[4]。人体全身振动模型是一种机械振动响应等效模型,它将人体各部分等效为质量、刚度、阻尼等机械元件。如图1所示,

该模型的动力学参数主要有: 12345,,,,m m m m m ————人体头部、上躯干、下躯干(包括臀部) 、左下肢、右下肢的质量,kg ; 12345,,,,k k k k k ————上述人体各部分的刚度,1kN m -?; 12345,,,,c c c c c ————上述人体各部分的阻尼系数,1Ns m -?; 12345,,,,z z z z z ————上述人体各部分重心的位移,m ; 66,k c ————座椅的刚度,1kN m -?;座椅的阻尼,1Ns m -?; 0z ————车体的输入位移激励,m . 根据牛顿第二定律,得到5-DOF 坐姿人体全身振动模型的振动微分方程为: M Z C Z KZ Bq ??? ++= M ,C ,K ,B 分别为人体系统的质量矩阵,阻尼矩阵,刚度矩阵,激励矩阵;Z 为输出矩阵,q 为激励矩阵。为便于模型的简化及计算,假定人体左、右下肢的质量、刚度、阻尼均相等,即454545,,m m k k c c ===。根据模型,可计算出人体坐姿全身振动的相关参数,进而进行相关分析。 人体是一个复杂的共振系统。人体及其各种组织与器官都有其自身的共振频率。生物力学研究证明,人体全身垂直振动在4~8Hz 处有一个最大的共振峰,称为第一共振频率。它主要由人体胸腔共振频率产生对胸腔内脏影响最大。在10~12Hz 和20~25Hz 附近有两个较小的共振峰,分别称为第 二和第三共振频率。第二共振峰主要由人体腹腔共振频率产生,对腹部内脏影响最大。此外,头部的共振频率约为2~3Hz ,心脏约为5Hz 眼约为18~50Hz ,脊柱约为30Hz,手约为30~40Hz ,臀和足部约为4~8Hz ,肩部约为2~6Hz ,躯干约为6Hz 。人体的振动传递与人体骨骼、姿势(站姿或坐姿)和座椅型式等有关。因此,在设计车辆和车辆座位时,必须考虑人体共振频率,采取减振措施,尽量避开人体共振效应[5]。 振动对人体的影响分为全身振动和局部振动。全身振动是由振动源(振动机械、车辆、活动的工作平台)通过身体的支持部份(足部和臀部),将振动沿下肢或躯干传布全身引起接振动为主,局部振动是振动通过振动工具、振动机械或振动工件传向操作者的手和前臂。 1.全身振动对人体的不良影响 接触强烈的全身振动可能导致内脏器官的损伤或位移,周围神经和血管功能的改变,

最新电子产品振动冲击设计资料

前言 任何产品都处于一定的环境之中,在一定的环境条件下使用、运输和贮存。因此都逃脱不了这些环境的影响。特别恶劣的条件下工作的产品更是如此。产品环境适应性水平高低的源头是环境适应性设计,因此要研制出一个环境适应性好的产品,首先抓的是环境适应性设计,设计奠定了产品的固有环境适应性。 (一)电子产品振动冲击设计现有的标准 两大标准体系: 1、民(商用)标准体系-(国际电工委员会)标准体系 当今国内外在环境适应性规范和标准上有许多标准和方法,但归纳起来为二大体系: 一类是以IEC(国际电工委员会)为主体的国际通用的民用 (商用) 产品的环境适应性规范和标准体系,它是国际贸易中民用 (商用) 产品的环境适应性水平要求的共同语言、统一准则,它是以欧洲资本主义国家为主导制订的,可以说它是欧洲资本主义国家环境适应性现状和水平的反映。 我国自80年代开始采用等效或等同的方法先后将TC50(环境试验)、TC75(环境条件)制订(转化)成环境适应性试验国标(GB/T2423系列标准)与环境适应性条件国标(GB/T4798系列标准)。国标与IEC标准的特点是:环境适应性条件系列化、模拟试验方法(程序)经典、试验再现性高、不确定度好。 2、军标体系 另一类是军用产品的环境适应性规范和标准体系,最有代表性为美国的MIL 标准和英国国防部07-55标准。我国自80年代开始采用等效或等同的方法先后将相同专业的美国MIL标准转换为我国军标,美国军标的特点是工程应用性好,特别是标准中的环境条件要求来自同类产品的平台环境条件。 (二)环境适应性的设计内容 电子设备在运输、储存和使用过程中要经受到多种多样的、错综复杂的环境条件。按对影响产品的环境因素来分,有下面几种环境因素: ①气候条件;②机械条件; ③生物条件;④辐射条件; ⑤化学活性物质;⑥机械活性物质。 1、按对环境适应性设计专业可分为: ①耐高低温设计; ②防潮设计; ③抗振与缓冲设计 ④防生物侵害设计; ⑤防腐蚀设计; ⑥防尘、 ⑦防雨(水)设计; ⑧防太阳辐射设计。 2、环境适应性设计步骤 (1)确定产品寿命期的环境剖面 (2)明确产品的平台环境条件

振动与冲击标准精选(最新)

振动与冲击标准精选(最新) G2298《GB/T 2298-2010 机械振动、冲击与状态监测 词汇》 G3769《GB/T 3769-2010 电声学 绘制频率特性图和极坐标图的标度和尺寸》 G4201《GB/T 4201-2006 平衡机的描述检验与评定》 G6075.1《GB/T 6075.1-2012 机械振动 在非旋转部件上测量评价机器的振动 第1部分:总则》 G6075.2《GB/T 6075.2-2012 机械振动 在非旋转部件上测量评价机器的振动 第2部分:50MW以上,额定转速1500 r/min、1800 r/min、3000 r/min、3600 r/min 陆地安装的汽轮机和发电机》 G6075.3《GB/T 6075.3-2011 机械振动在非旋转部件上测量评价机器的振动:额定功率大于15kW额定转速在120r/min至15000r/min之间的在现场测量的工业机器》 G6075.4《GB/T6075.4-2001 在非旋转部件上测量和评价机器的机械振动:燃气轮机》 G6075.5《GB/T6075.5-2002 在非旋转部件上测量和评价机器的机械振动:泵站机组》 G6075.6《GB/T6075.6-2000在非旋转部件上测量和评价机器的机械振动:功率大100KV的往复式机器》 G6383《GB/T 6383-2009 振动空蚀试验方法》 G6444《GB/T 6444-2008 机械振动 平衡词汇》 G6557《GB/T 6557-2009 挠性转子机械平衡的方法和准则》3 G7031《GB/T 7031-2005 机械振动 道路路面谱 测量数据报告》 G7452《GB/T 7452-2007 机械振动 客船和商船适居性振动测量、报告评价准则》G7670《GB/T 7670-2009 电动振动发生系统(设备) 性能特性》 G8910.1《GB/T 8910.1-2004 手持便携式动力工具 手柄振动测量方法 第1部分:总则》 G8910.2《GB/T 8910.2-2004 手持便携式动力工具 手柄振动测量方法 第2部分:铲和铆钉机》 G8910.3《GB/T 8910.3-2004 手持便携式动力工具 手柄振动测量方法 第3部分:凿岩机和回转锤》 G9239.1《GB/T 9239.1-2006 机械振动 恒态(刚性)转子平衡品质要求:规范与平衡允差的检验》 G9239.2《GB/T 9239.2-2006 机械振动 恒态(刚性)转子平衡品质要求:平衡误差》 G10068《GB 10068-2008 轴中心高为56 mm及以上电机的机械振动 振动的测量、评定及限值》 G10179《GB/T 10179-2009 液压伺服振动试验设备 特性的描述方法》 G11348.1《GB/T11348.1-1999 旋转机械转轴径向振动的测量和评定:总则》 G11348.2《GB/T 11348.2-2012 机械振动 在旋转轴上测量评价机器的振动 第2部分:功率大于50MW,额定工作转速1500 r/min、1800 r/min、3000 r/min、3600 r/min陆地安装的汽轮机和发电机》 G11348.3《GB/T 11348.3-2011 机械振动在旋转轴上测量评价机器的振动第3部分:耦合的工业机器》 G11348.4《GB/T11348.4-1999 旋转机械转轴径向振动的测量和评定:燃气轮机

振动与冲击 JOURNAL OF VIBRATION AND SHOCK

第26卷第4期 Vol. 26 No. 4 2007 振 动与冲击 JOURNAL OF VIBRATION AND SHOCK 运用小波分析方法进行结构模态参数识别 朱宏平,翁顺 (1.华中科技大学土木工程与力学学院,武汉430074) 摘要结构的模态参数反映了结构自身特性,是基于动态特性的结构损伤识别和健康评估的重要因子。本文首 先介绍了环境激励下基于小波分析的模态参数识别方法,针对土木工程结构的前几阶自振频率处于低频区域以及环境激 励下结构响应信号信噪比很低的特点,着重论述了采用小波方法抑制原始测量信号中的高频成分(即噪音),从而突出结 构低频特性的降噪处理方法的基本原理。通过比较传统傅里叶变换、短时傅里叶变换和小波变换三种方法对一实际高层 建筑结构现场测试信号的处理结果以及有限元分析结果,认为小波分析方法可以更精确、更有效地识别工程结构的模态 参数。 关键词:傅里叶变换,短时傅里叶变换,小波变换,降噪,模态参数 中图分类号:TN911.6; TU311.4 文献标识码:A 在高层建筑抗震、抗风、健康监测及损伤诊断等研 究中,结构模态参数是非常重要的设计参数之一,基于 环境激励的模态参数识别方法越来越受到人们的重 视[1] 。目前国内外在结构模态参数识别方面的研究方 法有很多,主要可以分为:①频域方法:它是建立在频 响函数的理论基础上的,频域法的最大优点是利用频 域平均技术,最大限度地抑制了噪声影响,使模态定阶 问题容易解决,但也存在着如功率泄露、频率混叠、离 线分析等问题)②时域方法:是直接利用响应的时域信 号进行模态参数识别。与频域法相比,时域法对于分 离密集模态有更好的效果;③小波分析法[2( :比短时傅 里叶变换具有更好的时频窗口特性,克服了傅里叶变 换中时-频分辨率恒定的弱点,因此它能在具有足够 时间分辨率的前提下分析信号中的短时高频成分,又 能在很好的频率分辨率下估计信号中的低频。④基于 H HT 变换的非平稳信号的处理方法:它以瞬时频率 为基本量,以固有模态信号为基本信号,用于非平稳 信号处理;⑤基于模拟进化的模态参数识别的方法: 该方法实现了基于达尔文进化理论的整体优化算法 用于识别线性振动结构的模态参数。基于模拟进化 的模态参数识别方法用于测试噪音是很可靠的,但该 方法用于识别更复杂模态的现实问题上,还需要更进 一步研究。 本文针对实际工程,对环境激励下的高层建筑振 动响应信号采用小波方法进行分析[3 ( ,有效地识别高 层建筑固 有模态参数,并同传统傅里叶变换、短时傅里 叶变换的结果相比较,证实了小波分析方法在处理随 基金项目:国家自然科学基金(50378041)和教育部新世纪优秀人才基金 (2004年)资助 收稿日期:2006 -06 -21修改稿收到日期:2006 -07 -27 第一作者朱宏平博士,教授,博士生导师,1965年11月生 机信号方面的优 越性。由于环境激励下的振动测试信 号信噪比低[4(,对信号分析造成一定的干扰,本文用小 波分析方法对测试信号进行降噪处理,结果表明小波 方法能有效抑制噪音,还原真实信号,提取更多有用 信息。 1小波分析方法基本理论 傅里叶变换的实质是把波形分解成许多不同频率 正弦 波的叠加,是傅里叶级数在连续情况下的推广,函 数!") "L 1 ($)的傅里叶变换为: %(!) = fV ! /( ( D ⑴ J — A 短时傅里叶变换在傅里叶分析基础上引入时域信 息的最初尝试,它的基本思想是:把信号划分成许多小 的时间间隔,用傅里叶变换分析每一个时间间隔,以便 确定该时间间隔存在的频率。以高斯函数g a (/)= 为窗的短时傅里叶变换可定义为[;( :

振动,冲击,落下试验标准

振动/冲击/落下试验标准 目录 1.0 可靠度试验目的 振动试验概述冲击试验概述落下试验概述 2.0 试验项目与试验条件 2.1 试验程序 振动轴向辨别 测试件摆放安置 加速规正确填贴固定方式 振动试验条件 冲击试验条件 落下方式及顺序要求 落下试验条件 试验完成检查项目 试验报告 3.0 试验环境要求 二级实验室环境要求ISO/IEC 17025(1999) 一般测试实验室环境要求CNS 1.可靠度试验目的 近年来由于工业之高度发展,技术不断更新,各种产品系统结构日益复杂且更形精密,一系统往往由数千个零组件所组成,要是在使用中突然坏了一个零件,轻则导致系统功能不能尽善尽美的发挥,重则造成整个系统丧失功能,产生不可预期的后果。 因此产品必须经得起各种环境的考验,并要保证产品于正式生产后能安全可靠且经久耐用的在客户手中使用,就必须在研究发展期间将可靠度设计于产品质量中,所以试验的工作是不可少的,试验是评估系统可靠度的一种方法,也是最重要的一个阶段,利用过程中的各项数据及现象来评估可靠度相较于纸上谈兵式的理论推导要准确许多,左证资料越多,对所估计的可靠度信心也就越大,但不作试验或没有试验到某些程度以上的试验,并不代表产品系统不可靠,而是根本不知道产品可靠度的程度。 1.1 振动试验概述 振动测试的目的,在于实验室中作一连串可控制的振动仿真,测试产品在寿命周期中,是否

能承受运送或使用的振动环境的考验,也能确定产品设计及功能的要求标准。振动测试的精义在于确认产品的可靠度及提前将不良品在出厂前筛检出来,并评估其不良品的失效分析以其成为一个高水平、高可靠度的产品。 举凡货物、商品在送达客户途中,都必须经过不同的搬运过程才会送达用户手中。在此过程中将有不同状态之振动产生,造成产品不同程度的损坏。对于产品有任何的损坏都不是厂商及客户所愿意乐见,然而运送过程所发生的振动却是难以避免的。若一味地提高包装成本,必将带来不必要之浪费,反之脆弱的包装却造成产品的高成本,丧失其市场竞争力。 1.2 冲击试验概述 冲击试验主要以仿真装备及组件在使用与运输过程中,可能遭遇的冲击效应为主,并透过冲击波于瞬间瞬时能量交换,分析产品承受外界冲击环境之能力,试验之目的在于了解其机械结构弱点及特定功能之退化情形,属于破坏性实验的一种,有助于了解产品的结构强度及外观抗冲击、跌落等特性,若另实施产品破坏性试验,更能有效预估产品的可靠度及监控生产线产品制造的一致性。 1.3 落下试验概述 包装落下试验是针对包装完成的产品,试验其包装材的防振、包覆保护能力及产品本身的抗跌落程度是否足够,届以判断相关的包装设计、材料选择及改善要点,包装落下试验有助于消费者采购包装材料时,依据所接受之包装落下试验项目判断是否已合乎己用,并将未来会遭遇的环境应力一并考虑其中,进而要求包装材料之所需强度依据。 2.0 试验项目与试验条件 本标准规定实施时,依规定类别施加各类不同振动模态于产品上,用以界定产品之可靠度价值及损坏边界程度。 2.1 试验程序 (1)外观检验: A.测试件以实际制品或试制品为之,若采用试制品时其尺度、质量、构造及功能必须与制品同等为准。 B.外观不得有变形、刮伤、锈痕及污痕。 功能检验: A.每件应至少测试一循环测试时间。 B.每一循环测试应包含测试程序及测试程序(test program) ;各测试单元不得有功能不符及超过许可差量的状况,并依序测试各按钮、旋钮、开关、指示灯及调整器的功能。 (3)取样件数:依据实际制品可提供之最大测试数量进行,或依下列参考值进行测试件取样,并注意取样件数分配需以平均并随机落点于各产线、班别、人员等方式进行,避免因取样技术误差失去试验结果参考价值。

振动与冲击超级有用的资料

一.简述 近年来,随机振动试验在我院所有振动试验中的比例越来越高,原因有三:1、科学进步,此类设备的软件大量普及,一般只需在原来的电磁振动台加上一套控制软件及配套设备就可实行。2、企业随着国际标 准的大量采用,许多振动试验都采用随机振动。3、随机振动相对传统的正弦振动有着无法比拟的优点,它能 模拟各种实际运输条件下可能遇到的振动情况,如模拟公路运输,模拟铁路运输,模拟海运运输等等。本文主要介绍对于试验人员来说必须了解的随机振动参数及设置要求。  二.随机振动数据 上图是某一随机振动试验后的试验数据,对于试验人员来说,必须了解其中的一些参数含义。 曲线中,横坐标是频率,纵坐标是PSD,一般简称为频谱曲线。 PSD:Power spectrum density 功率谱 密度 PSD有二种:g2/Hz,m2/Hz2/Hz,二者之间换算:1 g2/Hz=96m2/Hz2/Hz PSD是随机振动中的重要参数,可理解为每频率单位中所含振动能量的大小,其值越大,相对应的频率段振幅值会变大,在试验中提高最低频率的PSD值可明显感觉到振幅增大。 频谱曲线的特点:1、它是对数坐标,主要是为了表述画线方便。2、它有一条平线或多条平线及斜线组成,平线和斜线之间首尾相连组成。3、试验条件中,PSD值不变的是平线,用  dB/oct 表示向上的斜线,用- dB/oct 表示向下的斜线。如-3 dB/oct 表示每增加一倍频率,PSD值下降一 半。 频谱曲线中,中间一条是设定曲线,上面二条和下面二条是设备的保护及中断线,附加在中间设定值上 的变化曲线是振动台实际控制曲线。  三.频率的选择 频率是随机振动的另一个重要参数,其单位是Hz,频率的选择一般与实践使用范围有关。例如:海运试验条件频率较低,一般从1100Hz,而且低频PSD值较大,随机振动的感觉像乘海轮,振幅大,频率低。铁路运输试验条件,频率是5150Hz,也是低频的PSD值大,随机振动给人的感觉如同乘座火车旅行,有趣 的事,有时感到声音也非常相似。高频随机振动,一般高频至2000Hz时,振动时噪声非常刺耳,感觉与飞机刚起飞或到达目的地下降时相似,高频振动一般应用于飞机运输或者其它有高频场合的地方。 对于频率,试验 人员必须注意最高频率和最低频率值。高频时,有些试验附加台面有可能不符合要求,不能使用;最低频率时,要了解其振幅是否要超过振动台的最大允许值,不注意的话有可能损伤台面,使振动试验无法进行下去。 四.试验时间 试验时间在随机振动试验数据中位于图中右上方。 试验时间有二项:Total 和 Auto。Auto是 试验要做的时间,Total 是设备运行的时间,Total 比Auto多的原因是:随机振动试验时计算机要进行预处理,才能产生符合试验要求的频谱曲线,预处理的时间一般为24分钟,而在正弦振动中是不需要的。 试验时 间的选择,在GJB150.16标准中,它给出了1小时的随机振动相当于运输多少公里的值,这给试验人员进行试验时间的选择提供了方便。 随机振动与正弦振动有许多不同之处,如正弦振动中一般三个方向的试验条件和试