最新概率论与数理统计及其应用第二版课后答案浙江大学

最新概率论与数理统计及其应用第二版课后答案浙江大学
最新概率论与数理统计及其应用第二版课后答案浙江大学

第1章 随机变量及其概率

1,写出下列试验的样本空间:

(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录

投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,

记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰

子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;

(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___

___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P ,

375.0)()(])[()(=-=-=AB P B P B A S P B A P ,

875.0)(1)(___

--=AB P AB P ,

5.0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P

3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为

72.0900

648=

4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为48344=??个,所以出现奇数的概率为

48.0100

48= (2)该数大于330的可能个数为48454542=?+?+?,所以该数大于330的概率为

48.0100

48=

5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。

(1)4只中恰有2只白球,1只红球,1只黑球。

(2)4只中至少有2只红球。

(3)4只中没有白球。

解: (1)所求概率为338412

131425=C C C C ;

(2) 所求概率为16567495201412

4418342824==++C C C C C C ; (3)所求概率为165

74953541247==C C 。

6,一公司向M 个销售点分发)(M n n <张提货单,设每张提货单分发给每一销售点是等可能的,每一销售点得到的提货单不限,求其中某一特定的销售点得到)(n k k ≤张提货单的概率。

解:根据题意,)(M n n <张提货单分发给M 个销售点的总的可能分法

有n M 种,某一特定的销售点得到)(n k k ≤张提货单的可能分法有k n k n M C --)1(种,所以某一特定的销售点得到)(n k k ≤张提货单的概率为

n k n k n M

M C --)1(。

7,将3只球(1~3号)随机地放入3只盒子(1~3号)中,一只盒子装一只球。若一只球装入与球同号的盒子,称为一个配对。

(1)求3只球至少有1只配对的概率。

(2)求没有配对的概率。

解:根据题意,将3只球随机地放入3只盒子的总的放法有3!=6种:123,132,213,231,312,321;没有1只配对的放法有2种:312,231。至少有1只配对的放法当然就有6-2=4种。所以

(2)没有配对的概率为3162=;

(1)至少有1只配对的概率为3

2311=-。

8,(1)设,1.0)(,3.0)(,5.0)(===AB P B P A P ,求)|(),|(),|(B A A P A B P B A P ?, )|(),|(AB A P B A AB P ?.

(2)袋中有6只白球,5只红球,每次在袋中任取1只球,若取到白球,放回,并放入1只白球;若取到红球不放回也不放入另外的球。连续取球4次,求第一、二次取到白球且第三、四次取到红球的概率。 解:(1)由题意可得7.0)()()()(=-+=?AB P B P A P B A P ,所以

313.01.0)()()|(===B P AB P B A P , 5

15.01.0)()()|(===A P AB P A B P , 7

5)()()()]([)|(=?=??=?B A P A P B A P B A A P B A A P , 71)()()()]([)|(=?=??=

?B A P AB P B A P B A AB P B A AB P , 1)

()()()]([)|(===AB P AB P AB P AB A P AB A P 。 (2)设)4,3,2,1(=i A i 表示“第i 次取到白球”这一事件,而取到红球可以用它的补来表示。那么第一、二次取到白球且第三、四次取到红球可以表示为4321A A A A ,它的概率为(根据乘法公式)

)|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =

0408.020592

840124135127116==???=

。 9,一只盒子装有2只白球,2只红球,在盒中取球两次,每次任取一只,做不放回抽样,已知得到的两只球中至少有一只是红球,求另一只也是红球的概率。

解:设“得到的两只球中至少有一只是红球”记为事件A ,“另一只

也是红球”记为事件B 。则事件A 的概率为

6

5314232422)(=?+??=A P (先红后白,先白后红,先红后红) 所求概率为

5

16

53142)()()|(=?==A P AB P A B P

10,一医生根据以往的资料得到下面的讯息,他的病人中有5%的人以为自己患癌症,且确实患癌症;有45%的人以为自己患癌症,但实际上未患癌症;有10%的人以为自己未患癌症,但确实患了癌症;最后40%的人以为自己未患癌症,且确实未患癌症。以A 表示事件“一病人以为自己患癌症”,以B 表示事件“病人确实患了癌症”,求下列概率。

(1))(),(B P A P ;(2))|(A B P ;(3))|(A B P ;(4))|(B A P ;(5))|(B A P 。 解:(1)根据题意可得

%50%45%5)()()(=+=+=B A P AB P A P ;

%15%10%5)()()(=+=+=A B P BA P B P ;

(2)根据条件概率公式:1.0%50%5)()()|(===

A P A

B P A B P ; (3)2.0%501%10)()()|(=-==

A P A

B P A B P ; (4)179%151%45)()()|(=-==

B P B A P B A P ; (5)3

1%15%5)()()|(===B P AB P B A P 。

11,在11张卡片上分别写上engineering 这11个字母,从中任意连抽6张,求依次排列结果为ginger 的概率。

解:根据题意,这11个字母中共有2个g ,2个i ,3个n ,3个e ,1个r 。从中任意连抽6张,由独立性,第一次必须从这11张中抽出2个g 中的任意一张来,概率为2/11;第二次必须从剩余的10张中抽出2个i 中的任意一张来,概率为2/10;类似地,可以得到6次抽取的概率。最后要求的概率为

924013326403661738193102112==?????;或者92401611

111311131212=A C C C C C C 。

12,据统计,对于某一种疾病的两种症状:症状A 、症状B ,有20%的人只有症状A ,有30%的人只有症状B ,有10%的人两种症状都有,其他的人两种症状都没有。在患这种病的人群中随机地选一人,求

(1)该人两种症状都没有的概率;

(2)该人至少有一种症状的概率;

(3)已知该人有症状B ,求该人有两种症状的概率。

解:(1)根据题意,有40%的人两种症状都没有,所以该人两种症状都没有的概率为%40%10%30%201=---;

(2)至少有一种症状的概率为%60%401=-;

(3)已知该人有症状B ,表明该人属于由只有症状B 的30%人群或者两种症状都有的10%的人群,总的概率为30%+10%=40%,所以在已知该人有症状B 的条件下该人有两种症状的概率为

4

1%10%30%10=+。

13,一在线计算机系统,有4条输入通讯线,其性质如下表,求一随机选择的进入讯号无误差地被接受的概率。

通讯线

通讯量的份额 无误差的讯息的份额 1

0.4 0.9998 2

0.3 0.9999 3

0.1 0.9997 4 0.2 0.9996

解:设“讯号通过通讯线i 进入计算机系统”记为事件)4,3,2,1(=i A i ,“进入讯号被无误差地接受”记为事件B 。则根据全概率公式有 9996.02.09997.01.09999.03.09998.04.0)|()()(4

1?+?+?+?==∑=i i i A B P A P B P

=0.99978

14,一种用来检验50岁以上的人是否患有关节炎的检验法,对于确实患关节炎的病人有85%的给出了正确的结果;而对于已知未患关节炎的人有4%会认为他患关节炎。已知人群中有10%的人患有关节炎,问一名被检验者经检验,认为他没有关节炎,而他却有关节炎的概率。 解:设“一名被检验者经检验认为患有关节炎”记为事件A ,“一名被检验者确实患有关节炎”记为事件B 。根据全概率公式有

%1.12%4%90%85%10)|()()|()()(=?+?=+=B A P B P B A P B P A P , 所以,根据条件概率得到所要求的概率为

%06.17%

1.121%)851%(10)(1)|()()()()|(=--=-==A P B A P B P A P A B P A B P 即一名被检验者经检验认为没有关节炎而实际却有关节炎的概率为17.06%.

1992-2016年浙江大学820普通物理考研真题及答案解析-汇编

2017版浙江大学《820普通物理》全套考研资料 我们是布丁考研网浙大考研团队,是在读学长。我们亲身经历过浙大考研,录取后把自己当年考研时用过的资料重新整理,从本校的研招办拿到了最新的真题,同时新添加很多高参考价值的内部复习资料,保证资料的真实性,希望能帮助大家成功考入浙大。此外,我们还提供学长一对一个性化辅导服务,适合二战、在职、基础或本科不好的同学,可在短时间内快速把握重点和考点。有任何考浙大相关的疑问,也可以咨询我们,学长会提供免费的解答。更多信息,请关注布丁考研网。 以下为本科目的资料清单(有实物图及预览,货真价实): 2017年浙江大学《普通物理》全套资料包含: 一、浙江大学《普通物理》历年考研真题及答案 2016年浙江大学《普通物理》考研真题(含答案解析) 2014年浙江大学《普通物理》考研真题 2012年浙江大学《普通物理》考研真题(含答案解析) 2011年浙江大学《普通物理》考研真题(含答案解析) 2010年浙江大学《普通物理》考研真题(含答案解析) 2009年浙江大学《普通物理》考研真题(含答案解析) 2008年浙江大学《普通物理》考研真题(含答案解析) 2007年浙江大学《普通物理》考研真题(含答案解析) 2006年浙江大学《普通物理》考研真题(含答案解析) 2005年浙江大学《普通物理》考研真题(含答案解析) 2004年浙江大学《普通物理》考研真题(含答案解析) 2003年浙江大学《普通物理》考研真题(含答案解析) 2002年浙江大学《普通物理》考研真题(含答案解析) 2001年浙江大学《普通物理》考研真题(含答案解析) 2000年浙江大学《普通物理》考研真题 1999年浙江大学《普通物理》考研真题 1998年浙江大学《普通物理》考研真题 1997年浙江大学《普通物理》考研真题 1996年浙江大学《普通物理》考研真题

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论与数理统计及其应用第二版课后答案浙江大学

第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投 掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次, 记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H 则再抛一次;若出现T,则再抛一颗骰子,观 察出现的各种结果。 解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{Λ=S ;(3)},,,,{ΛTTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。 2,设B A ,就是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___ ___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P , 375.0)()(])[()(=-=-=AB P B P B A S P B A P , 875.0)(1)(___ --=AB P AB P , 5.0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。 解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为

应用概率论与数理统计试题

试卷 学期: 2011至 2012 学年度第一学期 课程:应用概率论与数理统计专业: 班级:姓名:学号: 解答下列各题(每小题3分,共计51分) 1.设随机事件A与B互不相容,P(A)=0.2,P(B)=0.4,求P(B|A)2.设事件A、B满足P(A B)=0.2,P(A)=0.6,求P(AB)。 3.某人射击三次,其命中率为0.8,求三次中至多命中一次的概率为。

4.已知随机变量X 的分布函数为 F(x)= ????? ????? ?≥<≤<≤<3131321021 00x x x x , 求P }{1X =。 5.已知离散型随机变量X的分布函数为F(x)=???? ???≥<≤<≤<4 ,143,6.031,1.010x x x x ,, 求1}X |4P{X ≠<。 6.设随机变量X 的概率密度为 ??? ??<<-=,, ;x ,x )x (f 其他0224求P {-1

7.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,求F(3)。 8.一口袋装有3只红球,2只黑球,今从中任意取出2只球,求这两只恰为一红一黑的概率. 9.某仪器上装有4只独立工作的同类元件,已知每只元件的寿命(以小时计)σ),当工作的元件不少于2只时,该仪器能正常工作。 X~N(5000,2 求该仪器能正常工作5000小时以上的概率。 10.设事件A与B互不相容,P(A)=0.2,P(B)=0.3,求P(B A?). 11.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,求第二次取到的是正品的概率.

(完整版)浙江大学物理化学实验思考题答案

一、恒温槽的性能测试 1.影响恒温槽灵敏度的主要因素有哪些?如和提高恒温槽的灵敏度? 答:影响灵敏度的主要因素包括:1)继电器的灵敏度;2)加热套功率;3)使用介质的比热;4)控制温度与室温温差;5)搅拌是否均匀等。 要提高灵敏度:1)继电器动作灵敏;2)加热套功率在保证足够提供因温差导致的热损失的前提下,功率适当较小;3)使用比热较大的介质,如水;4)控制温度与室温要有一定温差;5)搅拌均匀等。 2.从能量守恒的角度讨论,应该如何选择加热器的功率大小? 答:从能量守恒角度考虑,控制加热器功率使得加热器提供的能量恰好和恒温槽因为与室温之间的温差导致的热损失相当时,恒温槽的温度即恒定不变。但因偶然因素,如室内风速、风向变动等,导致恒温槽热损失并不能恒定。因此应该控制加热器功率接近并略大于恒温槽热损失速率。 3.你认为可以用那些测温元件测量恒温槽温度波动? 答:1)通过读取温度值,确定温度波动,如采用高精度水银温度计、铂电阻温度计等;2)采用温差测量仪表测量温度波动值,如贝克曼温度计等;3)热敏元件,如铂、半导体等,配以适当的电子仪表,将温度波动转变为电信号测量温度波动,如精密电子温差测量仪等。 4.如果所需恒定的温度低于室温,如何装备恒温槽? 答:恒温槽中加装制冷装置,即可控制恒温槽的温度低于室温。 5.恒温槽能够控制的温度范围? 答:普通恒温槽(只有加热功能)的控制温度应高于室温、低于介质的沸点,并留有一定的差值;具有制冷功能的恒温槽控制温度可以低于室温,但不能低于使用介质的凝固点。 其它相关问题: 1.在恒温槽中使用过大的加热电压会使得波动曲线:( B ) A.波动周期短,温度波动大; B.波动周期长,温度波动大; C.波动周期短,温度波动小; D.波动周期长,温度波动小。

概率论与数理统计及其应用第二版课后答案浙江大学

第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录 投掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次, 记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰 子,观察出现的各种结果。 解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =; (4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。 2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___ ___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P , 375.0)()(])[()(=-=-=AB P B P B A S P B A P , 875.0)(1)(___ --=AB P AB P , 5.0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为 72.0900 648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。 解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为48344=??个,所以出现奇数的概率为 48.0100 48= (2)该数大于330的可能个数为48454542=?+?+?,所以该数大于330的概率为 48.0100 48= 5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。 (1)4只中恰有2只白球,1只红球,1只黑球。 (2)4只中至少有2只红球。 (3)4只中没有白球。 解: (1)所求概率为338412 131425=C C C C ;

概率论与数理统计在大数据分析中的应用3篇 概率论与数理统计

概率论与数理统计在大数据分析中的应用3篇概率论与 数理统计 精品文档,仅供参考

概率论与数理统计在大数据分析中的应用3篇概率 论与数理统计 在大数据时代,利用概率论与数理统计方法来对繁杂数据进行分析与挖掘不失为是一种简单高效的方法。下面是本站为大家带来的,希望能帮助到大家! 概率论与数理统计在大数据分析中的应用1 概率论与数理统计知识是数学知识体系中的重要分支,对日常生活有着广泛的理论指导。基于此,本文首先介绍了概率论与数理统计的主要学科知识,其次对于概率论与数理统计知识在日常生活中的应用,从等概率问题、序列概率问题、几何概率模型问题、统计模型、常识性统计几个方面,进行具体的研究与分析,最后对概率与数理统计的应用做出展望。 概率论和数理统计是高等数学中的重要组成部分。在自然界和人们的日常生活中,随机现象与随机事件非常普遍,概率论和数理统计是对某一事件可能结果的客观分析和理性判断。只要我们细心研究就会发现,概率论和数理统计在日常生活中有着多方面的应用。 一、概率论与数理统计知识 概率论(Probability Theory)是研究随机现象数量规律的数学分支,数理统计(Mathematics Statistics)是以概率论为基础,研究人类社会和自然界中的随机现象变化规律的

一种数学模型[1]。概率论与数理统计知识主要包含事件间关系的确定、概率的计算、概率计算模型、概率计算公式、相关性分析、参数估计、假设检验与回归分析、随机变量知识、中心极限定理等等[2]。概率论与数理统计来源与生活,是对生活中的多种随机现象的逻辑分析与抽象总结。在日常生活中,也能找到多种应用概率论与数理统计知识的具体体现。 二、概率论与数理统计在日常生活中的具体应用体现 (一)概率论与数理统计在等概率事件中的应用 等概率事件是指每一个随机事件发生的概率都是相同的,等概率问题是生活中常见的问题,小到我们玩狼人杀时的身份抽取、值日生分组中的抓阄分组,大到工厂的货物质检、食品安全部门的卫生抽检,都能应用到概率论与数理统计的相关知识。 例1:一个罐头生产厂将密封不严、颜色不达标、微生物超標的罐头列为次品。该工厂每月生产十五批货。一批货的次品率是1/20,数量很大,有几万个,现在随机取9个。问9个里面次品数量大于2个(包括2个)的概率有多少? 解:P(B1)代表9个产品中次品数量大于2的概率 P(B2)代表9个里面次品数量小于1个(包括1个)的概率,也相当于只有一个次品的概率+没有次品的概率 P(B2)=9*(1/20)*(19/20)8 +(19/20)9

大学物理习题册-陈晓-浙江大学出版社第七.八章答案

1、 磁场的高斯定理??=?0S d B 说明了下面的哪些叙述是正确的? a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数; b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数; c 一根磁感应线可以终止在闭合曲面内; d 一根磁感应线可以完全处于闭合曲面内。 A 、ad ; B 、ac ; C 、cd ; D 、ab 。 [ ] 1. A 解释:磁感线闭合的特性。 2 洛仑兹力可以 A 、改变带电粒子的速率; B 、改变带电粒子的动量; C 、对带电粒子作功; D 、增加带电粒子的动能。 [ ] B 解释:洛仑兹力的特点,改变速度方向不改变速度大小。 3 如图所示,两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直 位置,两个线圈的圆心重合,则在圆心O 处的磁感应强度大小为多少? A 、0; B 、R I 2/0μ; C 、R I 2/20μ; D 、R I /0μ。 [ ] C 解释:两个圆电流中心磁感强度的合成,注意方向。 4 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管 (R=2r ),两螺线管的匝数密度相等。两螺线管中的磁感应强度大小R B 和r B 应满足: A 、r R B B 2=; B 、r R B B =; C 、r R B B =2; D 、r R B B 4=。 [ ] B 解释:参考长直螺线管内部磁感强度公式nI B 0μ=,场强与半径无关。

5 B 6 D

7 B 一质量为m 、电量为q 的粒子,以速度υ垂直射入均匀磁场B 中,则粒子运动轨道所包围范围的磁通量与磁场磁感应强度B 大小的关系曲线是 [ ] (A ) (B ) (C ) (D ) 解释:由半径公式qB m R υ = 求出磁通量表达式,反比关系。 8 如图所示,有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布, 在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感应强度B 的大 小为: A 、 () b a I +πμ20 ; B 、; ) 2 1 (20b a I +πμ C 、b b a a I +ln 20πμ; D 、a b a b I +ln 20πμ。 [ ] C 解释:铜片上取线电流,由无限长线电流磁感强度公式) (20x b a a Idx dB -+= πμ积分求出p 点

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率论与数理统计课后习题答案

习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出 现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A = ‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量, A =‘通过汽车不足5台’, B =‘通过的汽车不 少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。 (2) {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (4) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5) {0,1,2,},{0,1,2,3,4},{3,4,} S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用 ,,A B C 表示下列事件: (1)仅A 发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 解 (1)ABC (2)AB AC BC U U 或 ABC ABC ABC ABC U U U ; (3)A B C U U 或 ABC ABC ABC ABC ABC ABC ABC U U U U U U ; (4)ABC ABC ABC U U ; (5)AB AC BC U U 或 ABC ABC ABC ABC U U U ; 3.一个工人生产了三件产品,以(1,2,3)i A i =表示第i 件产品是正品,试用i A 表示下列事件:(1)没有一件产品是次品;(2)至少有一件产品是次品;(3)恰有一件产品是次品;(4)至少有两件产品不是次品。 解 (1)123A A A ;(2)123A A A U U ;(3) 123123123A A A A A A A A A U U ;(4)121323A A A A A A U U 。 4.在电话号码中任取一个电话号码,求后面四个数字全不相同的概率。 解 设A =‘任取一电话号码后四个数字全不相同’,则 5.一批晶体管共40只,其中3只是坏的,今从中任取5只,求 (1)5只全是好的的概率; (2)5只中有两只坏的的概率。 解 (1)设A =‘5只全是好的’,则 537540 ()0.662C P A C =B ;

概率论与数理统计答案第四版第2章(浙大)

1、考虑为期一年的一张保险单,若投保人在投保一年后因意外死亡,则公司赔付20万元, 若投保人因其他原因死亡,则公司赔付5万元,若投保人在投保期末生存,则公司无需付给任何费用。若投保人在一年内因意外死亡的概率为0.0002,因其他愿意死亡的概率为0.0010,求公司赔付金额的分布律。 解:设X为公司的赔付金额,X=0,5,20 P(X=0)=1-0.0002-0.0010=0.9988 P(X=5)=0.0010 P(X=20)=0.0002 X 0 5 20 P 0.9988 0.0010 0.0002 2.(1) 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只球,以X表示取出的三只中的最大号码,写出随机变量的分布律. 解:方法一: 考虑到5个球取3个一共有=10种取法,数量不多可以枚举来解此题。 设样本空间为S S={123,124,125,134,135,145,234,235,245,345 } 易得,P{X=3}=;P{X=4}=;P{X=5}=; X 3 4 5 1/10 3/10 6/10 方法二:X的取值为3,4,5 当X=3时,1与2必然存在,P{X=3}= =; 当X=4时,1,2,3中必然存在2个,P{X=4}= =; 当X=5时,1,2,3,4中必然存在2个,P{X=5}= =; X 3 4 5 1/10 3/10 6/10 (2)将一颗骰子抛掷两次,以X表示两次中得到的小的点数,试求X的分布律. 解:P{X=1}= P (第一次为1点)+P(第二次为1点)- P(两次都为一点) = =; P{X=2}= P (第一次为2点,第二次大于1点)+P(第二次为2点,第一次大于1点)- P(两次都为2点) = =; P{X=3}= P (第一次为3点,第二次大于2点)+P(第二次为3点,第一次大于2点)- P(两次都为3点)

概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用 单位:兴隆场初级中学姓名:姜宏琼 摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。 关键字:概率、保险、彩票、统计、数据、应用 由赌徒的问题引起,概率逐渐演变成一门严谨的科学。1654年,有一个法国赌徒梅勒遇到了一个难解的问题:梅勒和他的一个朋友每人出30个金币,两人谁先赢满3局谁就得到全部赌注。在游戏进行了一会儿后,梅勒赢了2局,他的朋友赢了1局。这时候,梅勒由于一个紧急事情必须离开,游戏不得不停止。他们该如何分配赌桌上的60个金币的赌注呢?梅勒的朋友认为,既然他接下来赢的机会是梅勒的一半,那么他该拿到梅勒所得的一半,即他拿20个金币,梅勒拿40个金币。然而梅勒争执道:再掷一次骰子,即使他输了,游戏是平局,他最少也能得到全部赌注的一半——30个金币;但如果他赢了,并可拿走全部的60个金币。在下一次掷骰子之前,他实际上已经拥有了30个金币,他还有50%的机会赢得另外30个金币,所以,他应分得45个金币。 赌本究竟如何分配才合理呢?后来梅勒把这个问题告诉了当时法国著名的数学家帕斯卡,这居然也难住了帕斯卡,因为当时并没有相关知识来解决此类问题,而且两人说的似乎都有道理。帕斯卡又写信告诉了另一个著名的数学家费马,于是在这两位伟大的法国数学家之间开始了具有划时代意义的通信,在通信中,他们最终正确地解决了这个问题。他们设想:如果继续赌下去,梅勒(设为甲)和他朋友(设为乙)最终获胜的机会如何呢?他们俩至多再赌2局即可分出胜负,这2局有4种可能结果:甲甲、甲乙、乙甲、乙乙。前3种情况都是甲最后取胜,只有最后一种情况才是乙取胜,所以赌注应按3:1的比例分配,即甲得

(完整版)大学物理习题册-陈晓-浙江大学出版社第二章答案

P8. 1.B A 重力在速度方向上的分力,大小在变,a τ 不为恒量 B 正确 2 2 sin sin N n N N v F mg ma m R v F m mg R v F θθθ-===+↑↑↑ C 合外力为重力和支持力的合力,错 D 错 2.C 说的是“经摩擦力”,应和重力构成平衡力。 3A 212 s at t = === 4C 杆Mg f Ma += 猴,0mg f ma -== 得M m a Mg += 5A 合外力为0 6C

() (sin )*(sin )(sin )0ma Fcos mg Fsin F cos mg cos a da F cos d tg θμθθμθμθμθμθθθ μθ =--=+-+=-==取最大值,则取最大值 7B 8B 2 sin cos v N m R N mg v Rgtg θθθ ?=???=?= 9

10 一质量为5kg 的物体(视为质点)在平面上运动,其运动方程为263()r i t j SI =-r r r ,则物体所受合外力f r 的大小为_____;其方向为______. 解 因为()22 5630d r f m j j dt ==?-=-r r r ,所以物体所受合力f r 的大小为30N ,其方向沿y 轴负向。 11 0000000000022002cos cos sin sin cos (1cos )v t x t x dv F a t dt m F dv t dt m dx F v t dt m F dx t dt m F F x x t m m F x t x m ωωωωωωωωωωω= ==?===?-=-+=-+????

概率论与数理统计课后习题答案

第一章 随机事件及概率 第一节 样本空间与随机事件 1.试写出下列的样本空间。 {}{} ()()()()()()()()(){}(){} ()(){} 2 2(1)0100,(2)1,(3)(5,0)5,15,25,35,40,51,52,53,54,5(4),02,,5,212,,0,1,2,3,4,5,6s x x x R s x x x z s s x y x y x y R s x y x y x y =≤≤∈=≥∈== ≤+≤∈=≤+≤= 2.化简下列各式: ()()1() 2A Ω整个样本空间 3.设A,B,C 为三个事件,用A,B,C 的运算关系表示下列事件: ()()()()()()()()1234567ABC A B C ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC 第二节 随机事件的概率 1. ()()()()1121341c a b c b c a c ---+--+ 2. P(A ∪B ∪C) =P(A)+P(B)+P(C)-P(AB)-P(BC)-P(CA)+P(ABC) =1/4+1/4+/4-0-0-1/8+0 =5/8

{}{}()()()()()() ()()( )() ()293101831012=053 10310 1 15331 11(+-) 10101514 115 A B C P A C P B C P AB C p A p AB P A B P A B P A P A B P A B P AB === = == ===-=-===-= 设含含 4. ()()()()()1311011372102321013 10 27 15 1 15 C P A C C C P B C C P C C == == == 设这个球是黑球为事件A 设刚好一个白球一个黑球为事件B ,两个球全是黑球为事件C. 5. ()2 21232 1523 35C C P A C ==设这两件商品来自同一场地为事件A 。 6. ()()()()500 412 411013641=0.746 3652=10.427 12 p A A p A ?? =- ???-=设至少有一个人的生日是月 日为事件A 。设至少有两个人的生日是同一个月的为事件A 。

概率论与数理统计

《概率论与数理统计》 姓名:黄淑芹 学号:1543201000276 班级:数学与应用数学E 时间:2017年6月

概率论与数理统计 摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。 关键词:概率、统计、数学期望、方差、实际问题、应用 概率论与数理统计是研究随机现象统计规律的一门数学学科,是对随机现象的统计规律进行演绎和归纳的科学。随着社会的不断发展,概率论与数理统计的知识越来越重要,运用抽样数据进行推断已经成为现代社会一种普遍适用并且强有力的思考方式。目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。本文将就概率论与数理统计的方法与思想,在日常生活中的应用展开一些讨论,,推导出某些表面上并非直观的结论,从中可以看出概率方法与数理统计的思想在解决问题中的高效性、简捷性和实用性。 (一)、概率 要学习与概率有关的知识,首先要知道事件的定义与分类及与它们有关的运算性质: 随机事件 在抛掷一枚均匀硬币的试验中,“正面向上”是一个随机事件,可用A={正面向上}表示。 【1】随机试验中的每一个可能出现的试验结果称为这个试验的一个样本点,记作ωi。全体样本点组成的集合称为这个试验的样本空间,记作Ω.即Ω={ω1,ω2,…,ωn,…}。仅含一个样本点的随机事件称为基本事件,含有多个样本点的随机事件称为复合事件。 在随机试验中,随机事件一般是由若干个基本事件组成的。样本空间Ω的任一子集A称为随机事件。属于事件A的样本点出现,则称事件A发生。例如,在试验E中,令A表示“出现奇数点”,A就是一个随机事件,A还可以用样本点的集合形式表示,即A={1,3,5},它是样本空间Ω的一个子集,在试验中W中,令B表示“灯泡的寿命大于1000小时”,B也是一个随机事件,B也可用样本点的集合形式表示,即B={t|t>1000},B也是样本空间的一个子集。

《概率论与数理统计》第三版-课后习题答案

习题一: 1.1 写出下列随机试验的样本空间: (1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{Λ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22Λ=Ω; (3) 观察某医院一天内前来就诊的人数; 解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{Λ,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{ ;51,4≤≤=Ωj i j i π (5) 检查两件产品是否合格; 解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω; (6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{ 2 16,T y x T y x ≤≤=Ωπ; (7) 在单位圆内任取两点, 观察这两点的距离; 解:}{ 207ππx x =Ω; (8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{ l y x y x y x =+=Ω,0,0,8φφ; 1.2 (1) A 与B 都发生, 但C 不发生; C AB ; (2) A 发生, 且B 与C 至少有一个发生;)(C B A ?; (3) A,B,C 中至少有一个发生; C B A ??;

【概率论】概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用 材料学院 1211900133 缪克松

摘要:数学在生活中的应用越来越广,而概率也发挥着重要的作用。它不仅在科学技术、工 农业生产和经济管理中发挥着重要作用。而且它常常就发生在我们身边, 出现在我们每一 个人的生里, 只要我们善于利用概率的知识去解决问题, 概率论就会对我们的生活产生积极 的影响。 关键字:概率论;数理统计;生活 概率论与数理统计是研究随机现象统计规律的一门数学学科,是对随机现象的统计规 律进行演绎和归纳的科学。随着社会的不断发展,概率论与数理统计的知识越来越重要, 运用抽样数据进行推断已经成为现代社会一种普遍适用并且强有力的思考方式。目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与 人们生活息息相关的领域。本文将就概率论与数理统计的方法与思想,在日常生活中的应 用展开一些讨论,从中可以看出概率方法与数理统计的思想在解决问题中的高效性、简捷 性和实用性。 一.随机现象与概率 在自然界和现实生活中, 一些事物都是相互联系和不断发展的。在它们彼此间的联系 和发展中, 根据它们是否有必然的因果联系, 可以分成两大类: 一类是确定性的现象, 指 在一定条件下, 必定会导致某种确定的结果。如, 在标准大气压下, 水加热到 100 ℃, 就 必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性的现象。这类现象在 一定条件下的结果是不确定的。例如, 同一个工人在同一台机床上加工同一种零件若干个, 它们的尺寸总会有一点差异。又如, 在同样条件下, 进行小麦品种的人工催芽试验, 各颗 种子的发芽情况也不尽相同有强弱和早晚之别等。为什么在相同的情况下, 会出现这种不 确定的结果呢? 这是因为, 人们说的“相同条件”是指一些主要条件来说的, 除了这些主 要条件外, 还会有许多次要条件和偶然因素是人们无法事先预料的。这类现象, 人们无法 用必然性的因果关系, 对现象的结果事先做出确定的答案。事物间的这种关系是属于偶然 性的, 这种现象叫做偶然现象,或者叫做随机现象。概率, 简单地说, 就是一件事发生的可能性的大小。比如: 太阳每天都会东升西落, 这件事发生的概率就是 100% 或者说是 1, 因为它肯定会发生; 而太阳西升东落的概率就是 0, 因为它肯定不会发生。但生活中的很 多现象是既有可能发生, 也有可能不发生的, 比如某天会不会下雨、买东西买到次品等等, 这类事件的概率就介于 0 和 100% 之间, 或者说 0 和 1 之间。在日常生活中无论是股市涨跌, 还是发生某类事故, 但凡捉摸不定、需要用运气来解释的事件, 都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦, 同时又常常是解决问题的一种有效手段甚 至唯一手段。 二. 社会热点与概率论诠释 社会热点 1 进入 21 世纪后,各种特大自然灾害不断出现,日本发生里氏 9. 0 级强震、冰岛南部冰川火山喷发、印尼地震引发海啸等,“ 2012 地球毁灭之说”是否是真的。 社会热点 2 中国福利彩票巨奖频现,继 2009 年河南彩民独中 3. 6 亿元之后, 2010 年一河南彩民博得 2. 58 亿元,近日浙江一彩民狂揽 5. 65 亿元。这几把接力“火炬”,无 疑让中国福彩业沸腾了,但并非人人都有这样的好运气。 概率论知识———小概率事件必然发生 以上热点 1 和热点 2 都是概率论里提及的小概率事件,意指发生可能性很小的事件。小概率事件的原理又称为似然推理,即如果一个事件发生的概率很小,那么在一次 试验中,可以把它看成是不可能事件。如考虑福彩双色球每一注中 500 万大奖的概率为p,则 p=1C633* C116=11 107 568* 16≈5. 64*10^-8,是典型的小概率事件,在一次

浙江大学普通物理1996年试卷及解答

普通物理(B)1996年1月23日 一、一、填空题 1.(普朗克常量h =6.63×10-34J ·s ,基本电荷e =1.60×10-19C ) 硫化镉(CdS )晶体的禁带宽度为2.42eV ,要使这种晶体产生本征光电导,则入射到晶体上的光的波长不能大于__________________。 2. 粒子在一维无限深方势阱中运动,下图为粒子处于某一能态上的波函数Ψ(x )的曲线。粒子出现几率最大的位置为______________________。 3. 一维无限深势阱中,已知势阱宽度为a ,应用测不准关系估计势阱中质量为m 的粒子的零点能量为_____________________________。 4.(选择题) 以一定频率的单色光照射在某种金属上,测出其光电流的曲线如图中实线所示,然后在光强度不变的条件下增大照射光的频率,测出其光电流的曲线如图中虚线所示,满足题意的图是_____________________。 5. 一单色平面偏振光,垂直投射到一块用石英(正晶体)制成的四分之一波片(对投射光的频率)上,如图所示。如果入射光的振动面与光轴成30°角,则对着光看从波片射出的光是___________________光,并画出o-光和e-光的振动方向。 6. X 射线射到晶体上,对于间距为d 的平行点阵平面,能产生衍射主极大的最大波长为________________________。 7. 如图所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L ,夹在两块平晶的中间,形成空气劈尖,当单色光垂直入射时,产生N 条等厚干涉条纹。如果滚柱之间的距离L 变为L/2,则在L 范围内干涉条纹的数目为__________,密度为_________。 O X Ψ a a/3 2a/3 I I U I O I U O A B C D L

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案 第七章参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2 的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σμ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。 解:(1)X c θc θc c θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θ n n n i i x x x c θ x f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

相关文档
最新文档