关于污水处理费用的数学模型(doc 8页)

关于污水处理费用的数学模型(doc 8页)
关于污水处理费用的数学模型(doc 8页)

更多资料请访问.(.....)

有关污水处理费用的数学模型

摘要

我们就工厂污水处理费用问题建立了一个最优化模型。该模型在确保排入江中后的江水污染浓度符合国家标准规定的水的污染浓度的条件下,考虑了江水污染浓度和工厂处理后的水的污染浓度问题。

在第二问中,设定还未与居民点对面工厂混合的水为该居民点的上游。

最后,我们用LINGO软件求出最优解,即工厂处理的最小费用。

关键词:江水流量污染浓度自净数学模型

1.问题的提出:

如下图,有若干工厂的污水经排污口流入某江,各口有污水处理站,处理站对面是居民点,工厂1上游江水流量和污水浓度,国家标准规定的水的污染浓度,以及各个工厂的污水流量和污水浓度均已知道。设污水处理费用与污水处理前后的浓度差及污水流量成正比,使每单位流量的污水下降一个浓度单位需要的处理费用(称处理系数)为已知。处理后的污水与江水混合,流到下一个排污口之前,自然状态下的江水也会使污水浓度降低一个比例系数(称自净系数),该系数可以估计,试确定各污水处理厂出口的污水浓度,使在符合国家标准规定的条件下总的费用最小。

先建立一般情况的数学模型,再求以下的具体问题:

设上游江水流量为1000*1012L/min,污水浓度为0.8mg/l,3个工厂的污水流量均为5*1012l/min,污水浓度(从上游到下游排列)分别为100,60,50(mg/l),处理系数均为1万元/((1012l/min)*(mg/l),3个工厂之间的两段江面的自净系数(从上游到下游)分别为0.9和0.6。国家标准规定水的污染浓度不能超过1mg/l

(1)、为了使江面上所有地段的水污染达到国家标准,最少需要花费多少费用?

(2)、如果只要求三个居民点上游的不污染达到国家标准,最少需要花费多少费用?

2.问题的分析:

根据题目中:污水处理费用与污水处理前后的浓度差及污水流量成正比,得

Q i=k(P i1-p i2)*C i;

其中,Qi 表示任一工厂的处理费用,K表示处理系数,Pi1表示任一工厂处理前的小的污染浓度,Pi2表示此工厂处理后的水的污染浓度,Ci表示这个工厂的污水流量。

而总费用就是三个工厂处理费用的总和,即:

Q=Q1+Q2+Q3;

其中,Q表示处理总费用,Q1,Q2,Q3分别表示三个工厂的处理费用。

3.问题的假设:

工厂处理后的污水一排入江中,就立即与江水混合;

江水流量和污水流量都是一定的,不会再发生变化;

4.符号说明:

C:表示工厂上游的江水流量;

C1:表示3个工厂的污水流量;

P:表示国家标准规定的水的污染浓度;

P11:表示工厂1的未处理的污水浓度;

P12:表示工厂1处理后的污水浓度;

P21:表示工厂2的未处理的污水浓度

P22:表示工厂2处理后的污水浓度;

P31:表示工厂3的未处理的污水浓度;

P32:表示工厂3处理后的污水浓度;

K1:表示处理系数;

K2:表示自净系数;

Q:表示污水处理费用。

5.模型的建立与求解:

问题一:

第一个工厂的污水处理费用:

Q1=K1(P11-P12)*C1;

同理:

第二、第三工厂的污水处理费用为:

Q2=K1(P21-P22)*C1;

Q3=K1(P31-P32)*C1;

总费用:Q=K1(P11-P12+P21-P22+P31-P32)*C1;

约束条件:处理后的污水与江水混合后的污染浓度要符合国家标准。以第一工厂为例:(C1*P12+C*P1)/(C1+C)<=P;

同理:工厂2、3的分别为:

(K2(CP1+C1P12)/(C1+C)*C+P22*C1)/(2C1+C)<=P;

(K2’(K2((CP1+C1P12)/(C1+C))*C+P22*C1)/(2C1+C))*C+P32))/(3C1+C)<=P;

用LINGO软件求得结果如下:总费用为485万,P12=44,P22=22,P32=50。

问题二:居民点1的上游江水污染浓度为0.8,已达国家标准。

居民点2的上游江水污染浓度0.9(CP1+C1P12)/(C1+C)<=P;

此时费用Q=0.9(P11-P12)*C1;

居民点3的上游江水污染浓度(0.6(0.9(CP1+C1P12)/(C1+C))*C+C1P22)/(2C1+C)<=P;

此时费用:Q=(P21-P22)*C1;

总费用:Q=(P11-P12+P21-P22)*C1;

用LINGO软件求得结果如下:

总费用为:183万,P12=63.33333; P22=60

六.附件:

用LINGO软件求解程序如下:

问题一:

6.问题的分析:

根据题目中:污水处理费用与污水处理前后的浓度差及污水流量成正比,得

Q i=k(P i1-p i2)*C i;

其中,Qi 表示任一工厂的处理费用,K表示处理系数,Pi1表示任一工厂处理前的小的污染浓度,Pi2表示此工厂处理后的水的污染浓度,Ci表示这个工厂的污水流量。

而总费用就是三个工厂处理费用的总和,即:

Q=Q1+Q2+Q3;

其中,Q表示处理总费用,Q1,Q2,Q3分别表示三个工厂的处理费用。

7.问题的假设:

工厂处理后的污水一排入江中,就立即与江水混合;

江水流量和污水流量都是一定的,不会再发生变化;

8.符号说明:

C:表示工厂上游的江水流量;

C1:表示3个工厂的污水流量;

P:表示国家标准规定的水的污染浓度;

P11:表示工厂1的未处理的污水浓度;

P12:表示工厂1处理后的污水浓度;

P21:表示工厂2的未处理的污水浓度

P22:表示工厂2处理后的污水浓度;

P31:表示工厂3的未处理的污水浓度;

P32:表示工厂3处理后的污水浓度;

K1:表示处理系数;

K2:表示自净系数;

Q:表示污水处理费用。

9.模型的建立与求解:

问题一:

第一个工厂的污水处理费用:

Q1=K1(P11-P12)*C1;

同理:

第二、第三工厂的污水处理费用为:

Q2=K1(P21-P22)*C1;

Q3=K1(P31-P32)*C1;

总费用:Q=K1(P11-P12+P21-P22+P31-P32)*C1;

约束条件:处理后的污水与江水混合后的污染浓度要符合国家标准。以第一工厂为例:(C1*P12+C*P1)/(C1+C)<=P;

同理:工厂2、3的分别为:

(K2(CP1+C1P12)/(C1+C)*C+P22*C1)/(2C1+C)<=P;

(K2’(K2((CP1+C1P12)/(C1+C))*C+P22*C1)/(2C1+C))*C+P32))/(3C1+C)<=P;

用LINGO软件求得结果如下:总费用为485万,P12=44,P22=22,P32=50。

问题二:居民点1的上游江水污染浓度为0.8,已达国家标准。

居民点2的上游江水污染浓度0.9(CP1+C1P12)/(C1+C)<=P;

此时费用Q=0.9(P11-P12)*C1;

居民点3的上游江水污染浓度(0.6(0.9(CP1+C1P12)/(C1+C))*C+C1P22)/(2C1+C)<=P;

此时费用:Q=(P21-P22)*C1;

总费用:Q=(P11-P12+P21-P22)*C1;

用LINGO软件求得结果如下:

总费用为:183万,P12=63.33333; P22=60

六.附件:

用LINGO软件求解程序如下:

问题一:

model:

min=(100-p12+60-p22+50-p32)*5*10^12;

((5*10^12)*p12+0.8*(1000*10^12))/((1000*10^12)+(5*10^12))<1;

((0.9*(0.8*1000*10^12+5*10^12*p12)/(1000*10^12+5*10^12))*1000*10^12+5 *10^12*p22)/(2*5*10^12+1000*10^12)<1;

((0.6*(0.9*(0.8*1000*10^12+5*10^12*p12)/(1000*10^12+5*10^12)*1000*10^ 12+5*10^12*p22)/(2*5*10^12+1000*10^12))*1000*10^12+5*10^12*p32)/(1000 *10^12+3*5*10^12)<1;

p12<100;

p22<60;

p32<50;

end

结果:

Global optimal solution found at iteration: 3

Objective value: 0.4850000E+15

Variable Value Reduced Cost

P12 41.00000 0.000000

P22 22.00000 0.000000

P32 50.00000 0.000000

Row Slack or Surplus Dual Price

1 0.4850000E+15 -1.000000

2 0.000000 0.1050000E+15

3 0.000000 0.1010000E+16

4 0.1625616 0.000000

5 59.00000 0.000000

6 38.00000 0.000000

7 0.000000 0.5000000E+13

问题二:

model:

min=(100-p12+60-p22)*5*10^12;

0.9*(0.8*1000*10^12+5*10^12*p12)/(5*10^12+1000*10^12)<1;

0.6*((0.9*(0.8*1000*10^12+5*10^12*p12)/(5*10^12+1000*10^12))*1000*10^ 12+5*10^12*p22)/(2*5*10^12+1000*10^12)<1;

p12<100;

p22<60;

end

结果:

Global optimal solution found at iteration: 2

Objective value: 0.1833333E+15

Variable Value Reduced Cost

P12 63.33333 0.000000

P22 60.00000 0.000000

Row Slack or Surplus Dual Price

1 0.1833333E+15 -1.000000

2 0.000000 0.1116667E+16

3 0.2277228 0.000000

4 36.66667 0.000000

5 0.000000 0.5000000E+13

数学建模竞赛简介

数学建模竞赛简介 数学建模就是建立、求解数学模型的过程和方法,首先要通过分析主要矛盾,对各种实际问题进行抽象简化,并按照有关规律建立起变量,参数间的明确关系,即明确的数学模型,然后求出该数学问题的解,并通过一定的手段来验证解的正确性。 数学建模竞赛于1985年起源于美国,起初竞赛题目通常由工业部门、军事部门提出,然后由数学工作者简化或修正。1989年我国大学生开始参加美国大学生数学建模竞赛,1990年我国开始创办我国自己的大学生数学建模竞赛。1993年国家教委(现教育部)高教司正式发文,要求在全国普通高等学校中开展数学建模竞赛。从1994年开始,大学生数学建模竞赛成为教育部高教司和中国工业的应用数学学会共同主办,每年一届的,面向全国高等院校全体大学生的一项课外科技竞赛活动。2010年全国共有30省(市、自治区)九百多所院校一万多个队三万多名大学生参赛,成为目前全国高等学校中规模最大的课外科技活动。数学建模竞赛是教育主管部门主办的大学生三大竞赛之一。 现在的竞赛题目来源于更广泛的领域,都是各行各业的实际问题经过适当简化,提炼出来的极富挑战性的问题,每次两道题,学生任选一题,可以使用计算机、软件包,可以参阅任何资料(含上网参阅任何资料)。竞赛以三人组成的队为单位,三人之间通力合作,在三天三夜内完成一篇论文。不给论文评分,而是按论文的水平为四档:全国一等奖、全国二等奖、赛区一等奖,赛区二等奖,成功参赛奖。我校于2001年开始参加这项竞赛活动。多次获全国一等奖、二等奖、湖北赛区一等奖、二等奖。 数学建模竞赛活动培养了学生的创造力、应变能力、团队精神和拼搏精神,适应了21世纪经济发展和人才培养的挑战。不少参加过全国大学生数学建模竞赛的同学都深有感触,他们说:“参加这次活动是我们大学四年中最值得庆幸的一件事,我们真正体会这几年内学到了什么,自己能干什么。”“那不寻常的三天在我们记忆中留下了永恒的一瞬,真是一次参赛,终身受益。”团队精神贯穿在数学建模竞赛的全过程,它往往是成败的关键。有些参赛队员说:“竞赛使我们三个人认识到协作的重要性,也学会了如何协作,在建模的三天中,我们真正做到了心往一处想,劲往一处使,每个人心中想的就是如何充分发挥自己的才华,在短暂的时间内做出一份尽量完善的答卷。三天中计算机没停过,我们轮流睡觉、轮流工作、轮流吃饭,可以说是抓住了每一滴可以抓住的时间。”“在这不眠的三天中,我们真正明白了团结就是力量这个人生真谛,而这些收获,将会伴随我们一生,对我们今后的学习,工作产生巨大的影响。”

污水处理模型(最终版)

污水处理模型 摘要 随着经济的快速发展,环保问题已经成为一个不容忽视的问题,而水资源更是关系着每个居民的日常生活,因此对于污水处理这一特殊的问题我们在解决时就应该本着高效的原则去实施,在这个污水处理问题中,我们先建立了一般情况下的模型,然后将该模型应用到实际问题中从而解决了实际问题。在模型的建立中我们要考虑工厂的净化能力,江水的自净能力,在保证江水经这一系列的处理后在到达下一个居民点后要达到国家标准,还要花费最少,对该问题进行全面的分析后可知这是一个运筹学方面关于线性规划的最优解问题,在该模型的建立中我们针对江水污水浓度在每个居民点之前小于国家标准这一条件对其建立线性约束条件,然后综合考虑费用最小,在结合三个处理厂各自的情况后,关于费用抽象数模型的目标函数,运用LINGO9.0规划软件求解,最后求得使江面上所有地段的水污染浓度达到国家标准时的最小费用为5万元。 关键词:污水处理自净系数污水流量处理系数污水浓度

一、 问题重述 如下图,由若干工厂的污水经排污口流入某江,各口有污水处理站,处理站对面是居民点。工厂1上游江水流量和污水浓度,国家标准规定的水的污染浓度,以及各个工厂的污水流量和污水浓度都已知道。设污水处理费用与污水处理前后的浓度差和污水流量成正比,使每单位流量的污水下降一个浓度单位需要的处理费用(称处理系数)为已知,处理后的污水与江水混合,流到下一个排污口之前,自然状态下江水也会使污水浓度降低一个比例系数(称自净系数)该系数可以估计。试确定各污水处理站出口的污水浓度,使在符合国家标 先建立一般情况下的数学模型,再求解以下的具体问题: 设上游江水流量为min /10100012l ?,污水浓度为l mg /8.0,三个工厂的污水流量均为min /10512l ?,污水浓度(从上游到下游排列)分别为100,60,50(l mg /),处理系数均为1万元/)/(m in)/10(12l mg l ?,3个工厂之间的两段江面的自净系数(从上游到下游)分别为0.9,0.6。国家规定的污水浓度不能超过1l mg /。 (1)为了使江面上所有地段的水污染达到国家标准,最少需要花费多少费用? (2)如果只要求三个居民点上游的水污染达到国家标准,最少需要花费 江水

一维水量水质模型

第七章 一维非恒定河流和河网水量水质模型 对于中小型河流,通常其宽度及水深相对于长度数量较小,扩散质(污染物质、热量)很容易在垂向及横向上达到均匀混合,即扩散质浓度在断面上基本达到均匀状态。这种情况下,我们只需要知道扩散质在断面内的平均分配状况,就可以把握整个河道的扩散质空间分布特征,这是我们可以采用一维圣维南方程描述河流水动力特征或水量特征(水位、流量、槽蓄量等);用一维纵向分散方程描述扩散质在时间及河流纵向上的变化状况。特别地,对于稳态水流,可以采用常规水动力学方法推算水位、断面平均流速的沿程变化;采用分段解析解法计算扩散质浓度沿纵向的变化特征。但是,在非稳态情况下(水流随时间变化或扩散质源强随时间变化)解析解法将无能为力(水流非恒定)或十分繁琐(水流稳态、源强非恒定),这时通常采用数值解法求解河道水量、水质的时间、空间分布。在模拟方法上,无论是单一河道还是由众多单一河道构成的河网,若采用空间一维手段求解,描述水流、水质空间分布规律的控制方程是相同的,只不过在具体求解方法上有所差异而已。 7.1 单一河道的控制方程 7.1.1 水量控制方程 采用一维圣维南方程组描述水流的运动,基本控制方程为: (1) 023/42 2=+-++R Q u n g x A u x Z gA x Q u t Q ???????? (2)

式中t 为时间坐标,x 为空间坐标,Q 为断面流量,Z 为断面平均水位,u 为断面平均流速,n 为河段的糙率,A 为过流断面面积,B W 为水面宽度(包括主流宽度及仅起调蓄作用的附加宽度),R 为水力半径,q 为旁侧入流流量(单位河长上旁侧入流场)。此方程组属于二元一阶双曲型拟线性方程组,对于非恒定问题,现阶段尚无法直接求出其解析解,通常用有限差分法或其它数学离散方法求其数值解。在水流稳态、棱柱形河道条件下,上述控制方程组退化为水力学的谢才公式,可采用相应的方法求解水流特征。 7.1.2 扩散质输运控制方程 描述河道扩散物质运动及浓度变化规律的控制方程为:带源的一维对流分散(弥散)方程,形式如下: S S h A KAC x c AE x x QC t AC r x ++-???? ??=+????????)()( (3) 式中,C 为污染物质的断面平均浓度,Q 为流量, 为纵向分散系数,S 为单 位时间内、单位河长上的污染物质排放量,K 为污染物降解系数,S r 为河床底泥释放污染物的速率。 此方程属于一元二阶偏微分方程,对于非恒定水流问题,微分方程位变系数的偏微分方程,现阶段尚无法直接求出其解析解,通常用有限差分法或其它数学离散方法求其数值解。在水流稳态、污染源源强恒定条件下,可按水动力特征将河道分为若干子段,在每个分段上,上述控制方程简化为常系数的常微分方程,可采用解析方法秋初起理论解。 7.2 单一河道一维水量水质模型

数学建模_湖水污染问题(1)

湖水污染问题 一.问题提出 下图是一个容量为2000m3的一个小湖的示意图,通过小河A水以 /s的速度流入,以相同的流量湖水通过B流出。在上午8:00,因交通事故,一辆运输车上一个盛有毒性化学物质的容器倾翻,在图中X点处注入湖中。在采取紧急措施后,于上午9:00事故得到控制,但数量不详的化学物质Z已泻入湖中,初步估计Z的数量在5m3至20m3之间。 (1)请建立一个数学模型,通过它来估计湖水污染程度随时间的变化; (2)估计湖水何时到达污染高峰; (3)何时污染程度可降至安全水平(<=%)。 二.模型假设 1、湖水流量为常量,湖水体积为常量; 2、流入流出湖水水污染浓度为常量 三.问题分析 分析:湖水在时间t时污染程度,可用污染度F(t)表示,即每立方米受污染的水中含有Fm3的化学污染物质和(1-F)m3的清洁水。用分钟作为时间t 的单位。在0

=[(Z/120000)(2000/)*+C] =Z/432+C* 又因为:F(0)=0 所以:C=-Z/432 所以:y=Z/432[1- ] 求得以特解为: F(t)= Z/432[1- ] 在0

污水处理数学模型

污水处理系统数学模型 摘要 随着水资源的日益紧缩和水环境污染的愈加严重,污水处理的问题越来越受到人们的关注。由于污水处理过程具有时变性、非线性和复杂性等鲜明特征,这使得污水处理系统的运行和控制极为复杂。而采用数学模型,不仅能优化设计、提高设计水平和效率,还可优化已建成污水厂的运行管理,开发新的工艺,这是污水处理设计的本质飞跃,它摆脱了经验设计法,严格遵循理论的推导,使设计的精确性和可靠性显著提高。数学模型是研究污水处理过程中生化反应动力学的有效方法和手段。计算机技术的发展使数学模型的快速求解成为可能,使这些数学模型日益显示出他们在工程应用与试验研究中的巨大作用。 对于污水处理,有活性污泥法、生物膜法以及厌氧生物处理法等污水处理工艺,其中以活性污泥法应用最为广泛。活性污泥法是利用自然界微生物的生命活动来清除污水中有机物和脱氮除磷的一种有效方法。活性污泥法污水处理过程是一个动态的多变量、强耦合过程,具有时变、高度非线性、不确定性和滞后等特点,过程建模相当困难。为保证处理过程运行良好和提高出水质量,开发精确、实用的动态模型已成为国内外专家学者普遍关心的问题。此外,由于污水处理过程是一个复杂的生化反应过程,现场试验不仅时间长且成本很高,因此,研究对污水处理过程的建模和仿真技术具有十分重要的现实意义。本文在充分了解活性污泥法污水处理过程的现状及工艺流程的基础上,深入分析了现有的几种建模的方法,其中重点分析了ASM1。ASM1主要适用于污水生物处理的设计和运行模拟,着重于生物处理的基本过程、原理及其动态模拟,包括了碳氧化、硝化和反硝化作用等8种反应过程;包含了异养型和自养型微生物、硝态氮和氨氮等12种物质及5个化学计量系数和14个动力学参数。ASMI的特点和内容体现在模型的表述方式、污水水质特性参数划分、有机生物固体的组成、化学计量学和动力学参数等四个方面。 关键词:污水处理系统,活性污泥,数学模型,ASM1

大学生数学建模练习题

课题1. 计划生育政策调整对人口数量的影响 人口的数量和结构是影响我国经济和社会发展的重要因素。从20世纪70年代以来,我国鼓励晚婚晚育,提倡一对夫妻生育一个孩子。经过30多年的努力,我国有效地控制了人口的增长,对经济发展和人民生活的改善做出了积极的贡献。 针对我国老龄化比例不断提高等情况,2013年12月,第十二届全国人大常委会第六次会议表决通过了《关于调整完善生育政策的决议》,开放单独二胎政策。2015年10月,十八届五中全会决定,全面放开二胎政策。至此,实施了30多年的独生子女政策正式宣布终结。只要是合法的夫妻就享有生育二胎的权利,不再受“单独二孩”政策或“双独二孩”政策的限制。 收集数据,建立模型,根据已经出台的具体政策、独生子女人数、婚姻情况、生育意愿等分析和预测计划生育政策调整后对我国或某一个省、市、自治区人口数量变化的影响。 课题2. 学生下课时间调整对就餐压力的影响 科技大学现有在校生4万余人,目前能供学生就餐的餐厅只有三个:学者餐厅、学海餐厅、学苑餐厅,想必大家都有过在餐厅排队就餐以及找座难的经历,就餐人员流动情况决定着餐厅的总接纳量。同学们在下课后大都会第一时间奔向餐厅,这就使得本就人满为患的餐厅更加超负荷运转。如果同学们的下课时间不同,就餐时间自然不同,必然加快餐厅的人员流动,进而大大缓解餐厅的运转压力。 下面请你建立数学模型解决以下问题: 1.选择合理的指标,构建评价体系,衡量目前我校餐厅的运转压力。 2.以缓解餐厅运转压力为目标,合理设置不同教学楼的下课时间。 3.试分析在你设置的各教学楼下课时间情况下,我校餐厅运转压力将发生

的变化。(模型所需数据可自行调查也可进行程序仿真) 课题3. 麻疹模型的分析 本世纪初期,在伦敦曾观察到这种现象:大约每两年爆发一次麻疹传染病。生物学家H. E. Soper 试图解释这种现象,他认为易受传染病的人数因人口中增添的新的成员而不断补充,因此,他假设: ???????+-=+-=)()()()((t)I(t))(t I t S t I dt t dI S dt t dS αβμα 其中α、β和μ都是正的常数。 1. 找出方程的平衡解; 2. 证明方程的初始值足够接近这个平衡解的每一个解(t)S 、I(t),当t 趋于 无穷大时,都趋近于平衡解; 3. 当t 趋于无穷大时,方程的每一个解(t)S 、I(t)都趋于平衡解。所以,得 到结论:方程组不能解释是重复发生麻疹传染病这种现象。相反,它表明。这种疾病最终将趋于稳定状态; 4. 试改进该模型说明该周期现象。找一组相关的数据进行模拟,拟合方程的 参数使疾病爆发的周期与现实一致; 5. 对于麻疹考虑一些控制措施,对于每种控制措施给出相应的数学描述,研 究该系统的基本的动力学性质,最后比较各个措施的优缺点。 课题4. Fibonacci 数列的推广 Fibonacci 数列是一个很早的生态学模型,它的背景是兔子数量的增长。在描述兔子数量变化时有以下假设: ? 第一个月有一对刚出生的兔子; ? 兔子从第三个月后就可以生育;

数学建模常见评价模型简介

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据 通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

数学建模简介

数学建模简介 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述,也就是建立数学模型,然后用通过计算得到的结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 数学建模的广泛应用 数学建模的应用逐渐变的广泛,数学建模大量用于一般工程技术领域,用于代替传统工程设计中的现场实验、物理模拟等手段;在高新科技领域,成为必不可少的工具,无论是在通信、航天、微电子、自动化都是创新工艺、开发新 产品的必要手段;在新的科研领域在用数学方法研究 其中的定量关系时,数学建模就成为首要的、关键的 步骤和这些学科发展和应用的基础。 将计算机技术和数学建模进行紧密结合,使得原 本抽象的数学模型生动具体的呈现在研究者面前,使 得问题得到更好的解决。 数学建模的分支——数据挖掘 数据挖掘(Data Mining,DM)是目前人工智能和数 据库领域研究的热点问题,所谓数据挖掘是指从数据库 的大量数据中揭示出隐含的、先前未知的并有潜在价值 的信息的非平凡过程。数据挖掘是一种决策支持过程, 它主要基于人工智能、机器学习、模式识别、统计学、 数据库、可视化技术等,高度自动化地分析企业的数据, 做出归纳性的推理,从中挖掘出潜在的模式,帮助决策 者调整市场策略,减少风险,做出正确的决策。 数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。 数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析,等等。

数模 污水处理论文

姓名:王文斌 学号:3110008343 学院班级:应用数学学院信息与计算科学2班 摘要:现实生活中,污水如何进行处理,节约工厂的支出,是很多工厂都会面临的问题,根据题目假设了若干理想条件,在理想条件下进行模型的设计。对国家的污水处理标准、理想的环境系数、理想的处理工作环境。进行分析。具有一定的可参考价值。 关键字:LINGO,污水处理,最小化费用,数模。

问题重述 如下图,有若干工厂的污水经排污口流入某江,各口有污水处理站,处理站对面是居民点。工厂1上游江水流量和污水浓度,国家标准规定的水的污染浓度,以及各个工厂的污水流量和污水浓度均已知道。设污水处理费用与污水处理前后的浓度差与污水流量成正比,使每单位流量的污水下降一个浓度单位需要的处理费用(称处理系数)为已知。处理后的污水与江水混合,流到下一个排污口之前,自然状态下的江水也会使污水浓度降低一个比例系数(称自净系数),该系数可以估计。试确定各污水处理站出口的污水浓度,使在符合国家标准规定的条件下总的处理费用最小。 工厂1 工厂2 工厂3 处理站1 处理站3 江水 居民点1 居民点2 居民点3 问题的提出: 先建立一般情况下的数学模型,再求解以下的具体问题: 设上游江水流量为12 ?l/min,污水浓度为0.8mg/l,3个工厂的污水流量均为 100010 12 ?l/min,污水浓度(从上游到下游排列)分别为100,60,50(mg/l),处理系数均为510

1万元/((12 10l/min) (mg/l)),3个工厂之间的两段江面的自净系数(从上游到下游)分别为0.9,0.6。国家标准规定水的污染浓度不能超过1mg/l。 (1)为了使江面上所有地段的水污染达到国家标准,最少需要花费多少费用? (2)如果只要求三个居民点上游的水污染达到国家标准,最少需要花费多少费用? 模型的假设如下: 1:假设污水源只有江本身和工厂。 2:假设污水能和江水充分混合->浓度一致。 3:假设1+1必须等于2.即只有数学变化没有其他的生化反应。 4:混合过程瞬间完成。 5:只计算处理厂1至处理3之间的江面污染浓度。 6: 假设自净过程在江面段末尾完成即处理站1与处理站2之间的江面段的尾部完成。处理站2与处理站3之间也是一样。 7:假设居民点在污水处理口的上游。 问题分析: 由提出的假设可知。 符号说明: X1:工厂1排出污水的浓度。 X2:工厂2排出污水的浓度。 X3:工厂3排出污水的浓度。 Y1:工厂1排出的污水经过处理厂处理后的浓度。 Y2:工厂2排出的污水经过处理厂处理后的浓度。 Y3:工厂3排出的污水经过处理厂处理后的浓度。 Z1:处理厂1排出的污水浓度与江水混合后的浓度(问题2中加入自净)。 Z2:处理厂2排出的污水浓度与江水混合后的浓度(问题2中加入自净)。 Z3:处理厂3排出的污水浓度与江水混合后的浓度(问题2中加入自净)。 F1:处理厂1处理所用的处理费用。 F2:处理厂2处理所用的处理费用。 F3:处理厂3处理所用的处理费用。

数学建模--湖水的自我净化问题

湖水的自我净化问题 摘要 本题是一容积为V的大湖受到某种物质污染,从某时刻起污染源被切断,湖水开始更新,更新速率为r,建立求污染物浓度下降至原来的3%需要多长时间的数学模型问题。解决本问题需要用到微元法的思想,也就是在很小的时间内流出的湖水污染物浓度不变,然后利用湖水污染物的变化量等于流出湖水的污染量建立等式关系,对该等式求导后得出一个微分方程,利用Matlab中dsolve函数解该微分方程,求得污染物浓度下降至原来的3%所需时间为440.4天。本模型涉及到解微分方程,所以模型的应用很广泛,可以应用到动态分析问题中,利用该模型可以解决大量实际生活和生产问题。 关键词:微元法;微分方程;动态分析;Matlab

一、问题重述 1.1背景资料与条件 有一容积为V (单位:3 m )的大湖受到某种物质的污染,污染物均匀的分布在湖中。若从某时刻起污染源被切断,设湖水更新的速率是r (单位:3/m d )。试建立求污染物浓度下降至原来的3%需要多长时间的数学模型。 1.2需要解决的问题 在湖的容积为35.176*10^12()m ,湖水更新速率为34.121*10^10(/)m d 的条件下,求污染终止后,污染物下降到原来的3%所需的时间。 二、基本假设 2.1模型的假设 1) 假设一:湖水保持体积V 不变。 2) 假设二:污染物始终均匀的分布在湖中。(假设合理性见背景资料与条件。) 3) 假设三:在很小的时间内污染物浓度不变。(微元法思想) 2.2本文引用数据、资料均真实可靠。 三、符号说明 3.1模型的符号说明 A:():w t t 时刻湖区的污染物浓度。 B:(0):w 表示初始时刻湖中水的污染浓度。 C: t 为污染源切断后湖水更新的时间(单位:天)。 四、模型的建立与求解 4.1模型的建立 从开始到t 天内湖水含污染物改变量为: (0)()Vw Vw t - 由于流入湖中的水没有污染物,所以t 天内更新流出污染物量为: 0()t w t rdt ? 利用湖水污染物的变化量=流出湖水的污染量得: 0(0)()()t Vw Vw t w t rdt -=? 对t 求导得微分方程为:

数学模型在污水处理厂中的应用

数学模型在污水处理厂中的应用 发帖人: bluesnail 点击率: 487 郝二成,常江,周军,甘一萍 (北京城市排水集团有限责任公司,北京 100063) 摘要:综述了数学模型的发展历史,以及它在国内外污水处理厂中的应用情况,并对模型应用的问题和前景进行了分析。 关键词:数学模型;模拟;污水处理厂 模拟是污水处理设计和运行控制的本质部分,数学模型的核心是从反应机理出发,在一定条件下,在时间和空间范围内模拟、预测污水处理的实际过程。数学模型的应用可以大大减少我们的实验工作量,不仅提高了工作效率,而且节省了大量人 力、物力和财力。 在发达国家,应用数学模型从事污水处理工艺开发、设计及实现污水处理厂运行管理的精确控制,已相当普遍,而我国 在这一方面尚处于起步阶段,扩展的空间很大。 1 数学模型的发展 活性污泥法是废水生物处理中应用最广泛的方法之一。起初对活性污泥过程的设计和运行管理主要依靠经验数据,自20世纪50年代后期,Eckenfelder等人基于反应器理论和生物化学理论提出活性污泥法静态模型以来,动态模型研究不断发展,已 成为国际废水生物处理领域的研究热点。 传统静态模型以20世纪50 ~ 70年代推出的Eckenfelder、Mckinney、Lawrence-McCarty模型为代表,这些模型所采用的是生长-衰减机理。传统静态模型因为具有形式简单、变量可直接测定、动力学参数测定和方程求解较方便,得出的稳态结果基本满足工艺设计要求等优点,曾得到广泛应用。然而,长期实际应用也表明,这种基于平衡态的模型丢失了大量不同平衡生长状态间的瞬变过程信息,忽视了一些重要的动态现象,应用到具有典型时变特性的活性污泥工艺系统时,存在许多问题:无法解释有机物的“快速去除”现象;不能很好的预测基质浓度增大时微生物增长速度变化的滞后,要突破这些局限,必须建 立动态模型。 污水生物处理的动态模型主要包括Andrews模型、WRC模型、BioWin模型、UCT(University of Cape Town)模型、活性污泥数学模型、生物膜模型和厌氧消化模型等,其中以活性污泥数学模型研究进展最快,应用也最广。1983年,IAWQ(国际水质协会)成立了一个任务小组,以加快污水生物处理系统的设计和管理实用模型的发展和应用。首要任务是测评现有的模型,

湖水污染问题的数学建模与求解

中国传媒大学2010 学年第一学期数学建模与数学实验课程 数学建模与数学实验 题目Pristine湖污染问题的建模与求解 学生姓名 学号 班级 学生所属学院 任课教师 教师所属学院 成绩

Pristine湖污染问题的建模与求解 摘要 本文讨论了湖水污染浓度变化趋势的预测问题。 通过分析水流输入输出湖泊的过程,建立了湖水污染浓度随时间变化的含参变量的微分方程模型,在河水污染浓度恒定和自然净化速率呈线性关系的情况下,求得其精确解,带入具体数据得到结论:在PCA声称的河水污染浓度下,湖的环境不会恶化;在工作人员实地测得的河水浓度下,湖的环境将会恶化。 同时建立了计算机模拟模型,带入具体数值,运用时间步长法来仿真模拟了在湖水污染浓度稳定以前湖水每天的变化情况,输出自PCA建厂以来每年的湖水污染浓度,得到与微分方程模型相同的结论。 在全停产和半停产时,通过前面的两个模型可以计算湖水污染浓度在自然净化影响下的恢复到净化指标所需的年限。并可得到结论:在半停产状态下,在选定的自然净化速率常数的约束下,只有当河水污染浓度降至原来的3.15%(自然净化速率呈线性关系),4.7%(自然净化速率呈指数关系),才有可能使河水在100年内恢复至0.001mol/l,然后给出整改建议。 一、问题重述 Pure河是流入Pristine湖的唯一河流。50年前PCA公司在此河旁建起一个生产设施并投入运行。PCA将为处理的湖水排入河中,导致Pristine湖被污染。PCA公司声称:已排放的废水的标准多年从未改变切不会对湖的环境有影响。 现已知:Pristine湖的湖容量为L,流入(流出)的水流速度为L/年。 PCA公司声称河水污染浓度仅为0.001mol/L,自工厂以来没有改变过。 讨论下列问题: (1)建立数学模型用PCA提供的公开数据判断湖的环境是否会恶化; (2)以目前湖水污染浓度0.03mol/L,和河水污染浓度0.05mol/L为新数据判断湖的环境是否会恶化; 二、模型的合理假设和符号系统 2.1 模型的合理假设 (1)降水量和增发量相等; (2)湖中流入量和流出量相等且一直未变; (3)污水量远小于河水注入量,且污水与河水混合均匀; (4)湖水混合均匀,且流入污水的扩散速度无限大; (5)湖内除Pure河外,无其他污染源;

数学建模的介绍

一、数学建模的意义 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结

污水处理和渔业持续收获的数学建模

污水处理和渔业持续收获的数学建模 关于污水处理的数学建模 摘要 因为全球经济的日益增长中国经济也随之快速发展,经济发展的越快,就不可避免的破坏更多的自然环境,所以环保问题已经成为一个不容忽视的问题,而与每个居民的日常生活密切相关的就是水资源问题,因此对于污水处理这一特殊的问题我们在解决时就应该本着高效的原则去实施,在这个污水处理问题中,我们先建立了一般情况下的模型,然后将该模型应用到实际问题中从而解决了实际问题。在模型的建立中我们要考虑工厂的净化能力,江水的自净能力,在保证江水经这一系列的处理后在到达下一个居民点后要达到国家标准,还要花费最少,对该问题进行全面的分析后可知这是一个运筹学方面关于线性规划的最优解问题,在该模型的建立中我们针对江水污水浓度在每个居民点之前小于国家标准这一条件对其建立线性约束条件,然后综合考虑费用最小,在结合三个处理厂各自的情况后关于费用抽象数模型的目标函数,,然后应用LINDO软件求解该问题得到当三个处理厂排出的污水浓度分别为40 mg/l,20 mg/l,50 mg/l时,此时我们得到使江面上所有地段的水污染达到国家标准,最少需要花费费用为500万元。当从三个处理厂出来的污水浓度分别为 62.222225mg/l,60mg/l,50mg/l,时,此时如果只要求三个居民点上游的水污染达到国家标准最少需要花费费用为188.8889万元。 问题的提出 设上游江水流量为1000(12 10L/min),污水浓度为0.8(mg/L),3个工

厂的污水流量均为5(12 10L/min),污水浓度(从上游到下游排列)分别为 100,60,50(mg/L),处理系数均为1(万元/((12 10L/min)×(mg/L))),3个工厂之间的两段江面的自净系数(从上游到下游)分别为0.9和0.6。国家标准规定水的污染浓度不超过1(mg/L)。 (1)为了使江面上所有地段的水污染达到国家标准,最少需要花费多少费用? (2) 如果只要求3个居民点上游的水污染达到国家标准,最少需要花费多 少费用? 问题的分析 通过对该污水处理所花费用最少问题的分析,我们可知在此问题中有多个污水浓度,江水的原始污水浓度,工厂排出的污水浓度,处理厂排出的污水浓度,以及当处理厂排出污水与江水混合后再经江水自净后的浓度,在这几个浓度中只有经处理厂排出的污水的浓度是未知的,其关系着整个问题,要使总费用最少,江中每段的污水浓度都达到国家标准,江水中污水浓度在到达下一居民点之前须达到国家标准1(mg/l),那么问题的重点就在于对污水浓度的认识。在问题中有三个工厂以及对应的三个污水处理厂,那么这三个污水处理厂各向江中投放的污水浓度就要有一个界值,又因当处理厂将污水排到江中之后污水会随着江水不断向下游移动,因此下游污水的浓度与上游污水的浓度是紧密相关的,即江面中每段污水的浓度都是有联系的,在模型的建立过程中我们就要考虑应用递推的方法进行相邻两端之间污水浓度的联系,在问题的求解中因所花费用都是用来对污水的处理,因此对个处理厂排出的污水浓度的确定就显得至关重要,只有确

数学建模模最短路

基于最短路问题的研究及应用令狐采学 姓名:Fanmeng 学号: 指导老师:

摘要 最短路问题是图论中的一大问题,对最短路的研究在数学建模和实际生活中具有很重要的实际意义,介绍最短路问题的定义及这类问题的解决办法Dijkstra算法,并且能够在水渠修建实例运用到此数学建模的方法,为我们解决这类图论问题提供了基本思路与方法。 关键字数学建模最短路问题Dijkstra算法水渠修建。

目录 第一章.研究背景1 第二章.理论基础2 2.1 定义2 2.2 单源最短路问题Dijkstra求解:2 2.2.1 局限性2 2.2.2 Dijkstra算法求解步骤2 2.2.3 时间复杂度2 2.3 简单样例3 第三章.应用实例4 3.1 题目描述4 3.2 问题分析4 3.3符号说明4 3.4 模型假设5 3.5模型建立与求解5 3.5.1模型选用5 3.5.2模型应用及求解5 3.6模型评价5 第四章. 参考文献5 第五章.附录6

第一章.研究背景 在现实生活中中,我们经常会遇到图类问题,图是一种有顶点和边组成,顶点代表对象,在示意图中我们经常使用点或者原来表示,边表示的是两个对象之间的连接关系,在示意图中,我们使用连接两点G点直接按的下端来表示。顶点的集合是V,边的集合是E的图记为G[V,E] ,连接两点u和v的边用e(u,v)表示[1]。最短问题是图论中的基础问题,也是解决图类问题的有效办法之一,在数学建模中会经常遇到,通常会把一个实际问题抽象成一个图,然后来进行求的接任意两点之间的最短距离。因此掌握最短路问题具有很重要的意义。

第二章.理论基础 2.1 定义 最短路问题(short-path problem ):若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点,(通常是源节点和目标节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决的典型问题之一,可用来解决管道铺设,线路安装,厂区布局和设备更新等实际问题[2]。 2.2 单源最短路问题Dijkstra 求解: 2.2.1局限性 Dijkstra 算法不能够处理带有负边的图,即图中任意两点之间的权值必须非负。 2.2.2Dijkstra 算法求解步骤 (1).先给图中的点进行编号,确定起点的编号。 (2).得到图的构成,写出写出图的矩阵 0000(,)(,) (,) (,) n n n n u u u u G u u u u = (3).根据要求求出发点S 到终点E 的最短距离,那么需要从当前没被访问过的结点集合 unvist={u | u {1,2,3...}}n ∈中找到一个距离已经标记的点的集合中vist={u | u {1,2,3...}}n ∈的最短距离,得到这个顶点; (4).利用这个顶点来松弛其它和它相连的顶点距离S 的值 (5).重复步骤(2)和(3),直到再也没有点可以用来松弛其它点,这样我们就得到了由起点S 到其它任意点的最短距离。 2.2.3时间复杂度 时间复杂度达到 2 ()O N

水质数学模型分类

水质数学模型分类 按上游来水和排污随时间的变化情况: 动态模式、稳态模式 按水质分布状况: 零维、一维、二维和三维 按模拟预测的水质组分: 单一组分、多组分耦合模式 水质数学模式的求解方法及方程形式 解析解模式、数值解模式 河流水质模型 ? 河流完全混合模式、一维稳态模式、S-P 模式(适用于河流的充分混合段) ? 托马斯模式(适用于沉降作用明显河流的充分混合段) ? 二维稳态混合模式与二维稳态混合衰减模式(适用于平直河流的混合过程段) ? 弗罗模式与弗-罗衰减模式(适用于河流混合过程段以内断面的平均水质) ? 二维稳态累积流量模式与二维稳态混合衰减累积流量模式(适用于弯曲河流的混合过程段) ? 河流pH 模式与一维日均水温模式 河流完全混合模式 C -废水与河水完全混合后污染物的浓度,mg/L Qh -排污口上游来水流量,m3/s ) /()(h p h h p p Q Q Q c Q c c ++=

C h-上游来水的水质浓度,mg/L Qp-污水流量,m3/s Cp-污水中污染物的浓度, mg/L 适用条件:(1)废水与河水迅速完全混合后的污染物浓度计算;(2)污染物是持久性污染物,废水与河水经一定的时间(距离)完全混合后的污染物浓度预测。河流为恒定流动;废水连续稳定排放 一维稳态模式 C 为污染物的浓度;Dx 为纵向弥散系数, ux 断面平均流速;K 为污染物衰减系数 模型的适用对象:污染物浓度在各断面上分布均匀的中小型河流的水质预测BOD-DO耦合模型(S-P模型) 适用条件:河流充分混合段,污染物为耗氧有机物,需要预测河流溶解氧状态;河流为恒定流动,污染物连续稳定排放 氧垂曲线与临界点(最大氧亏值处) S-P模式的适用条件: ①河流充分混合段; ②污染物为耗氧性有机污染物; ③需要预测河流溶解氧状态; ④河流恒定流动;

污水处理费用分担,数学建模

数学建模课程设计报告题目:污水厂费用分担问题及其最优解决方案 姓名1: 陈琰炜学号:2 姓名2:曾亮学号:2 姓名3: 唐益学号:2 专业软件工程 班级1221811 指导教师:邱淑芳 建模小组联系电话 2014年6 月29 日 摘要 在当今资源稀缺得市场经济时代,如何优化配置各种有限资源对一个公司或国家来说越来越重要。谁能够找出合理最优得配置方案谁就有可能在激烈得市场竞争环境中生存下来。本案例针对问题8:费用分担问题提供出了一种合理得模型。 问题7中提供了2种方案,第一种方案就是每个城镇独立建污水处理厂,这种方案最简单,计算较为方便。直接利用常规数学知识就可以得出最后需要得费用。每个城镇最后得费用W[i]=C1*Q[i],(i=1,2,3) 即最后得总得费用M=W[1]+W[2]+W[3];由于每个城镇得污水量都有区别,所以每个城镇都独立建厂显然不能充分利用资源。所以我们考虑就是否可以采用第二种方案。 第二种方案,第二种方案又有4种可能: 1、三个城镇共用一个污水处理厂; 2、城镇一与城镇二共用一个;

3、城镇二与城镇三共用一个; 4、城镇一与城镇三共用一个; 针对这四种可能我们可以抽象用一种模型来处理,我们可以将其抽象为一个图得问题,在具体一点就就是一个求最短路径问题,那么我们就可以利用迪杰斯特拉(Dijkstra)算法就可以找出其最优解。进而就可以找出其最优方案。关键字:污水处理,污水厂选址,数学建模。 目录 1.摘要---------------------------------------------------------------------2 2.问题得重述与分析---------------------------------------------------4 3.基本假设---------------------------------------------------------------5 4.符号得约定------------------------------------------------------------6 5.原理与模型------------------------------------------------------------6 6.参考文献---------------------------------------------------------------13

相关文档
最新文档