甲类,乙类和甲乙类功率放大器的区别

甲类,乙类和甲乙类功率放大器的区别
甲类,乙类和甲乙类功率放大器的区别

电子知识

甲类(Class-A)放大器的输出晶体管(或电子管)的工作点在其线性部分中点,不论信号电平如何变化,它从电源取出的电流总是恒定不变,它是低效率的,用作声频放大时由于信号幅度不断变化,其实际效率不可能超过25%,可由单管或推挽工作。甲类放大器的优点是无交越失真和开关失真,而且谐波分量中主要是偶次谐波,在听感上低音厚实、中音柔顺温暖、高音清晰利落、层次感好,十分讨人喜欢。但一直因为耗电多,效率低,容易发热和对散热要求高而未能在大功率的放大器中得到广泛应用。由于器件长期工作于大电流高温下,容易引起可靠性和寿命方面的问题,而且整机成本高,所以制造甲类功率放大器出名的厂家,现在已大多停止生产晶体管甲类功率放大器。乙类(Class-B)放大器的偏置使推挽工作的晶体管(或电子管)在无驱动信号时,处于低电流状态,当加上驱动信号时,一对管子中的一只在半周期内电流上升,而另一只管子则趋向截止,到另一个半周时,情况相反,由于两管轮流工作,必须采用推挽电路才能放大完整的信号波形。乙类放大器的优点是效率较高,理论上可达78%,缺点是失真较大。

甲乙类(Class-AB)放大器在低电平驱动时,放大器为甲类工作,当提高驱动电平时,转为乙类工作。甲乙类放大器的长处在于它比甲类提高了小信号输入时的效率,随着输出功率的增大,效率也增高,虽然失真比甲类大,然而至今仍是应用最广泛的晶体管功率放大器程式,趋向是越来越多的采用高偏流的甲乙类,以减少低电平信号的失真。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间

及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提

供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建

模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网

上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,

并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除

了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。

非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

More: https://www.360docs.net/doc/7914561114.html,数码万年历More:s2csfa2 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组

成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模

型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法

解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。

KSA50甲类功放详细制作流程

这里是事先声明: (1)我是第一次装机子而且是甲类机---别人会问:第一次就装甲,你厉害啊----不是甲我有必要装么?我以前用的国产乙类,甲乙类厂机。 (2)买了四块KSA50---烧毁了一块,另外一块电源接反烧了俩二极管以及电源输入线路上的铜箔,重新弄好,正式上机是后来的两块,板子是惠州老刘的KSA50 (3)我的目的是听音乐,不是焊机为娱乐滴人----我不折腾,可能的话一块线路调到我要的声音,如果可能的话。 (4)老鸟可以无视我的经验,以下的只对菜鸟起作用,因为我连电路图差不多都看不懂,我是个吃现成的人---老鸟可以鄙视下 (5)发帖的目的是为了别人少走弯路,以下经验所诉只针对KSA50,以前开过贴不全面问题没有表述清楚,这次汇总下,终于挂上双声道了----这说明声音接近自己调试目的了,这点很重要。目的是个人准备给滤波电容最后拍定,测试声场定位,高中音 表现很理想了已经。(个人意见) 以下是正文: (1)选择之前很困惑,到底什么线路好?论坛上放水得多,冒充大侠的不少,真理只在少部分人手里---我相信这句话,但是群总的眼睛是雪亮的—我也相信这句话。既然 卖了那么多,买了那么多,存在即是道理,所以我选择了KSA50(也是因为群里的 朋友在推荐),想装PASS但是很多人对低音有微词,所以暂不考虑, (2)备料----KSA50整个淘宝就那么几款板子,直刻原厂的还是算了吧,我自问没那水平,我要的是KSA50基本框架,有些卖家适当的改进未必不见得是坏事,适合国情。 滤波电容的选择因为之前只对ELNA有所耳闻所以找了几个库存全新的JVC定制品 (这是第一次买料),机箱找遍淘宝只能是这个小甲箱(散热面积最大),那些个动 辄几十斤散热的大侠你还是别忽悠了,除非你想让你的散热片工作在50度以下!经过推算,淘宝上卖的最多的大甲箱A1000A998之类的绝对可以对付50W甲类!但 是由于是多块拼接所以紫铜均热板是必需的!!越大越好!(当然这样搞成本很高) 以之前对于音响系统的了解,双单声道无疑是最好的,干扰最低,而且这样搞散热 也很大---事实证明我的选择是对的!变压器是定制的,基本不叫—开机一瞬间微哼,后面听不到了,初级和次级大电流线径很重要,国内的牛和外国的还是有差距,因 为做的是甲类,线径不到大电流输出不能保证,我定制的是800W36V四线线径不 过1.5mm而已,勉强达标。IR桥上面散热片是用硅胶粘的牢靠的很(记住是硅胶不是硅脂)另外又买了一小盒含银硅脂,桥装在底板或者上盖板散热效率确实比 散热片强些,当然大型的散热片除外,桥的发热比散热片低,要是劣质产品那就超 标了。第二次备料----日化滤波18000uf四只,飞利浦23000uf四只,尼康BP-S 无极一堆,思碧等等小容量电容一堆,还有负反馈各种各样(我就不说了,个人听 音取向不同选择不同)。整流桥我都是买的IR,整个淘宝适合IR的整流桥电路板就一家,我后来发现很多朋友选择的螺栓型无电路板滤波和整流其实是很方便的,用电源板局限性很大。。。线材的选择---这里有必要说下,淘宝里铜镀银特氟龙基本都是很硬的那种,多股线芯很粗铜质有待考证,而且不符合线径一定线芯越多越 好的原则。老刘的和另外两家都一样,说实话我很不喜欢,因为我的是引线连接, 硬线非常不好用,后来别家买了软的特氟龙(有点水,不是说线水,线很好铜的纯 度高很软,这个外皮是透明的不燃但是60W烙铁温度高了外皮会化的很软但是还没融掉)最终测试用的是这种,对于外接线的大管要像我这样给上标记,我用的是热 缩管,避免线接错的悲剧发生。喇叭走线是4mm的怪兽,这线也不能焊,物理直连。 开关是红波的19mm开孔自复位开关,因为有软启动,没有软启动的选择机箱自带

乙类互补推挽功率放大器

科信学院CDIO项目设计说明书(2010 /2011学年第二学期) CDIO项目名称:电子应用系统一级项目 专业班级:电子信息工程 学生姓名: 学号: 指导老师: 设计成绩: 2011年6月28日

1、互补对称OTL 功放电路装调 1.1 CDIO 设计目的 通过设计乙类互补推挽功率放大器,掌握利用分离原件组成OTL 功放电路的原理,提高电路原理图读图技能,熟练掌握较复杂电路的装调操作方法 1.2 CDIO 设计正文 1. 2.1设计要求 电压增益:10倍(20分贝) 输出功率:0.5W 以上(负载R L =8?) 频率特性:20Hz ~20KHz 1.2.2 设计原理 乙类工作时,为了在负载上合成完整的正弦波,必须采用两管轮流导通的推挽电路。通常使用T1和T2两个特性配对的互补功率管(NPN 型和PNP 型),若忽略功率管发射结导通电压,则当输入信号正半周期时,两功率管分别导通和截止,输出为正半周的半个正弦波;当输出信号负半周期时,两功率功率管分别截止和导通,输出为负半周的半个正弦波,通过负载的电流通过合成形成完整的正弦波。 1.2.3设计过程 负载R1=8Ω V o= Po R *1=2V ,输出功率Po=0.5W 峰值为Vp=22V ,峰峰值为Vp-p=4≈V 2 5.7V 若要实现输出功率为Po=0.5W ,则直流电源电压Vc c > 5.7V 所以取Vcc=15V 输出电流Io= 2 1 Vcc/RL ≈350mA 取β=100,Ib1=Io/β=3.5mA 取I5=30mA ,所以R5=(15V-8.5V)/30mA=220Ω 取VE=0.2Vcc=3V RE=3V/30mA=100Ω 因为Av=R5/RE=2.2<10,所以RE 取值不合适 令RE=R4+R6,R4=15Ω,R5=85Ω 当交流分析时,R6被短路,Av=15符合要求

.d类功率放大器

D 类功率放大器 原理 D 类功放也称为数字功放,与模拟功放的主要差别在于功放管的工作状态 传统模拟放大器有甲类、乙类、甲乙类和丙类等.一般的小信号放大都是甲类功 放,即A 类,放大器件需要偏置,放大输出的幅度不能超出偏置范围,所以, 能量转换效率很低,理论效率最高才25%.乙类放大,也称B 类放大不需要偏置, 靠信号本身来导通放大管,理想效卒高达78 5%.但因为这样的放大,小信号时失 真严重实际电路都要略加一点偏置, 形成甲乙类功放,这么一来效率也就随之下 降.虽然高频发射电路中还有一种丙类,即 C 类放大,效率可以更高,但电路复 杂、音质更差,音频放大中一般都不采用.这几种模拟放大电路的共同特点是晶 体管都工作在线性放大区域中,它按照输入音频信号的大小控制输出的大小, 像串在电源与输出间的一只可变电阻,控制输出,但同时自身也在消耗电能 D 类功放采用脉宽调制(PWM )原理设计,其功放管工作在开关状态.在理想 情况 下,功放管导通时内阻为零,两端没有电压,因此没有功率损耗;而截止时, 内阻无穷大,电流又为零,也没有功率损耗.它在实际的工作中的功率消耗主要由 两部分构成:转换损耗和I 2 F 损耗.转换损耗如图1-1所示: 当开关式放大器输出在 宀"」2、亠 接通和断开之间切 换,或断开和接通之间切换时通过线性区域而消耗功率.在D 类功放中开关管如 果采用的是金属氧化物半导体场效应晶体管(MOSFE 管),它的开关导通电阻较 小一般远远小于1Q,所以I 2 R 损耗相对来说还是很小的.当达到最大额定功率 时,D 类放大器的效率在80%到90%的范围内.在典型的听音条件下,效率也可 达到65%到80%左右,约为AB 类放大器的两倍以上. D 类放大器可分为数字D 类放大器与模拟D 类放大器两类,数字D 类放大 器一般用于数字音响领域,如 CD 信号的功率放大.模拟D 类放大器一般可分为 前置放大级、PWM 调制、功率放大与低通滤波四个部分.其中PWM 调制和功率 放大是D 类放大器的核心,PWM 调制的一般方案有: (1) 采用PWM 调制芯片产生PWM 信号,此类芯片可方便的产生PWM 信 号,但一般对电源有要求,不利于整机单5v 供电,并且很多情况下产生的PWM 型号为方波. (2) 自己搭建PWM 调制器,采用运放进行比较积分产生 PWM 信号. 1. PWM 调制分析 (1)从能量的角度来看,在每个 t 时间内,正弦波与所对应的脉宽波所包 图1-1转换损耗的产生 PWM (开关揑制 转携损耗区

制作晶体管靓声甲类功放电路图

制作晶体管靓声甲类功放电路图

制作晶体管靓声甲类功放电路 许多发烧友都乐于制作功放,但多局限于一些单片集成功放如LM1875、LM3886、LM4766、TDA7294等,用这些IC制作的功放其音质要好于市面上一些中、低档功放,但与一些高档Hi-Fi功放相比,音质仍有较大的差距。这里推荐几款容易制作的靓声甲类功放电路以供参考。其组成框图如图1所示。 该电路具有如下特点:1.采用板块积木式组合,可根据自身经济状况适当增减。2.电压放大部分与电流放大部分分开设计、布版,便于烧友采用高、低压两组电源分开供电,可选择众多特色的后级电路搭配,也便于安装固定散热片,为发烧友摩机提供方便。3.采用无大环负反馈设计,可进一步改善扬声器负反馈电动势对音质的影响。 限于篇幅,这里简介电压放大部分与电流放大部分。以下均为双声道设计,仅给出一个声道的原理图,另一声道、电源与保护电路图略。 一、电压放大部分使用厂家提供的成品板。该板双声道设计,采用双面镀金线路板制作,板上大量使用发烧器件,如五环金属膜电阻、ELNA发烧电容、音频专用高频管、低噪声恒流源专用场效应管等。原理简图如图2所示。使用孪生场效应管NPD5565输入,采用共源共基电路、有源负载及差分电路,与马兰士公司的HDAM模块电路及国内一些厂家生产的电压放大模块电路相比,本电路显得设计更趋于该电压放大板对电源适应范围较宽,±35V~±60V都可工作,建议电压放大部分供电采用并联式稳压电源,且比电流放大部分电压高出5V~10V。完善,音质也更理想。 二、电流放大部分有多种电流放大板可与上述电压放大板配套,下表列出所用功率管的部分参数供发烧友参考。 1.2SK2013/2SJ313推动3对2SK1529/J200,原理图如图3所示。 2.2SK2013/2SJ313推动3对2SC5200/2SA1943,原理图略,可参考图3,装配时只需把K1529/J200换为C5200/A1943即可。 3.2SC5171/2SA1930推动6只2SK851,原理图如图4所示,超大电流MOS场效应管2SK851具有开关速度快、导通电阻小、失真率低等特点。目前仍无场效应管与之配对,该电路采用准互补输出的形式,2SK851曾在天龙PWA-2000N功放中使用过。 4.2SC5171/2SA1930推动6只2SD1037,原理图略,可参考图4,装配时,只需把K851换为D1037即可。该电路采用准互补输出,只要设计得当,准互补输出电路同样可出靓声。比如深受好*的LM3886、LM4766内部就采用准互补输出电路。 5.采用3对三肯复合管SAP15N、SAP15P,原理图如图5所示。 6.2SK2013/2SJ313推动8对大功率场效应管或三极管(图略),方便发烧友制作100W×2纯甲类。 三、调试以上6种后级电路可根据P甲=2I02RL计算其所需甲类功率或末级静态电流,从而根据需要调试末级静态电流。如一台在8Ω负载下输出功率为80W的纯甲类机,末级静态电流为Io=2.236,则流过每管的静态电流为Io′=Io/n=2.236/3A=0.745A,即0.25Ω/5W电阻上直流压降为V=Io′?R=745×0.25≈186(Mv)。 虽然纯甲类功放声音柔和、甜美,但是它对变压器、滤波电容、功率管及散热片都有极其严格的要求。听一个月下来,电费负担重。在这种情况下,不妨把功放制作成高偏置甲乙类功放,比如20W以下为甲类输出,20W~100W为甲乙类输出。此时功放总静态电路为Io=1.118A,其实一般居室环境,20W左右的纯甲类输出,可满足大多数烧友的听音要求。 由于电压放大部分已被厂家调试好,只需装配好末级电流放大部分及相关接口。微调电压放大部分的W1使输出为0mV,再调节电流放大部分的多圈电位器W2,测量0.25Ω/5W电阻两端的直流电压,使其符合自己的要求,对图3、图4可直接测量0.25Ω/5W两端的电压,对图5应测量SAP15N④、⑤脚或SAP15P①、②脚两端的电压。 若测试一切正常,即可煲机1~2小时,重复检查各项参数,若无误,即可放音试听。若想装配纯甲类功放,可把整机先调成高偏置甲乙类功放,试听正常,再逐步加大静态电流至所需值,使该机成为纯甲类功放。 以上五种电流放大板,所配散热器尺寸均为360mm×120mm×50mm,成品板均调试成高偏置甲乙类功放(甲类20W+20W),若要装配80W+80W纯甲类功放,只需换掉散热片,把功放板装入两边外露散热器式专业功放机箱(480mm×430mm×150mm)调试好即可。 以上线路,稍作调整(如改变变压器功率及供电电压、功率管对数及静态电流)即可有多种用途使用。如:制作大功率功放(250W/4Ω);制作电子分频功放;制作高品质耳机放大器(用本电压放大板推动K214/J77或K2013/J313);用电压放大部分对一些分立元件中、低档功放进行摩机;制作顶级8声道纯后级功放(如用4块电压放大板,共用电源,每声道一对三肯2SC3858、2SA1494等)

乙类推挽功率放大器

乙类推挽功率放大器 一.选择题 ( )1.决定功率放大器效率的主要因素是。 A.电路的输入功率 B.电路的工作状态 C.电路的最大输出功率 D.功放管的消耗功率 ( )2.乙类推挽功率放大器设置适当的静态工作点,其目的是。 A.消除饱和失真 B.增大放大倍数 C.消除交越失真 D.改善频率特性 ( )3.一个理想乙类功放电路的最大输出功率为10W,当输入信号为零时,每个功放管的管耗约为。 A.10W B.1.35W C.2W D.0W ( )4.乙类功率放大器的失真一般是。 A.饱和失真 B.截止失真 C.交越失真 D.线性失真 ( )5.甲乙类功放提供一定的偏置电流的目的是为了。 A.消除饱和失真 B.增大放大倍数 C.消除交越失真 D.改善频率特性 ( )6.变压器耦合推挽功放中的输出变压器,其作用是。 A,耦合作用 B.合成波形的作用 C.分解波形的作用 D.A和B两者兼有 ( )7.一个乙类功放的理性输出功率为4W,当输入信号为0时,则功放管的管耗为。 A.4W B.2W C.088W D.0W ( )8.低频功放之所以工作在甲乙类,除了提高效率为,还为了。 A.克服交越失真 B.克服截止失真 C.克服饱和失真 D.克服频率失真 二.判断题 ( )1.乙类功放的效率比甲类功放的效率高。 ( )2.乙类功放的管耗会随着输出功率的增大而增大。 ( )3.在甲乙类推挽功放电路中,当负载由固定负载减小时,输出功率增大。

( )4.乙类功放的效率最高,故乙类功放应用最广泛。 ( )5.在推挽功率放大器电路中,只要两个三极管具有合适的偏置电流,就可以消除交越失真。 ( )6.对于乙类功放,当输入信号为零时,电源提供的功率和管耗均为零,随着输入信号的增大,输出功率增大,同时管耗也随之增大。 ( )7.推挽功率放大器输入交流信号时,总有一个功放三极管是截止的所以输出波形必然失真。 ( )8.晶体管不能放大功率,只能起能量转换作用。 ( )9.功放电路中的非线性失真就是交越失真。 三.填空题 1.由于在功放电路中功放管常常处于 工作状态,因此,在选择功放管时要特别注意 、 和 三个参数。 2.一个乙类推挽功放电路的电源电压24G V V =、负载16L R =Ω,变压器初级线圈匝数为160N =,现要求其输出最大不失真功率om P 达到50W 则输出变压器的匝数比n = ,次级线圈的匝数2N = 。 3.甲乙类推挽功放电路与乙类功放电路比较,前者加了偏置电路向功放管提供少量 ,以减少 失真。 4.推挽功率放大器的最大输出功率om P = ,最高理论效率η= 。 5.为了提高功率效率,低频功率放大器应该工作在 工作状态;但该电路存在交越失真,故实用的低频功率放大器一般工作在 工作状态。 6.乙类功率放大器中每个三极管导通时间为 半个周期;甲乙类功放电路中每个三极管导通时间 半个周期。

乙类互补推挽功率放大器

科信学院 CDIO项目设计说明书(2010 /2011学年第二学期) CDIO项目名称:电子应用系统一级项目 专业班级:电子信息工程 学生姓名: 学号: 指导老师: 设计成绩: 2011年6月28日

1、互补对称OTL 功放电路装调 1.1 CDIO 设计目的 通过设计乙类互补推挽功率放大器,掌握利用分离原件组成OTL 功放电路的原理,提高电路原理图读图技能,熟练掌握较复杂电路的装调操作方法 1.2 CDIO 设计正文 1. 2.1设计要求 电压增益:10倍(20分贝) 输出功率:0.5W 以上(负载R L =8?) 频率特性:20Hz ~20KHz 1.2.2 设计原理 乙类工作时,为了在负载上合成完整的正弦波,必须采用两管轮流导通的推挽电路。通常使用T1和T2两个特性配对的互补功率管(NPN 型和PNP 型),若忽略功率管发射结导通电压,则当输入信号正半周期时,两功率管分别导通和截止,输出为正半周的半个正弦波;当输出信号负半周期时,两功率功率管分别截止和导通,输出为负半周的半个正弦波,通过负载的电流通过合成形成完整的正弦波。 1.2.3设计过程 负载R1=8Ω V o= Po R *1=2V ,输出功率Po=0.5W 峰值为Vp=22V ,峰峰值为Vp-p=4≈V 2 5.7V 若要实现输出功率为Po=0.5W ,则直流电源电压Vc c > 5.7V 所以取Vcc=15V 输出电流Io= 2 1 Vcc/RL ≈350mA 取β=100,Ib1=Io/β=3.5mA 取I5=30mA ,所以R5=(15V-8.5V)/30mA=220Ω 取VE=0.2Vcc=3V RE=3V/30mA=100Ω 因为Av=R5/RE=2.2<10,所以RE 取值不合适 令RE=R4+R6,R4=15Ω,R5=85Ω 当交流分析时,R6被短路,Av=15符合要求

功率放大器种类

功率放大器种类 传统的数字语音回放系统包含两个主要过程: (1)数字语音数据到模拟语音信号的变换(利用高精度数模转换器DAC)实现; (2)利用模拟功率放大器进行模拟信号放大,如A类、B类和AB类放大器。从1980年代早期,许多研究者致力于开发不同类型的数字放大器,这种放大器直接从数字语音数据实现功率放大而不需要进行模拟转换,这样的放大器通常称作数字功率放大器或者D类放大器。 1、A类放大器 A类放大器的主要特点是:放大器的工作点Q设定在负载线的中点附近,晶体管在输入信号的整个周期内均导通。放大器可单管工作,也可以推挽工作。由于放大器工作在特性曲线的线性范围内,所以瞬态失真和交替失真较小。电路简单,调试方便。但效率较低,晶体管功耗大,功率的理论最大值仅有25%,且有较大的非线性失真。由于效率比较低现在设计基本上不在再使用。 2、B类放大器 B类放大器的主要特点是:放大器的静态点在(VCC,0)处,当没有信号输入时,输出端几乎不消耗功率。在Vi的正半周期内,Q1导通Q2截止,输出端正半周正弦波;同理,当Vi为负半波正弦波(如图虚线部分所示),所以必须用两管推挽工作。其特点是效率较高(78%),但是因放大器有一段工作在非线性区域内,故其缺点是"交越失真"较大。即当信号在-0.6V~ 0.6V之间时, Q1 Q2都无法导通而引起的。所以这类放大器也逐渐被设计师摒弃。 3、AB类放大器 AB类放大器的主要特点是:晶体管的导通时间稍大于半周期,必须用两管推挽工作。可以避免交越失真。交替失真较大,可以抵消偶次谐波失真。有效率较高,晶体管功耗较小的特点。 4、D类放大器 D类(数字音频功率)放大器是一种将输入模拟音频信号或PCM数字信息变换成PWM(脉冲宽度调制)或PDM(脉冲密度调制)的脉冲信号,然后用PWM或PDM的脉冲信号去控制大功率开关器件通/断音频功率放大器,也称为开关放大器。具有效率高的突出优点.数字音频功率放大器也看上去成是一个一比特的功率数模变换器.放大器由输入信号处理电路、开关信号形成电路、大功率开关电路(半桥式和全桥式)和低通滤波器(LC)等四部分组成.D类放大或数字式放大器。系利用极高频率的转换开关电路来放大音频信号的。 1. 具有很高的效率,通常能够达到85%以上。 2. 体积小,可以比模拟的放大电路节省很大的空间。 3. 无裂噪声接通 4. 低失真,频率响应曲线好。外围元器件少,便于设计调试。 A类、B类和AB类放大器是模拟放大器,D类放大器是数字放大器。B类和AB类推挽放大器比A 类放大器效率高、失真较小,功放晶体管功耗较小,散热好,但B类放大器在晶体管导通与截止状态的转换过程中会因其开关特性不佳或因电路参数选择不当而产生交替失真。而D类放大器具有效率高低失真,频率响应曲线好。外围元器件少优点。AB类放大器和D类放大器是目前音频功率放大器的基本电路形式。 5、T类放大器 T类功率放大器的功率输出电路和脉宽调制D类功率放大器相同,功率晶体管也是工作在开关状态,效率和D类功率放大器相当。但它和普通D类功率放大器不同的是:1、它不是使用脉冲调宽的方法,Tr ipath公司发明了一种称作数码功率放大器处理器“Digital Power Processing (DPP)”的数字功率技术,它是T类功率放大器的核心。它把通信技术中处理小信号的适应算法及预测算法用到这里。输入的音频信号和进入扬声器的电流经过DPP数字处理后,用于控制功率晶体管的导通关闭。从而使音质达到高保真线性放大。2、它的功率晶体管的切换频率不是固定的,无用分量的功率谱并不是集中在载频两侧狭窄的频带内,而是散布在很宽的频带上。使声音的细节在整个频带上都清晰可“闻”。3、此外,T类功率放大器

[整理]NE5532并联驱动的20W纯甲类功放.

NE5532并联驱动的20W纯甲类功放 这个电路由爱山乐水网友提供。好象是来源于日本发烧友 国外有很多制作精良的功率放大器,输出功率并不大,但其甜美优雅的音乐往往是很多大功率放大器所无法比拟的。 本文介绍的这款功放,虽然它的元件用得可算一般,其输出功率也只有20W,但其音乐表现力却极为出众,特别是对于古典音乐的重放尤其神韵。 【电路原理】 电路如图6-1所示,本机电路中使用两组独立的运算放大器(NE5532)分别构成两路完整的单端放大器,它们都工作在纯甲类方式下,各自独立构成性能优良的全波形放大器。放大后的信号在输出点再有机地混合,有效地降低了对音质危害极大的奇次谐波失真。激励级的双极二极管(VT1和VT2)作为电流控制器件,直接从运放的输出端吸取所需的基极电流,是一种较为理想的使用方式。VT3和VT4分别用作VT2、VT1的恒流源负载,保证了整机的稳定性,也使得本机可免去麻烦的调试手续。 激励级的VT1、VT2与输出级的两个大功率三极管构成交叉耦合方式。由于各二极管工作点之间的钳位作用,使得此电路的稳定性极好,在电源接通瞬间也不会出现冲击电流声。交叉耦合的另一个好处是激励级和输出级分别从正负电源端索取工作电流,这对提高放大器的共模抑制比十分有利。激励级的工作电流高达85mA,输出级的工作电流更是高达 1.7A 之巨(两管并联)。由于本机电流很大,制作时一定要给每一个三极管(包括激励级和恒流源负载三极管)都加上足够大的散热器,且电源变压器一定要有充足的余量(推荐为150W)。由于本机对电源的适应性很强,故电源电路只需简单的整流、滤波即可。有条件者可在供电

回路串入1~2H的电感以获得更佳的效果。

甲类功放

甲类功放 概述 甲类功放(A类功放)输出级中两个(或两组)晶体管永远处于导电状态,也就是说不管有无讯号输入它们都保持传导电流,并使这两个电流等于交流电的峰值,这时交流在最大讯号情况下流入负载。当无讯号时,两个晶体管各流通等量的电流,因此在输出中心点上没有不平衡的电流或电压,故无电流输入扬声器。当讯号趋向正极,线路上方的输出晶体管容许流入较多的电流,下方的输出晶体管则相对减少电流,由于电流开始不平衡,于是流入扬声器而且推动扬声器发声。甲类功放的工作方式具有最佳的线性,每个输出晶体管均放大讯号全波,完全不存在交越失真(SwitchingDistortion),即使不施用负反馈,它的开环路失真仍十分低,因此被称为是声音最理想的放大线路设计。但这种设计有利有弊,A类功放放最大的缺点是效率低,因为无讯号时仍有满电流流入,电能全部转为高热量。当讯号电平增加时,有些功率可进入负载,但许多仍转变为热量。 特点 甲类功放是重播音乐的理想选择,它能提供非常平滑的音质,音色圆润温暖,高音透明开扬,这些优点足以补偿它的缺点。甲类功率功放发热量惊人,为了有效处理散热问题,甲类功放必须采用大型散热器。因为它的效率低,供电器一定要能提供充足的电流。一部25W 的甲类功放供电器的能力至少够100瓦AB类功放使用。所以甲类机的体积和重量都比甲乙类大,这让制造成本增加,售价也较贵。一般而言,甲类功放的售价约为同等功率甲乙类功放机的两倍或更多。 甲类功放声音上有饱满通透的优点,晶体管功率放大器是由三极管组成的,而三极管是由多组配对(N结及P结),这两个结构成的,当没有外加电压时是截止,只有在上面外加一个偏置电压并且高于它的门限电压,这个N/P结才会导通,有电流通过,三极管才开始工作。 甲类功放是把正向偏置定在最大输出功率的一半处,使功放在没有信号输入时也处于满负载工作状态,使得功放在整个信号周期内都导通都有电流输出。甲类功放使三极管始终工作于线性区,因此甲类功放几乎无失真,听感上质感特别好,尤其是小信号时,整个声音通透细节丰富。纯甲类功放它的造价也是惊人的,它电耗等于是一部空调。特别是百分之百的甲类功放就是指音箱阻抗怎样随频率变化,功放都能保持甲类工作而且输出功率足够,一对音箱虽然它的标称阻抗是8欧姆,便在工作时它的实际阻抗因素是会随频率变化的,时高时低,有时会低至1欧姆,这就要求功放的输出功率能随阻抗降低而倍增,也就是我们常看到的巨甲级数的功放所标输出功率指标,如贵丰单声道旗舰功放安替龙;175W(8Ω)、350W (4Ω)、700W(2Ω)1400W(1Ω),这才是百分之百纯甲功放。只有这样的功放才能使你听到纯甲类的音质。 纯甲类功放的几个为什么 一、为什么“热机”比“冷机”好听 功放刚开机尚无温升或温升较小时,机内温度和环境温度基本一致,此状态下功放称为冷机,这时各级静态电流还较小,末级电流仅二三十毫安(盛夏时稍大),相当于低偏置的甲乙类或乙类,声音自然“好听”不起来,但是随着结温的缓慢升高,每升高1℃,β增加约1%,Vbe减小约2.5mV,这两者同时作用,晶体管静态电流会升高得很快,当机器烘至热平衡时,各级工作点早已达到甲类额定偏置状态,此时声音也是地道的“甲类声”,因此也就相对“好听”。而且功放达热平衡后,各级静态工作点也趋稳定,也有利于改善听感。

动手制作 再造hood jlh 1969M小甲类功放 教程方法 制作图纸 科技小制作新满多

动手制作再造hood jlh 1969M小甲类功放教程方法制 作图纸科技小制作新满多 讲1969M之前,得讲一下JOHN LINSLEY HOOD 1969这个经典线路。。。 线路原形如下: John Linsley Hood 在1969年发表了这个电路,10W纯甲类功放,电路很简单,每声道由4只晶体管构成,虽然功率不大,但音色优美,吸引了不少DIY爱好者。。。 里不得不说一下老哥DIY过的1969。。。 小风扇起到一定的散热作用

A10的格局 搭焊在电路板上的零件 功放的输出电容,有7个并联在一起一个不太大的变压器 军工钽电容 输入插口 喇叭接线柱

John Linsley Hood 的1969 电路简洁,易于制作,音色也不错,因此衍生了许多个版本的1969。。。 1969M就是其中的一个。。 某高人根据1969设计的1969M(1969MOS)电路如下,因为末级改为场效应管,因此简称1969M,此版本可以工作在AB类,意味着不用那么大的工作电流,功率也比1969大。。。而原形的1969只能工作在纯甲类,效率低,只有10W 的输出,电流大,更需要体积不小的散热片。 为了做好1969M,于是把线路做了一次仿真,按照现有的条件,如电压,使用的管子进行测试,调整参数,使谐波失真达到最小。。 仿真软件是大名鼎鼎的Multisim!!!这是DIY烧友电脑上

必装软件,如果你没有,那就OUT了啊。。 Multim 10 启动画面 Multim 10 工作界面。。。看上去好像很专业。。不过玩几下基本上就能掌握。。。 新完成的1969M电源滤波用两只25V15000U的电容串联,没办法,单只的耐压不够啊。。。内部图 实际应用的电路图。。。 说明一下图中红色圈起来的部分

1.3乙类功率放大器

1.3 乙类推挽功率放大器 1.3.1 变压器耦合乙类推挽功率放大器 一、电路 结构特点:上下对称 Tr1:输入变压器,保证两管轮流工作; Tr2:输出变压器,实现输出信号合成。 二、定性工作原理(设略去V BE(ON)) 输入信号正半周时,T1导通,T2截止; 输入信号负半周时,T2导通,T1截止。 两个管子轮流工作,一推一拉(挽)所以叫推挽。 导通角180o ,叫乙类 三、定量性能分析 Q 点: 1、 静态 0CQ I = 直流通路: CEQ CC V V = 2、 交流通路 2 'L L R n R =,1 2 w n w = 为输出变压器变比 3、 交流负载线:过Q 点,斜率为1' L R -。 4、 动态分析 设:sin i im v V t ω= 当正半周(0)t ωπ≤≤时, 有1sin C cm i I t ω= 1sin CE CC cm v V V t ω=- 同理,负半周(2)t πωπ≤≤时, 2sin C cm i I t ω=- 1sin CE CC cm v V V t ω=+ 两管叠加后 21()sin (02)L C C cm i n i i nI t t ωωπ=-=-≤≤ RL'.v v i i i o c1c2L L R + + --Tr1 Tr2 w2CE u i i = n ( ic2 - ic1 ) i i L C2 C1 t t t t u o t CE1 i B1 t i C1 t t Vcc Icm Ibm Vcm Vcm = Icm*RL'

5、 定量计算 (1) 输出功率('L R 上功率就是L R 上功率)o P 22111'2'22 cm o cm L cm cm L V P I R V I R === 每管输出功率111 2 o o o P P P == 引进集电极电压利用系数(或电源电压利用系数)ξ cm CC V V ξ= , ξ与激励bm I 有关,(01)ξ≤≤ cm CC V V ξ∴=?, '' cm CC cm L L V V I R R ξ?= = 则:222 22max ()112'2'2' cm CC CC o o L L L V V V P P R R R ξξξ?= ==?=? 其中:2 max 2' CC o L V P R = 为理想状态,满激励下()cm CC V V =的输出功率----最大输出功率。 (2) 直流电源提供功率D P 直流电源流出的电流D i 波形如右图 2max 0 1 sin '2'CC CC D CC D CC cm CC cm CC o L L V V P V i V I td t V I V P R R π ξωωξξππ πππ?=?=? = ?=?==? 2 2 4 4 当0ξ=(0)o P =时,0D P =,无输出时,直流电源不消耗功率。 D P ξ↑→↑,当1ξ=时,max max D D o P P P π == 4 (3) 集电极效率C η 2max max 4 o o C D o P P P P ξπ ηξξπ ?===4 当1ξ=时,max 78.5%4 C C π ηη==≈ 最大效率 (4) 管耗(每管) 22max max max 111 )222 C D O O O O P P P P P P ξξξξππ=-=--42集电极耗散功率:()()=( Icm t iD

动手制作HiFi靓声甲类功放

许多发烧友都乐于制作功放,但多局限于一些单片集成功放如LM1875、LM3885、LM4766、TDA7294等,用这些IC制作的功放其音质要好于市面上一些中、低档功放,但与一些高档Hi-Fi功放相比,音质仍有较大的差距。这里推 荐几款容易制作的靓声甲类功放电路以供参考。其组成框图如图1所示。 该电路具有如下特点: 1.采用板块积木式组合,可根据自身经济状况适当增减。 2.电压放大部分与电流放大部分分开设计、布版,便于烧友采用高、低压两组电源分开供电,可选择众多特色的后级电路搭配,也便于安装固定散热片,为发烧友摩机提供方便。3.采用无大环负反馈设计,可进一步改善扬声器负反馈电动势对音质的影响。 限于篇幅,这里简介电压放大部分与电流放大部分。以下均为双声道设计,仅给出一个声道的原理图,另一声道、电源与保护电路图略 一、电压放大部分 使用厂家提供的成品板。该板双声道设计,采用双面镀金线路板制作,板上

大量使用发烧器件,如五环金属膜电阻、ELNA发烧电容、音频专用高频管、低噪声恒流源专用场效应管等。原理简图如图2所示。使用孪生场效应管NPD5565输入,采用共源共基电路、有源负载及差分电路,与马兰士公司的HDAM模块电路及国内一些厂家生产的电压放大模块电路相比,本电路显得设计更趋于该电压放大板对电源适应范围较宽,±35V~±60V都可工作,建议电压放大部分供电采用并联式稳压电源,且比电流放大部分电压高出5V~10V。完善,音 质也更理想。 二、电流放大部分 有多种电流放大板可与上 述电压放大板配套,下表列出 所用功率管的部分参数供发 烧友参考。 1.2SK2013/2SJ313推动3对2SK1529/J200,原理图如图3所示。 2.2SK2013/2SJ313推动3对2SC5200/2SA1943,原理图略,可参考图3,装配时只需把K1529/J200换为C5200/A1943即可。 3.2SC5171/2SA1930推动6只2SK851,原理图如图4所示,超大电流MOS场效应管2SK851具有开关速度快、导通电阻小、失真率低等特点。目前仍无场效应管与之配对,该电路采用准互补输出的形式,2SK851曾在天龙PWA-2000N功放中使用过。 4.2SC5171/2SA1930推动6只2SD1037,原理图略,可参考图4,装配时,

场效应管特性及单端甲类功放制作全过程

场效应管特性及单端甲类功放制作全过程 场效应管控制工作电流的原理与普通晶体管完全不一样,要比普通晶体管简单得多,场效应管只是单纯地利用外加的输入信号以改变半导体的电阻,实际上是改变工作电流流通的通道大小,而晶体管是利用加在发射结上的信号电压以改变流经发射结的结电流,还包括少数载流子渡越基区后进入集电区等极为复杂的作用过程。场效应管的独特而简单的作用原理赋予了场效应管许多优良的性能,它向使用者散发出诱人的光辉。 场效应管不仅兼有普通晶体管和电子管的优点,而且还具备两者所缺少的优点。场效应管具有双向对称性,即场效应管的源极和漏极是可以互换的(无阻尼),一般的晶体管是不容易做到这一点的,电子管是根本不可能达到这一点。所谓双向对称性,对普通晶体管来说,就是发射极和集电极互换,对电子管来说,就是将阴极和阳极互换。 一、场效应管的特性 场效应管与普通晶体管相比具有输入阻抗高、噪声系数小、热稳定性好、动态范围大等优点。它是一种压控器件,有与电子管相似的传输特性,因而在高保真音响设备和集成电路中得到了广泛的应用,其特点有以下一些。 高输入阻抗容易驱动,输入阻抗随频率的变化比较小。输入结电容小(反馈电容),输出端负载的变化对输入端影响小,驱动负载能力强,电源利用率高。 场效应管的噪声是非常低的,噪声系数可以做到1dB以下,现在大部分的场效应管的噪声系数为0.5dB左右,这是一般晶体管和电子管难以达到的。 场效应管具有更好的热稳定性和较大的动态范围。 场效应管的输出为输入的2次幂函数,失真度低于晶体管,比胆管略大一些。场效应管的失真多为偶次谐波失真,听感好,高中低频能量分配适当,声音有密度感,低频潜得较深,音场较稳,透明感适中,层次感、解析力和定位感均有较好表现,具有良好的声场空间描绘能力,对音乐细节有很好表现。 普通晶体管在工作时,由于输入端(发射结)加的是正向偏压,因此输入电阻是很低的,场效应管的输入端(栅极与源极之间)工作时可以施加负偏压即反向偏压,也可以加正向偏压,因此增加了电路设计的变通性和多样性。通常在加反向偏压时,它的输入电阻更高,高达100MΩ以上,场效应管的这一特性弥补了普通晶体管及电子管在某些方面应用的不足。 场效应管的防辐射能力比普通晶体管提高10倍左右。 转换速率快,高频特性好。 场效应管的电压与电流特性曲线与五极电子管输出特性曲线十分相似。 场效应管的品种较多,大体上可分为结型场效应管和绝缘栅场效应管两类,且都有N型沟道(电流通道)和P型沟道两种,每种又有增强型和耗尽型共四类。 绝缘栅场效应管又称金属(M)氧化物(O)半导体(S)场效应管,简称MOS管。按其内部结构又可分为一般MOS管和VMOS管两种,每种又有N型沟道和P型沟道两种、增强型和耗尽型四类。 VMOS场效应管,其全称为V型槽MOS场效应管,是在一般MOS场效应管的基础上发展起来的新型高效功率开关器件。它不仅继承了MOS场效应管输入阻抗高(大于100MΩ)、驱动电流小(0.1uA左右),还具有耐压高(最高1200V)、工作电流大(1.5~100A)、输出功率高(1~250W)、跨导线性好、开关速度快等优良特性。目前已在高速开关、电压放大(电压放大倍数可达数千倍)、射频功放、开关电源和逆变器等电路中得到了广泛应用。由于它兼有电子管和晶体管的优点,用它制作的高保真音频功放,音质温暖甜润而又不失力度,备受

15W纯甲类功率放大器

15W纯甲类功放制作 纵观目前市场上的Hi-Fi功放,输出功率在100W以上的以甲乙类放大产品居多,50~100W的功放中甲 类放大产品占有相当的比例。从高保真的角度来看,功率储备大些当然是好,但若从节省能源的角度来看,就值得考虑了。由于纯甲类功放的效率很低,所以在您欣赏美妙音乐的同时,约有百分之七八十以上的电能变成热量散发掉了。一台每声道输出功率为50W的纯甲类功放,若以30%计其效率,则静态功耗就有330W之大,说句玩笑话,简直是“守着火炉吃西瓜”。笔者在帮人选购功放时就经常遇到这样的情况: 很多人虽然为纯甲类功放的音色所倾倒,但也往往因其“发高烧”的工作状态而忍痛割爱。功耗大也是 电子管功放的致命弱点。市场经济是无情的。国内几家有名的生产胆机的厂家,如斯巴克、欧博、大极典也先后推出了自己的晶体管功放,就证明了这一点。 根据我国国情,一般工薪阶层的居室面积多在二十平方米以下,并且通常以客厅或卧室兼作听音室。若音箱的灵敏度在89dB以上,则10~20W的纯甲类功放就可满足一般欣赏要求。如果在歌舞厅里那样的 环境中让我们的耳朵长期承受大音量,听力就会逐渐减退。再说,吵得左邻右舍不得安宁,也不合适。所 以说,如果生产一些功率在15W左右的音质音色较好的功放,静态功耗在100W以下,肯定会有市场。可 惜这类功放是个空白。日本金嗓子有一款A20,每声道纯甲类功放20W,音质有口皆碑,但价钱却令人望 而却步。现在,国内生产功放的厂家似乎在攀比,功率越做越大,重量越做越重,但销路却不见得很好。何不制作一些“好吃不贵”的功放来投放市场呢?本着这个思想,我们设计了这台15W纯甲类功放,试 图在这方面做一些尝试。 一电路原理 1、功放电路 由VT1、 VT2组成差动放大电路,每管静态电流约为0.5mA。R3为VT1的集电极负载电阻,VT1与推动级VT4之间为直接耦合。输出级由两只型号相同的 NPN型大功率晶体管VT5、VT6组成,而没有采 用互补对称推挽电路。输出管VT6对于负载(扬声器)来说是共发射极电路,而VT5则是射极输出电路,因此是不对称放大。但实验测试表明,整个放大电路在取消大环负反馈(将R5短路)时的开环失真却很小,而且主要是偶次谐波失真。这个功劳应该归功于推动级电路。推动电路是本机最具特色的电路,它的作用和效果与传统的RC自举电路相比,有过之而无不及。VT4为集-射分割式倒相电路,分别由其集电 极和发射极输出一对大小相等、方向相反的信号。VT4对于输出管VT6来说为射极输出电路,电压放大倍

最简单的甲类功放

最简单的甲类功放 2010年7期《无线电》上刊登了《场效应管耳机放大器DIY手记◎梓门编译》,自己DIY一个,感觉电路简单,但音量小,于是在网络上找到一些相近的资料,特对照参考,应加一个前级放大。BD8MI整理 摘自https://www.360docs.net/doc/7914561114.html,/Solid/IRF610-Class-A-Headphone-Amp/ 作者:Giovanni Militano,加拿大。 电路简洁、元件都是常见的,适合电脑、MP3等输出信号较大的设备。 原设计专用于耳机,作者为他自己的 32欧姆 Grado SR80 耳机设计的。但电路同样可以推动小功率的扬声器(偶是推的15W小音箱),音质不错,喜欢静静地欣赏音乐的朋友可以尝试下。电路如下: 下面简要说明制作过程和一点说明: 1、电路采用了LM317构成的恒流源作为负载,提高了电流增益,作者注明最大效率为25%。但因电路没有电压放大,所以只适合输输出信号较大的设备。当然,你也可以为它再增加一级FET的小信号放大电路,偶用的是常见的2SK245。 2、恒流源的电流取值,作者设定的是250mA,但经过偶试验,电流在100mA听感也不错,而且发热量要小了很多,几乎可以不用散热器。最好是多准备几个电阻(图中的5W电阻)自己感觉下。 3、电源问题,如果打算使用电脑的开关电源(直接用电脑电源的12V供电),需要做好滤波,偶用了两级LC滤波,滤除电源带来的噪声;如果是线性的电源适配器,简单的电容滤波即可。要求更高的可以用专门线性稳压电源供电。 4、偏置电压的调整:如果没有设备测试,完全可以靠听感进行调整,一般的场效应管栅极开启电压为4V多一点,在附近范围仔细调整,直到获得最佳听感。如果使用的电源电压并不固定,可以用个TL431甚至78L05~78L09稳压后用电阻分压,再送到偏置电压调整电位

2×60W纯甲类双单声道功率放大器

Hi—Fi制作室· 2×60W纯甲类双单声道功率放大器 蔡贤 [编者按] 纯甲类功率放大器音质之靓,已使多少焊机派发烧友跃跃欲试,然其制作工艺要求之高,又让人举步唯艰。不过,待你细细读完蔡先生这篇力作,相信你不会再犹豫了。在实验制作的基础上,蔡先生以其严密的原理分析、严格的选料过程、科学的印板设计,向您奉献上这款能使您真正步入Hi-End境地的功放精品。 分体式放大器的使命无非是完成合并式放大器所无法实现的更高等级重放效果,因此它应该是完全彻底再现“完美”的产品,对任何方面都毫不妥协。这一点虽然是千真万确的结论,但实际上仍然有必要在这一领域中增添一些具有相当实力的中坚机种。就分体式放大器中的后级功率放大器而言,纯甲类(Class A)的组态正表现在它那种适合作为中坚机种的魅力。 事实上,纯甲类并不是什么新技术,只不过伴随着音响器材的革命性发展,将其优点真正展示出来,并且应用在Hi—End的高级器材上而己。 整机特点: 1.纯甲类的放大组态,使得整机的声音同时具有能量感和细致描写能力,声像的实体感丰富。 2.充沛的电源容量,高电流的驱动能力,在8Ω负荷时,每声道输出最大功率为60W;到了4Ω负荷时;却可以翻一番,达到120W:负荷再减半为2Ω时.输出功率将依比例增至240W。 3.在功率放大部分每声道使用4对功耗为120W,耐压160V,电流12A的东芝(TOSHIBA)大功率晶体三极管,令其工作在极佳的小电流线性区,稳定地得到高音质。 4.独特的散热方式,使各个大功率晶体管的温度保持均一的稳定状态,没有一般多管并联使用时声音混杂不清的特点。 5.完全彻底的双单声道结构,包括电源线也是两一个声道各用一根,声道分离度极佳。 6.全功能的扬声器和功率管保护线路,保证放大器和扬声器工作在安全区域内。 原理简介 如上所述,在8Ω负荷时,本机的输出功率为2×60W,如果保持所用的电源容量和大功率晶体管的数量不变,只是将工作方式由甲类改为乙类(C1assB),即可轻易取得2×200W 的输出功率,但纯甲类却只能得到60W的输出,为什么有那么大的差别呢? 这是因为乙类放大器和纯甲类放大器的电源功率天差地别之故。例如,采用400W的电源时,如果使用乙类放大,理论上,该放大器的最大输出功率可以达到300W,而使用纯甲类放大,则只能得到100W的输出。同时,电源变压器、整流电路以及滤波电容器等零件要占据整机重量的一大部分,该放大器越是考究,这一部分的容量就越大,费用也随之增加。另外,在机壳有限的很小窄问内塞满发热量极大的纯甲类功放部分,还必须使用卓越有效的散热冷却系统。由此可见,从商品效益来看,纯甲类放大器可谓是最蚀本的生意,因为在左右推销的规格参数上已经比别的功放差了一截,既然如此,为什么Hi-End产品还非搞这种吃力不讨好的纯甲类呢? 众所周知,纯甲类放大器的音质出类拔萃。这是因为它有许多先天性的优点。在采用纯甲类推挽放大输出的情况下,输出电路本身具有抵消奇次谐波失真的作用.结果可以减少总的负反馈量,从而减少因反馈引起的各种副作用。另外,纯甲类在低电平的线性极佳,不存在开关失真的问题;在输出功率发生急剧变化时,电源的电流变化几乎等于零,因而电源的调整率极佳;况且,由于在电路中始终保持留有非常大的电流,所以对猝发性声音的瞬间升

相关文档
最新文档