外文翻译---DE型氧化沟生物脱氮除磷工艺

外文翻译---DE型氧化沟生物脱氮除磷工艺
外文翻译---DE型氧化沟生物脱氮除磷工艺

外文资料

DE-oxidation ditch biological nitrogen

and phosphorus removal process

1、DE-oxidation ditch biological nitrogen removal process

Nitrogen is a plant growth essential nutrients, but if the chlorine content in water too high, it will produce eutrophication so that the dissolved oxygen content to reduce, the proliferation of algae growth, accelerate the aging process of natural water bodies. In addition to the nitrate form of chlorine is considered a cause of infant leukemia temporary high-speed railway on January 1 of the root causes of hemoglobin. Therefore, drinking water sources will Liuren the oxidation ditch water is necessary dechlorination.

Oxidation Ditch biological nitrogen removal is the first by the self-support of aerobic microbes in the aerobic state, the use of dissolved oxygen in the mixture through nitrification will be for the effect of nitrate oxide, and then from heterotrophic microorganisms in the state in the anti-anoxia The role of nitrifying bacteria, the use of nitrates in the role nitrification oxygen to produce anti-nitrate nitrogen into the release of chlorine out.

Nitrification-as:

Nitrifying bacteria

NH4+1.86+O21.985+HCO3 0.021C5H7O2N+1.044H2O+1,881H2CO3+0.98NO3-

D enitrification-as:

Denitrifying bacteria

NO3-+1.08CH3OH+0.24H2CO30.056C5H7O2N+0.47N2 +1.68H2O+HCO3-

Denitrifying bacteria

NO3-+0.67CH3OH+0.53H2CO30.04C5H7O2N+0.48N2 +1.23H2O+HCO3-

DE-oxidation ditch the dechlorination role through a special operation mode, in turn create two Gounei nitrification and nitrification conditions. Nitrogen and purpose of reach.Operation to the following four stages of operation (Figure 1).

Stage A: Well distribution of the sewage ditch into the Ditch I, interim ditch running low brush, only to maintain the activated sludge mixture of suspended state; dissolved oxygen concentration of less than 0.5 mg/l, in a state of hypoxia, so that the former An aerobic phase of the nitrate to raw sewage as carbon source for denitrification.At this point, I ditch behind the overflow weir open, muddy mixture

into this two-person pool for precipitation separation, and in the ditch II to the high-speed brush aeration, into one of the previous phase of the sewage in Amoy good Oxygen state (D0> 2mg/l) for nitrification. Stages of the run-time for 15 min.

Phase B: the distribution of sewage are still people well into the groove I,DitchI, II maintained ditch on the stage of the anti-nitrification, nitrification state. But the water from the ditch I read the Amoy II, guarantee people into the ditch II of the sewage pollution in the organic material is fully degradable. The stage for the run-time 105 min.

Stage C: Well into the distribution of the sewage ditch II. At this point ditch II interim low brush then pushed into the flow of denitrifying state. To the water. I ditch and high-speed transit brush aeration, nitrification. The stage for the running time 15

min.

Stage D: D stage of the operation and status similar to stage B, only Ditch I, iI into the ditch, the water situation in the opposite. The stage of the running time for 105 min

Process in the course of the operation. Well distribution, Brush, overflow weir by the pre-set time control operation. In addition, Brush also be installed in each groove of dissolved oxygen analyzer control.

Figure 1 Biological nitrogen removal opertation mode

2、DE-oxidation ditch biological phosphorus removal process

Phosphorus is essential microbial metabolism of nutrients, microbial cells is composed of part, by ADP and adenosine triphosphate (ATP) of each other to provide energy to achieve conversion of synthesis.

Rely mainly on the removal of phosphorus-phosphate of energy exchange in the process of absorbing phosphorus, and polymerization in the form of phosphorus in the

body. Anaerobic state,These bacteria will be in polymerization of phosphorus to PO43--P in the form of a release in aerobic or oxygen sha state, the P-Han and respiration through the absorption of sewage in the PO43--P, a polymerization of phosphorus in the form of Synthesis of the cell.

DE-oxidation ditch the biological phosphorus removal is the basis of this mechanism, set up in the oxidation ditch before anaerobic pond, Thus forming anaerobic January 1 January 1 hypoxia aerobic processes (Figure 2), and created a conducive to the best of phosphorus operating conditions.

The system of anaerobic pond by the three ditches group. HRT for lh. Diving pool installed blender, sewage sludge and returning well-mixed.- P because of the need to completely anaerobic conditions can be fully in the polymerization of phosphorus released, if the pool NO3-,containing excessive, it will affect the efficiency of phosphorus, in the first Gounei contain NO3-,the Return to the use of sewage sludge as carbon source for a more through response to the denitrification to ensure that phosphorus in the second, three in the Amoy been fully released. The distribution of sewage into the wells after the people oxidation ditch, In the aerobic and anoxic conditions (aerobic state of maximum efficiency of absorption), the release of phosphorus has been activated sludge absorption, and then people into the sedimentation tank precipitation, Sheng after the remaining sludge from, in addition to this The purpose of phosphorus.

Figure 2 Bilogical phosphours remonal process

中文译文

DE型氧化沟生物脱氮除磷工艺

1、DE型氧化沟生物脱氮工艺

氮是植物生长的一种必不可少的营养成分,但是如果水体中氮的含量过高,就会产生富营养化,使溶解氧含量降低,藻类生长泛滥,加速水体天然老化过程。另外,以硝酸盐形式存在的氮被认为是引起婴幼儿的一种暂时性白血病—高铁血红蛋白症的根源。因此,对于将流入饮用水的水源很有必要脱氮。

氧化沟生物脱氮是首先由自养型好氧微生物在好氧状态下,利用混合液中的溶解氧通过硝化反应将氨氮氧化为硝酸盐,再由异养微生物在缺氧状态下在反硝化细菌的作用下,利用硝酸盐中的氧产生反硝化作用将硝酸盐中的氮转化为氮气释放出去。

硝化反应式为:

消化细菌

NH

4+1.86+O

2

1.985+HCO

3

0.021C

5

H

7

O

2

N+1.044H

2

O+1,881H

2

CO

3

+0.98NO

3

-

反硝化反应式为:

反消化细菌

NO

3-+1.08CH

3

OH+0.24H

2

CO

3

0.056C

5

H

7

O

2

N+0.47N

2

+1.68H

2

O+HCO

3

-

反消化菌

NO

3-+0.67CH

3

OH+0.53H

2

CO

3

0.04C

5

H

7

O

2

N+0.48N

2

+1.23H

2

O+HCO

3

-

DE型氧化沟的脱氮作用是通过特殊的运行方式,在两条沟内交替创造硝化和反硝化反应的条件。而达到脱氮目的。运行方式按以下四个阶段运行

(如图1 )。

阶段A :污水经分配井进人沟I,沟中转刷低速运行,仅保持活性污泥混合液的悬浮状态,溶解氧浓度低于0.5mg/l,处于缺氧状态,从而使得经前一好氧阶段产生的硝酸盐以原污水为碳源进行反硝化反应。此时,沟I后端的溢流堰打开,泥水混合液由此进人二沉池进行沉淀分离,而沟II中的转刷进行高速曝气,将前一阶段进人该沟的污水在好氧状态下(D0>2 mg/l)进行硝化反应。该阶段的运行时间为 15min。

阶段B:污水仍经分配井进人沟I,沟I、沟II均保持上阶段的反硝化、硝化状态。但水由沟I改为沟II,保证进人沟II的污水中有机污染物质得到充分降解。该阶段运行时间105min。

阶段C:污水经分配井进入沟II。此时沟II中转刷低速推流进入反硝化状

态,进行出水。而沟I中转刷高速曝气,进行硝化反应。该阶段运行时间为 15min。

阶段D:阶段 D的运行状态与阶段 B相似,只是沟I、沟II进、出水情况相反。该阶段的运行时间为105min。

上述工艺运行过程中。分配井、转刷、溢流堰由预先设定的时间控制运行。另外,转刷还受安装在每条沟的溶解氧测定仪控制。

图1 生物脱氮运行方式

2、DE型氧化沟生物除磷过程

磷是微生物新陈代谢所必需的营养元素,既是微生物体细胞组成的一部分,又通过二磷酸腺苷(ADP)和三磷酸腺苷(ATP)的相互转换提供能量来实现细胞合成。

磷的去除主要依靠聚磷菌在能量交换过程中吸收磷,并以聚合磷的形式存在

3-—P的形式释放出来;在于体内。在厌氧状态下,这些细菌将体内聚合磷以PO

4

3-—P,以聚合磷的好氧或缺氧状态下,聚磷菌又通过呼吸作用吸收污水中的PO

4

形式存在于体中进行细胞合成。

DE型氧化沟的生物除磷就是根据这个机理,在氧化沟前设置厌氧进水池,从而形成厌氧—缺氧—好氧的工艺流程( 如图2 ) ,创造了有利于生物除磷的最佳运行条件。

该系统中厌氧池由三个沟渠组成,水力停留时间为lh。池中安装潜水搅拌器,使污水与回流污泥充分混合。因为聚磷菌必须在完全厌氧的条件下才能够将

-的含量过大,会影响除磷的效率,所体内的聚合磷充分释放出来,如果池中 NO

3

-的回流污泥利用污水作碳源进行较彻底的脱硝反应,从以在第一条沟内含有NO

3

而保证磷在第二、三条沟内得以充分释放。污水经分配井进人氧化沟后,在缺氧

和好氧的状态下( 好氧状态下吸收效率最高) ,释放出来的磷又被活性污泥吸收,随后进人二沉池沉淀,最后随剩余污泥排出,以此达到除磷的目的。

图2 生物除磷工艺

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺 1 引言 氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害。然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污(废)水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物 降解,大部分的可溶性含碳有机物被去除。同时产生N NH -3、N NO --3和- 34PO 和-24 SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准。因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要。 2 生物脱氮除磷机理 2.1 生物脱氮机理 污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝 态氮,即,将3NH 转化为N NO --2和N NO --3。在缺氧条件下通过反硝化作用将硝氮转 化为氮气,即,将N NO -- 2(经反亚硝化)和N NO --3(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的[1]。 ○ 1硝化——短程硝化:O H HNO O NH 22235.1+→+ 硝化——全程硝化(亚硝化+硝化):O H HNO O NH 22235.1+???→?+亚硝酸菌 3225.0HNO HNO O ??→?+硝酸菌 ○ 2反硝化——反硝化脱氮:O H H CO N OH CH CH HNO 2222333][222+++→+ 反硝化——厌氧氨氧化脱氮:O H N HNO NH 22232+→+ ][35.122233H O H N HNO NH ++→+

污水生物脱氮除磷基本原理及工艺发展现状

污水生物脱氮除磷基本原理及工艺发展现状 摘要:目前,污水处理技术已经逐渐从单一去除有机物为目的的阶段,进入到既要去除有机物又要脱氮除磷的深度处理阶段,脱氮除磷己成为当今污水处理领域的研究热点之一。 Abstract: at present, sewage treatment technology has gradually from a single removal organic phase for the purpose of, get into both the removing of organic matter and denitrification and the depth of the phosphorus processing stage, denitrification and phosphorus has become the sewage treatment of research in the field of one of the hotspots. 因氮、磷过量排放所引起的水体富营养化是目前最为关注的环境问题之一。当水体中总磷浓度高于0.02mg/L或总氮浓度高于0.2mg/L时则被视为富营养化水体,它的表征之一即为藻类过度增长。研究表明,每向水体中排放1g磷会引发950g(干重)藻类的生长[1]。控制水体富营养化,防止水体被污染的最根本途径就是对污染源进行治理,控制污染物的排放量。去除氮、磷以控制水体富营养化已成为各国的主要研究方向。 1.污水生物脱氮除磷基本原理 1.1生物脱氮基本原理 废水生物脱氮是在硝化菌和反硝化菌参与的反应过程中,将氨氮最终转化为氮气而将其从废水中去除的。硝化和反硝化反应过程中所参与的微生物种类不同、转化的基质不同、所需要的反应条件也各不相同。 1.2传统生物除磷基本原理 到目前为止,国际普遍认可和接受的生物除磷理论是“聚合磷酸盐(Poly-p)累积微生物”——聚磷菌PAO的摄/释磷原理。在聚磷菌新陈代谢过程中,三种贮存的化合物聚磷酸盐、糖元以及聚β羟基丁酸(PHB)起非常重要的作用。其中PHB属于PHV范畴。生物除磷过程通常包括厌氧释磷和好氧吸磷两个过程。 2 污水生物脱氮除磷工艺现状 2.1传统脱氮除磷技术 2.1.1 A2/O工艺 图1为厌氧/缺氧/好氧(A2/O)生物脱氮除磷工艺流程图。该工艺在是能够同步脱氮除磷的污水处理工艺。其特点是工艺简单,能够同步脱氮除磷,总停留时间短,污泥不易膨胀,不需投药,运行费用低。该工艺也存在一些问题。在达到一定效果后,A2/O工艺除磷量难于进一步提高,尤其是当进水P/BOD值高时

废水生物处理基本原理—生物脱氮原理

废水生物处理基本原理 ——废水生物脱氮原理 1.1.1 废水中氮的存在形式 氮在废水中有以下几种形式 无机氮 N anorgan .: ? 氨氮 NH 4-N ? 亚硝氮 NO 2-N ? 硝氮 NO 3-N 有机氮 N organ . 总氮 N total = N anorgan . + N organ . 总凯氏氮 TKN = N organ . + NH 4-N 以氮的形式氮化合物的换算关系如下: NH NH N NH NO NO N NO NO NO N NO 4128541285 4 2328523285 2 3442834428 3 ++ -- -- ?→??-?→???→??-?→???→??-?→??/,*,/,*,/,*, 1.1.2 废水生物脱氮的基本过程 ①氨化(Ammonificaton ):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程; ②硝化(Nitrification ):废水中的氨氮在好氧自养型微生物(统称为硝化菌)的作用下被转化为NO 2- 和NO 3-的过程; ③反硝化(Denitrification ):废水中的NO 2- 和/或NO 3-在缺氧条件下在反硝化菌(异养型细菌)的作用下被还原为N 2的过程。

1.1.3 氨化作用基本原理 在废水中部分氮以无机物的形式存在。蛋白质被生化降解为氨氮 的作用成为氨化作用。尿素在酶的催化下降解也属于该作用。 举例: COOH O ∣∣ R - C - H + H2O + 1/2 O2 ----> R - C + NH4+ + OH-∣∣ NH2COOH NH2 ∣ C=0 + 3 H2O 尿素酶> 2 NH4++ 2 OH-+ CO2 ∣ NH2

生物脱氮除磷原理

生物脱氮原理 (碳源) (碳源)图1 硝化和反硝化过程 图2 A2/O工艺流程

水体中氮的存在形态 生物脱氮原理 1、氨化作用 在好氧或厌氧条件下,有机氮化合物在氨化细菌的作用下,分解产生氨氮的过程,常称为氨化作用。 有机氮 氨氮 2、硝化作用 以A 2/O 工艺为例,硝化作用主要发生在好氧反应器中,污水中的氨氮NH 4+-N 在亚硝酸 细菌的作用下转化为亚硝酸氮NO 2--N ,亚硝酸氮NO 2--N 在硝酸细菌的作用下进一步转化为硝酸氮NO 3 --N 。(见图 1左边) 亚硝酸细菌和硝酸细菌统称为硝化细菌,属于好氧自养型微生物,不需要有机物作为营养物质。 3、反硝化作用 反硝化作用主要发生在缺氧反应器中,好氧反应器中生成的硝酸氮NO 3--N 和亚硝酸氮NO 2--N 通过内循环回流到缺氧池中,在有一定碳源的条件下,由反硝化细菌先将硝酸氮NO 3--N 转化为亚硝酸氮NO 2--N ,亚硝酸氮再进一步转化为氮气N 2,水体中的氮从化合物转化为氮气进入到空气中,才能最终将污水中TN 降低。(见图1右边) 反硝化细菌是异养兼性缺氧型微生物,其反应需要在缺氧环境中才能进行。 氨化菌

生物除磷原理 磷在自然界以2 种状态存在:可溶态(正磷酸盐PO43-)或颗粒态(多聚磷酸盐)。 所谓除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离。 厌氧释磷 污水在生物处理中,在厌氧条件下,聚磷菌的生长受到抑制,为了自身的生长便释放出其细胞中的聚磷酸盐,同时产生自身生长所需的所需的能量,称该过程为磷的释放。 好氧吸磷 进入好氧环境后,聚磷菌活力得到充分恢复,在充分利用基质的同时,从废水中摄取大量溶解态的正磷酸盐,从而完成聚磷的过程。 富含磷的污泥通过剩余污泥外排的方式最终使磷得到去除。

生物脱氮除磷工艺简述

生物脱氮除磷工艺简述 摘要:本文对生物脱氮除磷工艺的原理进行了介绍,并对目前常用的脱氮除磷处理工艺进行了简要阐述。 关键词:生物脱氮除磷,氧化沟A/A/O生物处理工艺,SBR法 Abstract: in this paper, the biological denitrification and the principle of dephosphorization technology are introduced, and the common denitrification and phosphorus processing technology are briefly described. Keywords: biological denitrification and phosphorus, the oxidation ditch A/A/O biological treatment technology, SBR method 生物脱氮除磷工艺是目前常见的污水处理工艺,其处理机理及形式如下: 1.生物脱氮除磷原理 1.1生物脱氮 生物脱氮是通过硝化和反硝化两个生化过程来完成的。 污水中含氮化合物经异养性氨化细菌作用分解为NH3-N,然后在好氧条件下,通过亚硝酸菌和硝酸菌的作用,将氨氮氧化成亚硝酸氮(NO2—-N)和硝酸氮(NO3—-N)的过程称为硝化过程。在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,在氢供给体充分的条件下,将亚硝酸氮(NO2—-N)和硝酸氮(NO3—-N)还原成N2排入空气中,同时有机物分解的过程称为反硝化过程。 1.2生物除磷 生物除磷是利用活性污泥中的聚磷菌在厌氧条件下释磷,在好氧条件下过量吸磷的原理来进行的。 1.3同时生物脱氮除磷系统的设计要素 从生物脱氮除磷原理看出,两者要求的有些方面是相互制约的。要正常发挥脱氮除磷系统效率,详细分析进水水质是十分必要的: 进水BOD5浓度:不宜低于150mg/L。

生物脱氮除磷工艺中的矛盾

5,生物脱氮除磷工艺中的矛盾 (1)泥龄问题 作为硝化过程的主休,硝化菌通常都属于自养型专性好氧菌.这类微生物的一个突出特点是繁殖速度慢,世 代时间较长.在冬季,硝化菌繁殖所需世代时间可长达30d以上;即使在夏季,在泥龄小于5d的活性污泥中硝 化作用也十分微弱.聚磷菌多为短世代微生物,为探讨泥龄对生物除磷工艺的影响,Rensink等(1985年)[23]用表2归纳了以往的研究成果,并指出降低泥龄将会提高系统的除磷效率. 泥龄与除磷率关系表2 泥龄/d 30 17 5.3 4.6 磷去除率/% 40 50 87.5 91 由表2可见聚磷微生物所需要泥龄很短.泥龄在3.0d左右时,系统仍能维持较好的除磷效率.此外,生物除磷 的唯一渠道是排除剩余污泥.为了保证系统的除磷效果就不得不维持较高的污泥排放量,系统的泥龄也不得 不相应的降低.显然硝化菌和聚磷菌在泥龄上存在着矛盾.若泥龄太高,不利于磷的去除;泥龄太低,硝化菌 无法存活,且泥量过大也会影响后续污泥处理.针对此矛盾,在污水处理工艺系统设计及运行中,一般所采用 的措施是把系统的泥龄控制在一个较窄范围内,兼顾脱氮与除磷的需要.这种调和,在实践中被证明是可行 的. 为了能够充分发挥脱氮与降磷两类微生物的各自优势,可采取的其它对策大致上有两类. 第一类是设立中间沉淀池,搞两套污泥回流系统使不同泥龄的微生物居于前后两级(见图4),第一级泥龄很短,主要功能是除磷;第二级泥龄较长,主要功能是脱氮.该系统的优点是成功地把两类泥龄不同的微生物分开.但是,这类工艺也是存在局限性.第一,两套污泥回流系统,再加上中间沉淀池和内循环,使该类工艺流程 长且比较复杂.第二,该类工艺把原来常规A2/O(见图5)工艺中同步进行的吸磷和硝化过程分离开来,而各 自所需的反应时间又无法减少,因而导致工艺总的停留时间变长.第三,该工艺的第二级容易发生碳源不足 的情况,致使脱氮效率大受影响.此外,由于吸磷和硝化都需要好氧条件,工艺所需的曝气量也可能有所增加. 第二类方法是在A2/O工艺好氧区的适当位置投放填料.由于硝化菌可栖息于填料表面不参与污泥回流,故 能解决脱氮除磷工艺的泥龄矛盾.这种作法的优点是既达到了分离不同泥龄微生物的目的,又维持了常规 A2/O工艺的简捷特点.但是该工艺也必须解决好以下几个问题:①投放填料后必须给悬浮性活性污泥以优先 的和充分的增殖机会,防止生物膜越来越多而MLSS越来越少的情况发生;②要保证足够的搅拌强度,防止因 填料截留作用致使污泥在填料表面间大量结团;③填料投放量必须适中,投放量太少难以发挥作用,太多则难免出现对污泥的截留.此外,填料的类型和布置方式都应作慎重考虑.

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

微生物脱氮原理

简介:介绍了生物脱氮基本原理及影响因素,为环境工作者掌握生物脱氮。废水中存在着有机氮、氨氮、硝态氮等形式的氮,而其中以氨氮和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成氨氮,而后经硝化过程转化变为NO3-N和NO2-N,最后通过反硝化作用使硝态氮转化成氮气,而逸入大气。由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快。在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 关键字:生物脱氮基本原理影响因素 废水中存在着有机氮、氨氮、硝态氮等形式的氮,而其中以氨氮和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成氨氮,而后经硝化过程转化变为NO3-N和NO2-N,最后通过反硝化作用使硝态氮转化成氮气,而逸入大气。 由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快。在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 1 氨化作用 1.1 概念 氨化作用是指将有机氮化合物转化为氨态氮的过程,也称为矿化作用。 1.2 细菌 参与氨化作用的细菌成为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌,兼性的变形杆菌和厌氧的腐败梭菌等。 1.3 降解方式(分好氧和厌氧) 在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨。例如氨基酸生成酮酸和氨: [2-1] 丙氨酸亚氨基丙酸法丙酮酸 另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们式好氧菌,其反应式如下: [2-2]

水处理生物脱氮除磷工艺

生物脱氮除磷工艺 第一节 概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:① 氨氮对鱼类有毒害作用;② NO 3- 和NO 2-可被转化为亚硝胺——一种“三致”物质;③ 水中NO 3-高,可导致婴儿患变性血色蛋白症——“Bluebaby ”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N 和P (尤其是P );解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N 、P 含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N 的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法 1、氨氮的吹脱法: -++?+OH NH O H NH 423 2 2每 3 采用斜发沸石作为除氨的离子交换体。 出水 折点加氯法脱氯工艺流程

1、铝盐除磷 4343AlPO PO Al →++ + 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠(NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 23452423))((345+→++--+ 向含磷的废水中投加石灰,由于形成OH -,污水的pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程: 第一级曝气池的功能:① 碳化——去除BOD 5、COD ;② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH 值; 第三级为反硝化反应器,可投加甲醇作为外加碳源或引入原废水。 该工艺流程的优点是氨化、硝化、反硝化分别在各自的反应器中进行,反应速率较快且较彻底;但七缺点是处理设备多,造价高,运行管理较为复杂。 2、两级活性污泥法脱氮工艺 与前一工艺相比,该工艺是将其中的前两级曝气池合并成一个曝气池,使废水在其中同时实现碳化、氨化和硝化反应,因此只是在形式上减少了一个曝气池,并无本质上的改变。 二、缺氧——好氧活性污泥法脱氮系统(A —O 工艺)

生物脱氮原理

水体中氮素过多所引起的危害—水体的富营养化:水体中含 氮量大于0.2~0.3m g/L就会引起水体的富营养化。 经富营养化污染的水体,治理关键是要脱氮除磷,而脱氮最常用的是生物脱氮。 生物脱氮原理:生物脱氮是在好氧条件下通过硝化反应先将氨氮氧化为硝酸盐,再通过缺氧条件下的反硝化反应将硝酸盐还原成气态氮从水中去除。生物脱氮通过氨化、硝化、反硝化三个步骤完成。 1、氨化反应:氨化作用是指将有机氮化合物转化为N H -N的过程,也称为 3 矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨,另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。 2、硝化反应:在硝化细菌的作用下,氨态氮进一步分解、氧化,就此分两个阶段进行。首先,在亚硝化细菌的作用下,使氨(N H4 + )转化为亚硝酸氮,亚硝酸氮在硝酸菌的作用下,进一步转化为硝酸氮。亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。硝酸菌有硝酸杆菌属、硝酸球菌属。 影响硝化反映的因素: 1、好样环境条件下,并保持一定的碱度:溶解氧在1.2~2.0m g/L。 2、pH:硝化反应的pH在8.0~8.4 3、温度:硝化反应的适宜温度在20~30℃ 4、尽量减少有毒有害物质的进入,且高浓度的氨氮和硝态氮对硝化作用有抑 制。 以上因素之所以会对硝化作用有影响,主要是因为他们对硝化细菌的生长环境造成了影响。 3、反硝化反应:反硝化反应是指硝酸氮和亚硝酸氮在反硝化菌的作用下,被还原为气态氮(N2 )的过程。进行这类反应的细菌主要有变形杆菌属、微球菌属、假单胞菌属、芽胞杆菌属、产碱杆菌属、黄杆菌属等兼性细菌,它们在自然界中广泛存在。 影响反硝化作用的因素: 1、要有充足的碳源 2、pH:反硝化反应的pH在6.5~7.5 3、溶解氧浓度:反硝化菌是异养兼性厌氧菌,溶解氧应控制在0.5mg/L以下 4、温度:反硝化反应的适宜温度在20~40℃ 生物脱氮工艺 主要有传统生物脱氮工艺(三级生物脱氮工艺)、A/O 工艺、A2/O 工艺(脱

生物脱氮除磷原理

1、生物脱氮 反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮(N2)或一氧化二氮(N2O)的过程.微生物和植物吸收利用硝酸盐有两种完全不同的用途,一是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3-→NH4+→有机态氮.许多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养.另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称为反硝化作用或脱氮作用:NO3-→NO2-→N2↑.能进行反硝化作用的只有少数细菌,这个生理群称为反硝化菌.大部分反硝化细菌是异养菌,例如脱氮小球菌、反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸,其生化过程可用下式表示: C6H12O6+12NO3-→6H2O+6CO2+12NO2-+能量 CH3COOH+8NO3-→6H2O+10CO2+4N2+8OH-+能量 少数反硝化细菌为自养菌,如脱氮硫杆菌,它们氧化硫或硝酸盐获得能量,同化二氧化碳,以硝酸盐为呼吸作用的最终电子受体.可进行以下反应: 5S+6KNO3+2H2O→3N2+K2SO4+4KHSO4 反硝化作用使硝酸盐还原成氮气,从而降低了土壤中氮素营养的含量,对农业生产不利.农业上常进行中耕松土,以防止反硝化作用.反硝化作用是氮素循环中不可缺少的环节,可使土壤中因淋溶而流入河流、海洋中的NO3-减少,消除因硝酸积累对生物的毒害作用. 2.生物除磷 1)生物除磷只要由一类统称为聚磷菌的微生物完成,由于聚磷菌能在厌氧状态下同化发酵产物,使得聚磷菌在生物除磷系统中具备了竞争的优势. 2)在厌氧状态下,兼性菌将溶解性有机物转化成挥发性脂肪酸;聚磷菌把细胞内聚磷水解为正酸盐,并从中获得能量,吸收污水中的易讲解的COD,同化成细胞内碳能源存贮物聚β-羟基丁酸或β-羟基戊酸等 3)在好氧或缺氧条件下,聚磷菌以分子氧或化合态氧作为电子受体,氧化代谢内贮物质PHB 或PHV等,并产生能量,过量地从无水中摄取磷酸盐,能量以高能物质ATP的形式存贮,其中一部分有转化为聚磷,作为能量贮于胞内,通过剩余污泥的排放实现高效生物除磷目的

生物脱氮基本原理精选版

生物脱氮基本原理 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

生物脱氮基本原理 作者:weidongwin 阅读:994次 上传时间:2005-10-13 推荐人:weidongwin 简介:进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施 中均能完成,故生物脱氮的关键在于硝化和反硝化。 关键字:生物脱氮基本原理氨化硝化反硝化同化 生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和N x O气体的过程[1]。 废水中存在着有机氮、NH3-N、NO x--N等形式的氮,而其中以NH3-N和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成NH3-N,而后经硝化过程转化变为NO x--N,最后通过反硝化作用使NO x--N转化成N2,而逸入大气。 由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 1.氨化作用 氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨[2]。例如氨基酸生成酮 酸和氨: (2-1) 丙氨酸亚氨基丙酸法丙酮酸 另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们是好氧菌,其反应式如下: (2-2) 在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱 水脱氨三种途径的氨化反应。 (2-3)

脱氮除磷论文

水污染控制工程论文 院系:化工学院盐系 专业:2011环境程

生物脱氮除磷新工艺比较及常规问题 摘要:在除磷与脱氮的联合工艺中,由于两过程所涉及的微生物在性质及最佳代谢条件上有较大差别,在同一处理流程中很难达到协调而稳定地运行问题,在传统生物除磷工艺原理基础上,就新近发现的A2/O 反硝化除磷技术新工艺及其微生物学原理特点,重点介绍A2/O反硝化除磷过程中的缺氧阶段中NO3-作为最终电子受体时,厌氧条件下释磷规律,缺氧条件下磷的去除效果以及缺氧阶段氮的变化情况为了解决传统活性污泥法处理生活污水存在氮,磷去除率低的问题,本文介绍了倒置A2/O脱氮除磷新工艺的原理及其特点。 关键词:脱氮除磷。新型倒置A2/O工艺,硝化,反硝化,聚磷菌 引言:环境污染和水体富营养化问题的尖锐化迫使越来越多的国家和地区制定严格的氮磷排放标准,这也使污水脱氮除磷技术一度成为污水处理领域的热点和难点。因此,研究和开发高效,经济的生物脱氮除磷工艺成为当前城市污水处理技术研究的热点污水生物脱氮的基本原理是:在好氧条件下通过消化反应先将氨氮氧化为硝酸盐,再通过缺氧条件下的反硝化作用将硝酸盐异化还原成气态氮从水中去除污水生物除磷是通过厌氧段和好氧段的交替操作,利用活性污泥。A2/0反硝化除磷工艺要优于传统的A/0法除磷工艺,且在反硝化进行同时,实现了同时脱氮除磷。A2/O法的生物除磷主要是通过聚磷菌在厌氧条件下释放磷之后,在缺氧阶段吸磷,好氧阶段时继续对剩余磷的过量吸收实现的。随着工业的发展,人民生活水平的提高,城市污水产生量逐日增加,由于城市排水系统的不完善,形成了成分较为复杂的城市综合污水,造成环境污染。重庆地处长江三峡库区,氮磷等营养元素大量入库,将对库区的生态环境造成威胁。因此,探讨和研究适合三峡库区的脱氮除磷实用技术,防止水库富营养化,是十分必要的。由于污水排放标准的不断提高,现行被广泛应用的生物脱氮除磷工艺如A2/O、SBR、OD等工艺,越来越不能满足排放水质标准,其原因主要由于常规工艺中存在碳源、泥龄、硝酸盐等问题使得系统对N、P同时去除效果不佳。 1系统对常规脱氮除磷工艺中问题及解决方法 1.1聚磷菌和反硝化菌对碳源的竞争问题 在脱氮除磷系统中,碳源主要消耗于释磷、反硝化和异养菌正常代谢等方面。其中释磷和反硝化的反应速率与进水碳源中的易降解部分,尤其是挥发性有机脂肪酸(VFA)的数量关系很大[2]。我国市政 污水中易降解的有机碳源相对较低,南方城市更为明显,常规的工艺流程一般是厌氧/缺氧/好氧,在 这样的系统中,聚磷菌优先利用进水中的碳源,使得在后续缺氧反硝化过程中碳源不足从而影响脱氮效果;而对于一些改进工艺在优先满足反硝化所需碳源时系统对P的去除效果不佳。因此在常规工艺中存在释磷和反硝化因碳源不足而引发的竞争问题。针对这一问题提出了以下几种途径解决。 (1)分点进水。在厌氧段和缺氧段根据实际情况合理分配分段点流量,以便同时满足聚磷菌和反硝化菌对碳源的需要。如李燕峰[3]等人研究的分点进水厌氧-多级缺氧好氧活性污泥工艺、HYChang[4]等人研究的AOAO工艺以及杨殿海[5]等人开发的改良A2/O工艺(MAAO),将厌氧池部分碳源分流来提供反硝化碳源,

生物脱氮的基本原理

摘要:进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 关键词:生物脱氮基本原理氨化硝化反硝化同化 生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和N x O气体的过程[1]。 废水中存在着有机氮、NH3-N、NO x--N等形式的氮,而其中以NH3-N和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成NH3-N,而后经硝化过程转化变为NO x--N,最后通过反硝化作用使NO x--N转化成N2,而逸入大气。 由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 1. 氨化作用 氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨[2]。例如氨基酸生成酮酸和氨: (2-1) 丙氨酸亚氨基丙酸法丙酮酸 另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们是好氧菌,其反应式如下: (2-2) 在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。 (2-3) (2-4)

(2-5) 2. 硝化作用 硝化作用是指将NH3-N氧化为NO x--N的生物化学反应,这个过程由亚硝酸菌和硝酸菌共同完成,包括亚硝化反应和硝化反应两个步骤。该反应历程为: 亚硝化反应 (2-6) 硝化反应 (2-7) 总反应式(2-8) 亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。硝酸菌有硝酸杆菌属、硝酸球菌属。亚硝酸菌和硝酸菌统称为硝化菌[22]。发生硝化反应时细菌分别从氧化NH3-N 和NO2--N的过程中获得能量,碳源来自无机碳化合物,如CO32-、HCO-、CO2等。假定细胞的组成为C5H7NO2,则硝化菌合成的化学计量关系可表示为: 亚硝化反应 (2-9) 硝化反应 (2-10) 在综合考虑了氧化合成后,实际应用中的硝化反应总方程式为: (2-11) 由上式可以看出硝化过程的三个重要特征: ⑴NH3的生物氧化需要大量的氧,大约每去除1g的NH3-N需要4.2gO2; ⑵硝化过程细胞产率非常低,难以维持较高物质浓度,特别是在低温的冬季; ⑶硝化过程中产生大量的质子(H+),为了使反应能顺利进行,需要大量的碱中和,理论上大约为每氧化1g的NH3-N需要碱度5.57g(以NaCO3计)。

脱氮除磷原理

脱氮除磷原理文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷。? 在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作 用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP保持稳定。在好氧段,由于聚磷菌的吸收,TP迅速降低。在厌氧段和缺氧 段,NH3-N浓度稳中有降,至好氧段,随着硝化的进行,NH3-N逐渐降低。在缺氧段,由于内回流带入大量NO3-N,NO3-N瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。 A-A-O脱氮除磷系统的工艺参数及控制? A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。如能有效地

脱氮或除磷,一般也能同时高效地去除BOD5。但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。? M和SRT。完全生物硝化,是高效生物脱氮的前提。因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。脱氮效率越高,而生物除磷则要求高F/M低SRT。A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在一般应控制在8-15d。? 2.水力停留时间。水力停留时间与进水浓度、温度等因素有关。厌氧段水力停留时间一般在1-2h范围内,缺氧段水力停留时间好氧段水力停留时间一般应在6h。? 3.内回流与外回流。内回流比r一般在200-500%之间,具体取决于进水TKN浓度,以及所要求的脱氮效率。一般认为,300-500%时脱氮效率最佳。内回流比r与除磷关系不大,因而r的调节完全与反硝化工艺一致。? 4.溶解氧(DO)。厌氧段DO应控制在L以下,缺氧段DO应控制在L以下,而好氧DO应控制在2-3mg/L之间。因生物除磷本身并不消耗氧,所以A-A-O脱氮除磷工艺曝气系统的控制与生物反硝化系统一致。?

生物脱氮基本原理

生物脱氮基本原理 摘要:进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 关键词:生物脱氮基本原理氨化硝化反硝化同化 生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和NxO气体的过程[1]。 废水中存在着有机氮、NH3-N、NOx--N等形式的氮,而其中以NH3-N和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成NH3-N,而后经硝化过程转化变为NOx--N,最后通过反硝化作用使NOx--N转化成N2,而逸入大气。 由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。

1. 氨化作用 氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨[2]。例如氨基酸生成酮酸和氨: (2-1) 丙氨酸亚氨基丙酸法丙酮酸 另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们是好氧菌,其反应式如下: (2-2) 在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。 (2-3) (2-4) (2-5)

2. 硝化作用 硝化作用是指将NH3-N氧化为NOx--N的生物化学反应,这个过程由亚硝酸菌和硝酸菌共同完成,包括亚硝化反应和硝化反应两个步骤。该反应历程为: 亚硝化反应 (2-6) 硝化反应 (2-7) 总反应式 (2-8) 亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。硝酸菌有硝酸杆菌属、硝酸球菌属。亚硝酸菌和硝酸菌统称为硝化菌[22]。发生硝化反应时细菌分别从氧化NH3-N和NO2--N的过程中获得能量,碳源来自无机碳化合物,如CO32-、HCO-、CO2等。假定细胞的组成为C5H7NO2,则硝化菌合成的化学计量关系可表示为:亚硝化反应 (2-9) 硝化反应 (2-10) 在综合考虑了氧化合成后,实际应用中的硝化反应总方程式为: (2-11) 由上式可以看出硝化过程的三个重要特征:

生物脱氮除磷大比较

生物脱氮除磷大比较 1.污水生物脱氮除磷的基本原理 在好氧条件下通过硝化反应先将氨氮氧化为硝酸盐,再通过缺氧条件下的反硝化反应将硝酸盐异化还原成气态氮从水中去除。由此而发展起来的生物脱氮工艺大多将缺氧区和好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立进行。 污水生物除磷是通过厌氧段和好氧段得交替操作,利用活性污泥的超量吸磷特性,使细胞含磷量相当高的细菌群体能够在处理系统的基质竞争中取得优势,剩余污泥的含磷量达到3%-7%,进入剩余污泥的总磷量增大,处理出水的磷浓度明显降低。 2.生物脱氮除磷工艺的比较 2.1 AAO工艺 传统的AAO工艺流程是:污水首先进入厌氧池,兼性厌氧菌将水中的易降解有机物转化成VFAS1回流污泥带入的聚磷菌将体内的聚磷菌分解,此为释磷,所释放的能量一部分可供好氧的聚磷菌在厌氧的环境下维持生存,另一部分共聚磷菌主动吸收VFAS,并在体内储存PHB。进入缺氧区,反消化细菌就利用混合液回流带入硝酸盐及进水中的有机物进行反消化脱氮,接着进入好氧区,聚磷菌除了吸收利用污水中残留的易降解BOD外,主要分解体内储存的PHB产生的能

量供自身生长繁殖。最后,混合液进入沉淀池进行泥水分离,上清液作为处理水释放,沉淀污泥的一部分回流厌氧池,另一部分作为剩余污泥排放。 N2 混合液回流 ↑↓ 进水→厌氧池→缺氧池→好氧(硝化)池→沉淀池→出水 ↑↓剩余污泥 AOO工艺流程图 该工艺简洁,污泥在厌氧、缺氧、好氧环境中交替运行,丝状菌不能大量繁殖,污泥沉降性能好。该处理系统出水中磷浓度科达到1 mg/L以下,氨氮也可达到8 mg/L以下。 该法需要注意的问题是,进入沉淀次得混合液通常要保持一定的溶解氧浓度,以防止沉淀池中反消化和污泥厌氧释磷,但这会导致回流污泥和回流混合液中存在一定的溶解氧回流污泥存在的硝酸盐对厌氧释磷过程也存在一定的影响,同时,系统所排放的剩余污泥中。仅有的一部分污泥是经历了完整的厌氧和好氧的过程,影响了污泥的充分吸磷。系统污泥泥龄因为兼顾硝化菌的生长而不可能太短,导致除磷效果难以进一步提高。 2.2改良Bardenpho工艺

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺 摘 要:阐述了生物除磷和反硝化脱氮的机理,针对常规生物脱氮除磷技术和工艺中存在的问题,研究开发出从不同类型污水中去除氮和磷的SBR 工艺、CAST 工艺、MSBR 工艺、O A /2 工艺和立体循环一体化氧化沟等。这些技术和工艺发挥了不同微生物菌群的优势,使其分别处于各自最佳状态,可提高处理效率、简化操作、降低处理费用。 关键词: 脱氮除磷;SBR 工艺;CAST 工艺;MSBR 工艺;O A /2;立体循环一体化氧化沟 1 引言 氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害。然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污(废)水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物 降解,大部分的可溶性含碳有机物被去除。同时产生N NH -3、N NO --3和-34PO 和- 24SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准。因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要。 2 生物脱氮除磷机理 2.1 生物脱氮机理 污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝 态氮,即,将3NH 转化为N NO --2和N NO --3。在缺氧条件下通过反硝化作用将硝氮转 化为氮气,即,将N NO -- 2(经反亚硝化)和N NO --3(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的[1]。 ○ 1硝化——短程硝化:O H HNO O NH 22235.1+→+

相关文档
最新文档