废水脱氮除磷工艺

废水脱氮除磷工艺

废水脱氮除磷工艺是一种用于处理含有高浓度氮和磷的废水的技术,旨在减少这些有害污染物的排放,以满足环保标准。以下是常见的废水脱氮除磷工艺:

1.生物脱氮除磷工艺:

生物脱氮(BNR):生物脱氮是通过在废水处理系统中引入一些特定的微生物,将废水中的氮转化为氮气的过程。这通常包括硝化和反硝化两个阶段,其中氨氮首先被氧化成亚硝酸盐,然后转化为氮气。

生物除磷(BPR):生物除磷是通过引入能够吸附磷的微生物,将废水中的磷物质吸附并沉淀出来的过程。

2.化学脱氮除磷工艺:

化学沉淀:添加化学药剂,如氧化铁、氧化铝等,与废水中的磷形成沉淀物,从而实现除磷的效果。这一过程通常被称为磷酸盐的化学沉淀。

硝化-脱硝:使用化学方法将废水中的氨氮氧化成硝酸盐,然后再还原成氮气。

3.物理化学脱氮除磷工艺:

生物物理化学一体化工艺:将生物处理、物理处理和化学处理结合在一起,以提高脱氮除磷效果。

膜分离技术:利用膜过滤技术,如超滤、反渗透等,从废水中去除氮和磷。

4.湿地处理:

人工湿地:利用植物和微生物的协同作用,通过湿地过程去除废水中的氮和磷。

自然湿地模拟:模仿自然湿地的生态系统,利用湿地中的植物和微生物去除废水中的有机和无机污染物。

脱氮除磷

脱氮除磷技术 前面我们学习了污水的一级和二级处理,城市污水和工业废水通过常规的二级处理后,大部分杂质和污染物得以去除,但仍有许多污染物是常规一、二级处理无法去除或去除甚少的,其中对环境影响很大且普遍存在的两类污染物是氮和磷。我们知道,水体中的氮磷元素过多时,会消耗水中的溶解氧,造成水体富营养化,影响饮用水水源。因此,去除污水中的氮和磷是水处理中至关重要的一步。 一、脱氮技术 1.1氮在水中的存在形态 废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等4种形态存在,在二级处理水中,氮则是以氨态氮、亚硝酸氮和硝酸氮形式存在的。如前所述,二级处理技术对氮的去除率比较低。它仅为微生物的生理功能所用。 1.2 物理化学脱氮技术 采用物理化学工艺去除城市污水中氮的常用方法主要有吹脱法、折点氯化法和选择性离子交换法。物理化学脱氮方法不包括有机氮转化为氨氮和氨氮氧化为硝酸盐的过程,只能够去除污水中的NH3-N。 1.2.1 碱性吹脱法 污水中的氨氮是以氨离子(NH4+)和游离氨(NH3)两种形式保持平衡状态而存在: N H3+H2O==NH4++OH? 将pH值保持在11.5左右(投加一定量的碱),让污水流过吹脱塔,使NH3逸出,以达脱氮目的。首先投加石灰调pH值至11.5以促使NH4+—N向NH3-N转化。在除氮塔内,空气自下向上吹入塔内,水自上而下喷淋,析出的NH3进入空气中,其去除率可达85%,水得以净化后再回流至格栅前,而除氮塔出来的空气再进入硫酸淋洗塔生成(NH4)2SO4,可作肥料或工业原料。 碱性吹脱法操作简便易控,除氨效果稳定;但也存在问题:pH值过高易生成水垢,在吹脱塔的填料上沉积,可使塔板完全堵塞;当水温降低时,水中氨的溶

污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺 摘要:阐述城市污水生物脱氮除磷机理,简单分析生物脱氮除磷的处理工艺 关键词:脱氮除磷;SBR工艺;A²/O工艺;立体循环一体化氧化沟;CAST 工艺 1、引言 城市污水中的氮、磷主要来自城市生活污水,来自农业施肥(氮)和喷洒农药(磷等),来自工业废水。氮、磷的主要危害:氮和磷能够使湖泊等缓流封闭或半封闭的水体产生富营养化,而水体富营养化已成为全球的重大环境问题。生物脱氮除磷作为解决水体富营养化的主要手段成为污水处理领域的重中之重。为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。 2、生物脱氮除磷机理 2.1 脱氮机理 脱氮首先利用设施内好氧段,由亚硝化细菌和硝化细菌的硝化作用,将转化为。再利用缺氧段经反硝化细菌将反硝化还原为氮(),溢出水面释放到大气,参与自然界物质循环。水中含氮物质大量减少,降低出水潜在危险性,从而达到从废水中脱氮的目的。 2.2 除磷原理 在普通废水生物处理过程中,微生物除碳的同时吸收磷元素用以合成细胞物质和合成ATP等,但只去除污水中约19%左右的磷。残留在出水中的磷还相当高。故需用除磷工艺处理。所谓的除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离的效果。聚磷菌成为生物除磷过程中最重要的菌群,其是一种高能化合物,水解时能放出能量。在厌氧池中聚磷菌利用这些能量摄取有机物并释放出水解产生的磷酸,造成厌氧池中磷浓度的升高,废水中的有机物减少。到了好氧池,聚磷菌将体内积蓄的有机物通过好氧呼吸氧化分解合成ATP,用这部分能量进行菌体的增殖和聚磷酸的合成,在此过程中不断完成磷的过度累积和最后的奢量吸收从而达到去除污水中磷的目的。反应方程式如下: ( 1) 聚磷菌摄取磷:ADP++能量→ATP+ ( 2) 聚磷菌的放磷:ATP+→ADP++能量 3、生物脱氮除磷工艺 3.1 SBR工艺

脱氮除磷工艺汇总

脱氮除磷工艺汇总 MBR工艺脱氮除磷 MBR是一种结合膜分离和微生物降解技术的高效污水处理工艺。在反应器内,一方面,膜组件将泥水高效分离,促使出水水质改善;另一方面,污泥停留时间(SRT)与水力停留时(HRT)在反应器内相互独立,可提高污泥浓度;此外,反应器内较长的SRT可使增殖缓慢的某些特殊菌(如自养硝化菌等)在活性污泥中出现,而膜组件又能将这些菌持留,从而使MBR处理效果得以改善。 MBR工艺具有一定局限性,对于生活污水,其仅依靠MBR本身其脱氮除磷能力只能达到40%至60%左右的去除率;对于工业废水,其对难降解有机物的去除率并没有得到太大改善。所以MBR工艺一般和SBR系列/AAO等工艺组合使用。五种常见组合工艺: SBR-MBR工艺 A2O-MBR工艺 3A-MBR工艺 A2O/A-MBR工艺 A(2A)O-MBR工艺 SBR-MBR工艺: 将SBR与MBR相结合形成的SBR-MBR工艺,除了具有一般MBR的优点外,对于膜组件本身和SBR工艺两种程序运行都互有帮助。由于膜组件的截留过滤作用,反应中的微生物能最大限度地增长,利于世代时间较长的硝化及亚硝化细菌的生长繁殖,因此,污泥的生物活性高,吸附和降解有机物的能力较强,同时也具有较好的硝化能力。此外,SBR式的工作方式为除磷菌的生长创造了条件,同时也满足了脱氮的需要,使得单一反应器内实现同时高效去除氮磷及有机物成为可能。与传统SBR系统相比,SBR-MBR在反应阶段利用膜分离排水,可以减少传统SBR的循环时间;同时,序批式的运行方式可以延缓膜污染。

A2O-MBR工艺: 由A2O工艺与MBR膜分离技术结合而成的具有同步脱氮除磷功能的A2O-MBR工艺,可进一步拓展MBR的应用范畴。在该工艺中设置有两段回流,一段是膜池的混合液回流至缺氧池实现反硝化脱氮,另一段是缺氧池的混合液回流至厌氧池,实现厌氧释磷。A2O-MBR工艺中高浓度的MLSS、独立控制的水力停留时间和污泥停留时间、回流比及污泥负荷率等都会产生与传统A2O工艺不同的影响,具有较好的脱氮除磷效率。 3A-MBR工艺: 3A-MBR是依据生物脱氮除磷机理,结合膜生物反应器技术特点而形成的具有高效脱氮除磷性能的新型污水处理工艺。其基本原理是,膜生物反应器内的高浓度硝化液和高浓度活性污泥经过回流系统形成良好的缺氧、厌氧条件,实现系统的高效脱氮除磷。该工艺的内部流程依次是第一缺氧池、厌氧池、第二缺氧池、好氧池和膜池,膜池混合液分别回流至第一缺氧池和第二缺氧池。第一缺氧池利用进水碳源和回流硝化液进行快速反硝化,接着混合液进入厌氧池进行厌氧释磷,减少了硝酸盐对释磷的影响,第二缺氧池再利用污水中剩余的碳源和回流的硝化液进一步反硝化脱氮,好氧池内同步发生有机物降解、好氧释磷和好氧硝化等多种反应,彻底去除污水中的污染物,混合液再a经膜过滤出水,实现了对污水中有机物和氮磷的去除。3A-MBR工艺合理地组合了有机物降解和脱氮除磷等各处理单元,协调了各种生物降解功能的发挥,达到了同步去除各污染指标的目的,具有较高的推广应用价值。 A2O/A-MBR工艺: A2O/A-MBR工艺是一种强化内源反硝化的新型工艺,该工艺利用MBR内高浓度活性污泥和生物多样性来强化脱氮除磷效果,工艺流程依次为厌氧、缺氧、好氧、缺氧和膜池。该工艺在普通A2O工艺后再设一级缺氧池,在利用进水快速碳源完成生物除磷和脱氮后,再利用第二缺氧池进行内源反硝化,进一步去除TN,之后,再利用膜池的好氧曝气作用保障出水。A2O/A-MBR工艺是针对进水碳源不足,而同时又有较高脱氮要求的污水处理项目所开发,也是强化脱氮的MBR脱氮处磷

污水处理脱氮除磷工艺介绍及对比分析

污水处理脱氮除磷工艺介绍及对比分析 2020年9月6日星期日

目录 一、生物脱氮 (3) 1、硝化过程 (3) 2、反硝化过程 (4) 3、生物脱氮的基本条件 (5) 4、废水生物脱氮处理方法 (6) 二、化学脱氮 (7) 1、吹脱法 (7) 2、化学沉淀法(磷酸铵镁沉淀法) (8) 3、低浓度氨氮工业废水处理技术 (9) 4、不同浓度工业含氨氮废水的处理方法比较 (11) 三、化学法除磷 (11) 1、石灰除磷 (12) 2、铝盐除磷 (12) 3、铁盐除磷 (13) 四、生物除磷 (13) 1、生物除磷的原理 (13) 2、生物除磷的影响因素: (14) 3、废水生物除磷的方法有哪些 (15) 4、除磷设施运行管理的注意事项 (15)

一、生物脱氮 脱氮技术包括化学法和生物法,由于化学法会产生二次污染,而且成本高,所以一般使用生物脱氮技术。 污水生物处理脱氮主要是靠一些专性细菌实现氮形式的转化。 含氮有机化合物在微生物的作用下首先分解转化为氨态氮NH4+或NH3,这一过程称为“氨化反应”。 硝化菌把氨氮转化为硝酸盐,这一过程称为“硝化反应”; 反硝化菌把硝酸盐转化为氮气,这一反应称为“反硝化反应”。 含氮有机化合物最终转化为氮气,从污水中去除。 1、硝化过程 硝化菌把氨氮转化为硝酸盐的过程称为硝化过程,硝化是一个两步过程,分别利用了两类微生物——亚硝酸盐菌和硝酸盐菌。这两类细菌统称为硝化菌,这 些细菌所利用的碳源是CO 32-、HCO 3 -和CO 2 等无机碳。 第一步由亚硝酸盐菌把氨氮转化为亚硝酸盐,第二步由硝酸盐菌把亚硝酸盐转化为硝酸盐。 这两个过程释放能量,硝化菌就是利用这些能量合成新细胞和维持正常的生命活动,氨氮转化为硝态氮并不是去除氮而是减少了它的需氧量。 氧化1g氨氮大约需要消耗4.3gO 2和8.64gHCO 3 -(相当于7.14gCaCO 3 碱度)。 硝化过程的影响因素: 1)温度:硝化反应最适宜的温度范围是30~35℃,温度不但影响硝化菌的比增长速率,而且会影响硝化菌的活性。 2)溶解氧:硝化反应必须在好氧条件下进行,溶解氧浓度为0.5~0.7mg/L 是硝化菌可以容忍的极限,溶解氧低于2mg/L条件下,氮有可能被完全硝化,但需要较长的污泥停留时间,因此一般应维持混合液的溶解氧浓度在2mg/L以上。 3)pH和碱度:硝化菌对pH特别敏感,硝化反应的最佳pH是在7.2~8之间。每硝化1g氨氮大约需要消耗7.14gCaCO 3 碱度,如果污水没有足够的碱度进行缓冲,硝化反应将导致pH值下降、反应速率减慢。 4)有毒物质:过高的氨氮、重金属、有毒物质及某些有机物质对硝化反应

污水厂脱氮除磷三种方法

污水厂脱氮除磷三种方法 传统A2/O 工艺是一项具有脱氮除磷功能的典型污水处理技术,这个工艺结构简单、水力停留时间(HRT)短且易于控制,多数污水厂都是采用传统A2/O 工艺进行污水处理。然而,生物脱氮除磷的过程中涉及硝化、反硝化、摄磷和释磷等多个生化过程,而每个过程对微生物组成、基质类型及环境条件的要求存在许多差异。在传统A2/O 工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(DO)残余干扰等。 传统A2/O 工艺是一项具有脱氮除磷功能的典型污水处理技术,这个工艺结构简单、水力停留时间(HRT)短且易于控制,多数污水厂都是采用传统A2/O 工艺进行污水处理。 然而,生物脱氮除磷的过程中涉及硝化、反硝化、摄磷和释磷等多个生化过程,而每个过程对微生物组成、基质类型及环境条件的要求存在许多差异。 在传统A2/O 工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(DO)残余干扰等。 传统A2O工艺存在的矛盾 01 污泥龄矛盾 传统A2/O 工艺属于单泥系统,聚磷菌(PAOs)、反硝化菌和硝化菌等功能微生物混合生长于同一系统中,而各类微生物实现其功能最大化所需的泥龄不同: 1)自养硝化菌与普通异养好氧菌和反硝化菌相比,硝化菌的世代周期较长,欲使其成为优势菌群,需控制系统在长泥龄状态下运行。冬季系统具有良好硝化效果时的污泥龄(SRT)需控制在30d 以上;即使夏季,若SRT<5 d,系统的硝化效果将显得极其微弱。 2)PAOs 属短世代周期微生物,甚至其最大世代周期(Gmax)都小于硝化菌的最小世代周期(Gmin)。

污水生物脱氮除磷工艺的现状与发展

污水生物脱氮除磷工艺的现状与发展 污水生物脱氮除磷工艺的现状与发展 一、引言 随着经济的快速发展和城市人口的不断增加,城市污水处理厂面临着越来越严重的压力。其中,氮和磷是污水中主要的污染物之一,过量排放会导致水体富营养化,引发藻类大量繁殖,破坏水生态平衡。因此,研究污水生物脱氮除磷工艺的现状与发展具有重要的理论和实践意义。 二、污水生物脱氮除磷工艺的现状 1. 生物脱氮工艺 生物脱氮通过利用厌氧条件下的硝化反硝化作用,将污水中的氮转化为气体排出,达到脱氮的目的。目前常用的生物脱氮工艺有深阱好氧脱氮工艺、内循环流化床法、内循环硝化反硝化法等。其中,内循环硝化反硝化工艺在实际应用中表现出较好的效果,具有设备简单、操作稳定等优点。 2. 生物除磷工艺 生物除磷主要通过利用磷的生物循环过程,使污水中的磷以生物体或无机磷的形式去除。目前常用的生物除磷工艺有反硝化除磷工艺、好氧序列反应器法、短程还原除磷法等。其中,反硝化除磷工艺是较为成熟的技术,通过合理的氮磷比例控制可以达到较好的除磷效果。 三、污水生物脱氮除磷工艺的发展趋势 1. 新型菌种的应用 研究人员根据生物脱氮除磷的原理,开展了对新型菌种的筛选和应用研究。这些菌种具有较高的脱氮除磷效率和适应能力,能够更好地适应不同性质的废水,对提高脱氮除磷效果具有重

要的意义。 2. 引入新技术 在工艺改进方面,研究人员还尝试引入一些新的技术手段,如电弧和超声波等,以提高脱氮除磷效果。一些实验结果表明,这些新技术能够激活微生物代谢,加强生物脱氮除磷过程,提高出水质量。 3. 综合运用多种工艺 为了更好地满足不同水质和处理规模的需求,研究人员开始尝试将多种生物脱氮除磷工艺相结合,形成综合工艺系统。比如,将好氧反硝化法和内循环流化床方法相结合,能够更好地发挥两种工艺的优点,提高除磷效果。 四、未来发展方向 1. 强化污水处理厂的监管 当前,部分污水处理厂的运行管理存在不规范和失职失责的问题,导致效果不理想。未来,需要建立更完善的监管体系,加强对污水处理厂的监督和指导,确保工艺操作规范,提高脱氮除磷效率。 2. 提高工艺的稳定性和可靠性 在工程应用中,工艺的稳定性和可靠性是保障脱氮除磷效果的重要因素。未来的发展中,研究人员需要继续提升工艺的稳定性和可靠性,降低操作难度,并建立有效的运行管理体系。 3. 探索新的脱氮除磷途径 尽管目前已有一些成熟的脱氮除磷工艺,但仍然存在一些问题,如工艺复杂、投资高等。未来,需要进一步探索和研究新的脱氮除磷途径,寻找更低成本、更高效率的方法,以满足不同地区和规模的需求。 五、结论

脱氮除磷工艺技术

脱氮除磷工艺技术 1.污水脱氮除磷处理工艺及其智能控制 (1)传统脱氮除磷工艺的强化与优化控制 A/O、A2/O工艺是目前广泛采用的前置脱氮除磷工艺,具有运行简便,处理效果好的特点,经过多年运行,已经积累了很多成功实践的经验。因此,A/O、A2/O是技术成熟、运行简单可靠的工艺,在我国的市政污水处 理领域工艺运行中占有很大的比例。北京市的几家大型污水处理厂也选用 了该工艺,如高碑店污 2 尽管上述传统脱碳除磷工艺(A/O、A2/O及氧化沟工艺)在废水脱氮 除磷方面起到了不可忽视的作用,但明显存在不足点:即系统的脱氮和除 磷去除效果不能同时达到最佳状态;回流污泥中不可避免会混入NO-某而 使前置厌氧段存在硝酸盐,这将直接影响聚磷菌的释磷效率;提高内循环 流量将引起推动力降低,运行费用增大,带进溶解氧使反硝化效率降低。 这些缺点的存在大大限制了常规污水脱氮除磷处理工艺的应用。针对传统 脱氮除磷工艺存在的问题和困难,我们必须从污水的性质和特点入手,通 过技术创新,在常规的工艺基础上,探索适合我国国情的污水处理工艺过 程及设备,提高除磷脱氮效果,达到水质净化的目的。需研究的主要内容为: 根据污水处理厂进水水质水量的变化,确定工艺厌氧、缺氧(A/An)段和好氧(O)段的最佳反应时间。 实现厌氧段聚磷菌最大程度放磷,好氧段最大程度吸磷的最佳控制方

法。 探讨内循环回流比、DO和有机碳源对脱氮除磷效果的影响及优化控制 方法。 研究污水处理厂硝化反硝化的最佳控制方法。 在前期试验的基础上,考察和选择合适的参数对工艺进行自动控制的研 究。 通过对传统A/O、A2/O和氧化沟脱氮除磷工艺的强化和优化控制来提高二级生物处理的效果、效率和稳定性。 (2)高效脱氮除磷新工艺、新技术 ①短程硝化反硝化新技术 对脱氮除磷工艺的研究一直是城市污水处理中一个颇受关注的领域,由于传统A/O、A2/O工艺的脱氮处理均为传统硝化反硝化,即全程硝化反硝化(如图3-5所示)。全程硝化反硝化反应存在明显的缺点:硝化菌群增殖速度慢,且硝化菌群世代时间长,难以维持较高生物浓度;反应历程较长,处理效率降低;系统总水力停留时间较长,有机负荷降低,需要较大的曝气池,增加了基建投资和运行费用等。这些缺点大大限制了常规污水脱氮除磷处理工艺的应用。对于反硝化菌,无论是NO2-还是NO3-均可以作为最终受氢体,整个生物脱氮过程也可以经

除磷脱氮技术的几种工艺介绍

除磷脱氮技术的几种工艺介绍 所属行业: 水处理关键词:除磷脱氮污水处理城市污水氮、磷等污染物的大量排放,进一步加剧了水资源短缺的矛盾,为此,对污水排放情况的控制很重要。磷、氮废水的大量排放,造成水体的富营养化,最终会导致生态平衡,影响人类健康与发展等危害。下面主要介绍城市污水处理的除磷脱氮技术: 处理城市污水中的氮磷多采用A/O、A2/O工艺、序批式工艺、氧化沟系列工艺等。以下是城市污水除磷脱氮几种工艺的介绍。 01.A2/O法: 传统A2/O法 传统A2/O法是目前普遍采用的同时脱氮除磷的工艺,它是在传统活性污泥法的基础上增加一个缺氧段和一个厌氧段。 倒置A2/O工艺

倒置A2/O是对传统A2/O工艺的改进,其脱氮除磷效果更好,其原因在于: 缺氧区位于厌氧区之前,有利于微生物形成更强的吸磷动力,微生物厌氧释磷后直接进入好氧环境充分吸磷;所有参与回流的污泥都 经历了完整的释磷、吸磷过程;缺氧池位于厌氧池前,允许反硝化菌 优先获得碳源,因而加强了系统的脱氮能力。 02序批式工艺 传统的SBR法 传统SBR是间歇性活性污泥法,它由一个或多个曝气反应池组成,污水分批进入池中,经活性污泥净化后,上清夜排出池外即完成一个运行周期。 SBR工艺处理简单,处理构筑物少,曝气反应池集曝气沉淀污泥回流于一体,且污泥量少,容易脱水,但存在自动控制和连续在线分析仪器仪表要求高的特点。

CASS工艺 CASS是一种连续进水式SBR曝气系统,不仅具有SBR工艺简单可靠、运行方式灵活、自动化程度高的特点,而且脱氮除磷效果明显。 这一功能主要实现于CASS池通过隔墙将反应池分为功能不同的区域,在各分隔中溶解氧、污泥浓度和有机负荷不同,各池中的生物也不同,同时在传统的SBR池前或池中设置了选择器及厌氧区,提高了脱氮除磷效果。 03氧化沟工艺 氧化沟工艺是一种延时曝气的活性污泥法,由于负荷很低,耐冲击负荷强,出水水质较好,污泥产量少且稳定,构筑物少,氧化沟可以按脱氮设计,也可以略加改进实现脱氮除磷。 氧化沟工艺是一种工艺流程简单、管理方便、投资省、运行费用低、工艺稳定性高的污水处理技术。 以上的除磷脱氮技术,可以很好地解决磷、氮超标问题,不过有时因为一些因素的干扰,造成出水的磷、氮的浓度不达标,为此,可以在处理工艺末端投加除磷剂或氨

污水处理工艺脱氮除磷基本原理

含氮有机物异氧型细菌 ? NH4+—N 硝化细菌 ? NH3-—N (氨化作 用) (硝化作 用) (反硝化作 用) 污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点 是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/0法、SBR法、氧化沟法等。 生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机 物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20C,不能低于10C,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH 条件。 生物脱氮过程如图5—1所示 反硝化细菌+有机物 N

污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺 摘要:在陈述城市污水生物脱氮除磷机理的基础下,简单分析生物脱氮除磷的处理工艺。 关键词:脱氮除磷;机理;工艺 1 前言 城市污水中的氮、磷主要来自生活污水和部分工业废水。氮、磷的主要危害:一是使受纳水体富营养化;二是影响水源水质, 增加给水处理成本;三是对人和生物产生毒害。上述 危害严重制约了城市水环境正常功能的发挥, 并使城市缺水状况加剧,而且随着人民生 活水体的提高和环境的恶化,对水质的要求也越来越高。为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。 2 生物脱氮原理【1】 一般来说, 生物脱氮过程可分为三步: 第一步是氨化作用, 即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中, 氨化作用进行得很快, 无需采取特殊的措施。第二步是硝化作用, 即在供氧充足的条件下, 水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐, 然后再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。第三步是反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。反应方程式如下: ( 1) 硝化反应: 硝化反应总反应式为: ( 2) 反硝化反应:

另外, 由荷兰Delft 大学Kluyver 生物技术实验室试验确认了一种新途径, 称为厌氧氨( 氮) 氧化。即在厌氧条件下,以亚硝酸盐作为电子受体,由自养菌直接将氨转化为氮, 因而不必额外投加有机底物。反应式为:NH4+NO2→N2+2H2O 3 生物除磷原理【1】 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 生物除磷过程可分为3 个阶段,即细菌的压抑放磷、过渡积累和奢量吸收。首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。反应方程式如下: ( 1) 聚磷菌摄取磷: ADP+H3PO4+能量→ATP+H2O ( 2) 聚磷菌的放磷: ATP+H2O→ADP+H3PO4+能量 4.脱氮除磷工艺 4.1 AB法【2】 AB法污水处理工艺是一种新型两段生物处理工艺,是吸附生物降解法的简称。该工艺将高负荷法和两段活性污泥法充分结合起来,不设初沉池,A、B两段严格分开,形成各自的特征菌群,这样既充分利用了上述两种工艺的优点,同时也克服了两者的缺点。所以

污水脱氮除磷技术介绍

污水脱氮除磷技术介绍 一、生物脱氮原理 氮元素在新鲜污水中的存在形式主要有以下两类,一是有机氮,例如蛋白质、尿素、氨基酸、胺类化合物等;另一类是氨态氮,或,一般以前者为主。含氮化合物在污水中微生物的作用下会发生三大类反应,一,氨化反应;二,硝化反应;三,反硝化反应。 氨化反应是指有机氮化合物在氨化菌的作用下,被分解成为氨态氮。硝化反应是指氨态氮首先在亚硝化菌的作用下变为亚硝酸盐氮,然后在硝酸菌的作用下转变为硝酸氮。硝化反应的进行对环境变化极为敏感,所以硝化反应的进行必须满足一定的外部条件。必须满足一定的溶解氧即DO含量大于2.Omg/1.,,硝化反应中回释放出,导致混合液中PH下降,因此混合液中必须保持足够的碱度起缓冲作用。一般来说,Ig氨态氮需要碱度(以碳酸钙计)7.14g。BOD值不宜过高,一般控制在15T0mg∕1.以下。反硝化反应是指硝态氮在反硝化菌的作用下被还原为或NO等的过程。反应进行时的DO应控制在0.5mg∕1.以下,pH为7.0-7.5 通过一系列反应最终使污水中的氮元素得以一定程度去除。 二、生物除磷原理 磷元素在污水中主要以有机磷和无机磷两种存在形式。生物除磷是指利用聚磷菌等微生物在好氧条件下对磷元素过量摄取,在厌氧条件下释放出来,使磷元素的含量得以降低。 三、脱氮技术

(1)硝化-反硝化技术 硝化-反硝化技术可以分为一段硝化和两端硝化。其中,一段硝化法是指在同一反应池中进行硝化-反硝化,硝化细菌比好氧异养菌的世代周期长,所以一般要控制污泥停留时间在3d以上,另外,硝化反应所需的BOD值较低只有有机负荷降低到一定程度才能反应。现一般在曝气池内添加某种填料载体以固定硝化细菌使反应周期缩短。两段硝化法是指有机物的降解和脱氮反应分别在两个池中进行。首先利用活性污泥法去除水中的BoD然后在其后面放置供脱氮反应的反应池。进行脱氮反应的区域一般都由两部分构成,一部分好氧区,一部分厌氧区。分别进行硝化和反硝化反应以去除多余的氮元素。 (2)缺氧-好氧活性污泥法 在活性污泥工蓼主体内设置两座反应池,前面为反硝化反应池,后为主体反应池,在主体反应池内进行BOD的去除和硝化反应。主体反应池内处理过的水循环至反硝化反应器。为控制反应池的环境需要向注意反应池内投加一部分碱性物质。设置内循环系统,向前置的反硝化池回流反应过的硝化液是此种处理工艺的主要特点。还可将两个反应区域用隔板隔离合建在一个池中。 此种脱氮处理工艺流程简单,装置少,建设费用和运行费用都比较低。不足之处为脱氮效果难以继续提高,一般很难达到90%o 四、除磷技术 (1)厌氧-好氧除磷工艺 本工艺同厌氧-好氧脱氮工艺类似,由一个前置的厌氧池和一个宫BOD去除和吸收磷的好氧曝气池组成。曝气池后设置沉淀池,将沉淀池中的含磷污泥回流至厌氧池内与原污水混合进行厌氧释磷。如此

几种脱氮除磷污水处理工艺简介之化学文章

几种脱氮除磷污水处理工艺简介之化学文 章 摘要:简单介绍了目前在城市污水处理几种常用的污水脱氮除磷处理工艺及其发展改进的工艺。 关键字:脱氮除磷文章,氧化沟,A/A/O,SBR,BAF,VertiCel-BNR工艺 污水处理的生物脱氮除磷工艺都包含厌氧、缺氧、好氧三个不同过程的交替循环。按照构筑物的组成形式、运行性能以及运行操作方式的不同,又分为悬浮性活性污泥法和固着性生物膜法两大类文章 应用于城市污水厂的悬浮性活性污泥法污水处理工艺主要有三个系列:(1)氧化沟系列;(2)A/O系列;(3)序批式反应器(SBR)系列。各个系列不断的发展、改进,形成了目前比较典型的工艺有:A/A/O工艺、改良A/A/O工艺、UCT工艺、改良UCT工艺、CARROUSEL-2000氧化沟工艺、双沟式DE氧化沟工艺、三沟式T型氧化沟工艺、VIP工艺、CASS工艺、MSBR工艺、Unitank工艺等。应用于城市污水处理厂的固着性生物膜法工艺主要有生物滤池工艺。 1、氧化沟工艺文章 目前在国内外较为流行的氧化沟有:卡罗塞尔氧化沟、奥伯尔氧化沟、双沟式氧化沟、三沟式氧化沟。 氧化沟是活性污泥法的一种改进型,具有除磷脱氮功能,其曝气池为封闭的沟渠,废水和活性污泥的混合液在其中不断循环流动,因此氧化沟又名“连续循环曝气法”。 (1)卡罗塞尔氧化沟是荷兰DHV公司开发的。该工艺在曝气渠道端部装有低速表面曝气机。在曝气渠内用隔板分格,构成连续渠道。为了保证沟中流速,曝气渠的几何尺寸和表曝机的设计是至关重要的。 (2)双沟式(DE型)氧化沟和三沟式(T型)氧化沟是丹麦克鲁格公司开发的。DE型氧化沟为双沟组成,氧化沟与二沉池分建,有独立的污泥回流系统,DE型氧化沟可按除磷脱氮等多种工艺运行。双沟式氧化沟是由两个容积

污水处理脱氮除磷技术

污水处理脱氮除磷技术 现行城市污水处理工艺有传统活性污泥法、SBR工艺、AB工艺、A/O工艺、 A2/O工艺、氧化沟等,都能达到较好的处理效果,有机物污染得到了遏制,但氮、磷超标排放使中国66.2%的主要水体污染很严重,导致富营养化问题日益严重、更加普遍。脱氮除磷已成为当今城市污水处理厂亟待解决的问题。本文在分析了国内生物脱氮除磷工艺的研究进展及存在的问题,介绍了一种新型污水生物处理技术微压内循环多生物相工艺的研究进展。 1、生物脱氮除磷机理 氮磷可依靠微生物的新陈代谢作用在适宜的环境条件下被脱除。传统生物脱氮主要通过氨化、硝化和反硝化过程,使氮素最终以N2形式排入大气。在厌氧或好氧条件下,细菌、真菌和放线菌将有机氮化合物转化为氨氮的过程为氨化;好氧条件下氨氮在氨氧化细菌(AOB)作用下氧化为亚硝酸盐,然后进一步被 亚硝酸氧化菌(NOB)氧化为硝酸盐的过程为硝化。硝化细菌均是化能自养型,生长极其缓慢,平均世代时间在10h以上,且易受pH、温度等外界条件的影响。参与污水硝化过程的细菌主要为亚硝化单胞菌(Nitrosomonas)和硝化菌属(Nitrobacter),完整的硝化氮素过程为NH4+-N→NH2OH→NO2--N→NO3--N;缺氧条件下硝酸盐在反硝化细菌的作用下转变为N2,完整的反硝化氮素反应包 括以下几个过程:NO3--N→NO2--N→NO→N2O→N2,反硝化细菌分属于假单 胞菌属(Pseudomonaceae)、产碱杆菌属(Caicaiigenes)、芽孢杆菌属(Bacillus)等50多个属。氨化、硝化和反硝化氮代谢的过程需要多种酶系参与,编码这些酶的基因可作为相应的功能基因,其中反硝化相关基因所占比例最高,达80.81%,其次是氨化(12.78%)和硝化(4.38%)〔10〕。随着对微生物脱氮认识的深入,发现了自养反硝化、异养硝化、好氧反硝化和聚磷菌反硝化等,特征和影响,这些丰富了生物脱氮理论和生物脱氮工艺的发展。 2、污水处理脱氮除磷工艺的研究进展 2.1 脱氮的依据

污水生物除磷7大工艺总结

污水生物除磷7大工艺总结 本节主要讲解除AAO工艺外的其他同步脱氮除磷工艺。 01 四段巴颠甫脱氮工艺(Bardenpho) ▲四段巴颠甫脱氮工艺 四段巴颠甫工艺即在AAO基础上的厌氧和缺氧区中间增加一个好氧区,并且把缺氧区前置,目的为了在厌氧释磷前,把水中的硝态氮尽可能的去除,这样做的好处就是提升了系统的脱氮效果,但是除磷效果不好,并且工艺复杂,运行管理费用高。 02 Phoredox工艺(五段Bardenpho脱氮工艺) ▲五段Bardenpho脱氮工艺

五段巴颠甫工艺就是在四段巴颠甫工艺的最开始部分增加了一个厌氧池,也即厌氧-缺氧-好氧-缺氧-好氧的顺序,这个工艺的特点就是提高了除磷效果,通常按低污泥负荷(较长泥龄)设计和运行,目的是提高脱氮效率。 03 UCT工艺 ▲UCT工艺 UCT工艺特点是脱氮潜力得不到充分发挥,UCT工艺中TKN/COD上限为0.12~0.14,超过此值除磷效果受影响。避免(AAO工艺)厌氧池由于污泥回流带入的少量硝酸盐氮对释放P的影响,厌氧池的污泥减少由缺氧池回流补充(但是回流污泥浓度不高,造成厌氧池MLS S浓度低)。 04 VIP工艺

▲VIP工艺 VIP工艺和UCT工艺比较相似,主要差别就在于池型构造和运行参数,VIP工艺的反应池由多个完全混合型反应格串联组成,采用分区的方式,每区由2~4个格组成,典型水力停留时间6~7小时。VIP工艺的污泥负荷和泥龄都低于UCT工艺,系统总容积也较小。 05 氧化沟同时脱氮除磷系统 ▲氧化沟同时脱氮除磷系统

奥贝尔氧化沟是在氧化沟内设置成厌氧-缺氧-好氧区,使之具有脱氮除磷功能,如果生物除磷效果要求较高,也可在氧化沟前设置单独的厌氧池,厌氧池计算与AAO工艺的厌氧池计算相同。奥贝尔由第一道沟(外沟道)进水,第三沟道(内沟道)出水。三个沟道的D O从外到内控制在0、1、2mg/L。大多数BOD在外沟道去除,并同时进行硝化反硝化,反硝化几乎全部在此进行。奥贝尔氧化沟三条沟道的功能,特别是外沟的功能由供氧决定,当系统只要求脱氮不除磷时,相当于AO 脱氮工艺,当系统要求同时脱氮除磷时,相当于AAO工艺。 06 SBR同步脱氮除磷工艺 ▲SBR同步脱氮除磷工艺

污水处理生物脱氮除磷工艺

污水处理生物脱氮除磷工艺 1、生物脱氮除磷原理和作用条件 生物脱氮除磷技术是脱氮、除碳、除磷三种程序的有机组合。除碳原理是通过细菌在有氧环境下把有机物分解成二氧化碳与水的过程。在氧气与生物量充分的环境下,除碳过程会进行得很顺当。国家排放标准中,氮、磷的掌握标准分别为总磷、总氮和氨氮。其中总氮包括了氨氮、亚硝酸盐氮、硝酸盐氮和有机氮。在实际运用中,依据水体要求和其他状况的影响,生物脱氮除磷工艺可分为几个层次:第一,只需要除去氨氮和有机物;其次,除去总氮与有机物;第三,除去有机物、总磷、总氮;第四,除去氨氮、有机氮、有机物和总磷。 2、生物脱氮除磷工艺比较 2.1 A/A/O法 A2O是我们比较常见的工艺,我们本文也重点叙述。在污水处理中,由于其要流经三个不同功能分区,及厌氧/缺氧/好氧活性区域,所以称为A/A/O法。AAO工艺结合了活性污泥传统工艺、生物除磷工艺和生物硝化、反硝化工艺,形成了生物强化脱氮除磷的双重特点。在厌氧区,聚磷菌释放出磷、汲取低分子有机物并储存于细胞内;在缺氧区,通过反硝化细菌对硝酸盐与可生物降解的有机物进行反硝化反应形成氮气溢出,达到脱氮除磷的目的;在好氧区,废水通过好氧区一边连续降解而有机物,一边将氨氮物质通过生物硝化反应转化为硝酸盐。除此之外,聚磷菌利用废水中的可降解有机物供应自身生长繁殖的能量,汲取环境中溶解的磷酸盐,通过聚合磷酸盐形式储存于

体内,聚磷菌通过对磷的汲取达到生物除磷目的。水中的有机碳经过厌氧段和缺氧段时分别被利用,进入好氧段后浓度很低,其有助于自养硝化细菌生长,其将氨氮进行消化作用形成硝酸盐。有机碳通过降解最终达到有机物排放标准。 AAO工艺各个单元区域分布明确,此工艺与其他工艺相比有以下优点: ①运行价格低,构造简洁,三个区域交替运行,总水力停留时间短,防止丝状菌大量生长,不简单消失污泥膨胀现象。 ②系统剩余污泥量较少,并且有很好的沉降性。 ③在脱氮除磷的同时能够有效去除有机物。 ④运行系统比较稳定,管理便利,简单掌握。 ⑤工艺相对其他工艺来说相对成熟,技术风险相对较小,便于老厂改造,运行方式敏捷。 此方法在除磷、脱氮时也存在冲突,比如硝化菌、聚磷菌和反硝化菌在对污泥龄、水碳源和有机负荷上存在竞争与冲突,使其在同一系统很难达到高效脱氮除磷,所以我们想要提高效率,需要从优化和利用碳源,掌握好污泥龄和依据水质调整污泥负荷等方面进行改良。 2.2 UCT工艺 UCT工艺即厌氧/缺氧/缺氧/好氧工艺,能够解决回流污泥中过量的硝酸盐对厌氧放磷的影响。与A/A/O工艺相比,其差别在于UCT方法污泥不会先回流到厌氧池,而是先进入缺氧池。在缺氧池中降低回硝酸盐对厌氧放磷的影响,可以避开缺氧池中混合液回流入厌

废水生物脱氮除磷工艺

废水生物脱氮除磷工艺 目前水污染问题已引起了社会各界人士的广泛关注。水体污染的主要源头有城市生活废水、工业废水、农业污染源。污水中氮、磷含量过高会使水体富养分化,导致水质恶化,甚至影响人类健康,所以讨论开发经济、高效的脱氮除磷新工艺是解决水体污染问题的关键。脱氮除磷方法主要有物理、化学、生物方法,但是物化法投入大,简单造成二次污染,而生物法投入小,成本低,无二次污染。故生物法将是今后污水处理的主流方法。 1、生物脱氮除磷原理 一般来说,生物脱氮过程分为三步:第一步是有机氮在氨化菌的作用下,分解、转化为氨氮。其次步是氨氮在硝化细菌的作用下,进一步分解、氧化为硝态氮。第三步是在缺氧状态下,反硝化菌将硝化过程中产生的硝态氮还原成气态氮,排放到大气中。有讨论表明:在硝化和反硝化的过程中,有些细菌能利用亚硝酸根或硝酸根作为电子受体直接将氨态氮氧化为气态氮。这一发觉将为新型脱氮工艺的研发奠定理论基础。 生物除磷是指聚磷菌在厌氧条件下汲取磷,在好氧条件下过量释放磷的一种生理变化现象,这一现象被称为luxuryuptake现象。有讨论发觉:有一种兼性反硝化细菌能将硝酸根做为电子受体,将硝酸根转化为气态氮,并产生生物除磷作用。总而言之,生物脱氮除磷就是利用微生物的代谢活动将有机氮及有机磷分解、转化。 2、传统生物脱氮除磷典型工艺

传统生物脱氮除磷工艺大体上可以分为2大类,一是按时间挨次分布的,如SBR工艺;二是按空间挨次分布的,如A2/0工艺。而氧化沟工艺既是按时间挨次分布的工艺,也是按空间挨次分布的工艺。这些工艺已被广泛讨论并应用,同时取得了较好效果。 2.1 SBR工艺 SBR是序批式活性污泥法的简称。其流程图如图1,是一种以间歇曝气的方式来运行的水处理技术。该工艺SBR反应器反应过程分为进水、反应、沉淀、排放、闲置5个阶段,周而复始,从而达到脱氮除磷效果。 郭海燕等讨论表明,进水C/N在2.2~3.5及曝气强度为48~50L/h条件下脱氮除磷效果好。TP、TN的去除率分别达到89.4%及84.5%。有讨论表明,在碳源相宜的状况下,采纳SBR工艺TP、TN去除率分别达到96%及78.3%。但是该反应器容积利用率低,曝气量大,增大了成本,且不能连续运行。

污水脱氮除磷技术介绍

污水脱氮除磷技术介绍 污水脱氮除磷技术是指对污水中的氮、磷进行有效去除的技术。磷和 氮是污水中的主要污染物之一,如果不进行有效去除,会导致水体富营养化,引发藻类大量繁殖,影响水体的生态平衡。因此,对污水中的氮、磷 进行去除是保护水体环境的重要措施之一 一、污水脱氮技术 1.生物脱氮法:生物脱氮法是利用特定微生物将污水中的氨氮转化为 氮气排放。这种方法需要提供好氧和缺氧条件,通过调控曝气和停氧时间,使特定微生物发挥作用。目前常用的生物脱氮方法有硝化-反硝化法和厌 氧氨氧化-硝化法两种。 2.化学脱氮法:化学脱氮法是指通过加入化学药剂使污水中的氮污染 物发生化学反应,将氮污染物转化为氮气排放。常用的化学药剂有硫酸铁、硫酸铝等。这种方法操作简单,但药剂投入量大,处理成本较高。 3.膜法脱氮:膜法脱氮是利用气液界面上的气流驱动气体分子穿透膜,并利用膜的选择性透过性,选择性去除污水中的氮气。膜法脱氮技术通常 包括反渗透法(RO)、气体渗透法(GO)、气体渗透双极渗透法(GPD)等。 二、污水除磷技术 1.化学除磷法:化学除磷法是通过加入化学药剂与污水中的磷形成沉 淀物,将磷从污水中去除。常用的化学药剂有氢氧化钙(Ca(OH)2)、氢氧 化铝(Al(OH)3)等。这种方法操作简单,但药剂投入量大,处理成本较高。

2.生物除磷法:生物除磷法是通过调控好氧-缺氧情况下特定微生物的生长环境,促使其在缺氧条件下吸收和积累磷。常用的生物除磷方法有反硝化除磷法、AO法、高效耐磷生物工艺等。 3.吸附除磷法:吸附除磷法是通过将特定材料引入污水中,利用材料对磷的吸附性能,将污水中的磷吸附到材料表面。常用的吸附材料有 Fe3O4、氧化铝、活性炭等。 4.膜法除磷:膜法除磷是利用膜的选择性透过性,选择性去除污水中的磷。常见的膜法除磷技术有微滤膜法(MF)、超滤膜法(UF)、纳滤膜法(NF)、反渗透膜法(RO)等。 需要注意的是,不同的工业场所的污水特性各异,其处理过程、工艺选择也会有所不同。因此,在具体应用中,需要根据实际情况进行技术设计和选择。

相关文档
最新文档