压力传感器的特性试验

压力传感器的特性试验
压力传感器的特性试验

压力传感器的特性及非平衡电桥信号转换技术

【实验目的】

(1)了解应变压力传感器的组成、结构及工作参数。

(2)了解非电量的转换及测量方法电桥法。

(3)掌握非平衡电桥的测量技术。

(4)掌握应变压力传感器灵敏度及物体重量的测量。

(5)了解多个应变压力传感器的线性组成、调整与定标。

【实验原理】

压力传感器是把一种非电量转换成电信号的传感器。弹性体在压力(重量)作用下产生形变(应变),导致(按电桥方式连接)粘贴于弹性体中的应变片产生电阻变化。

压力传感器的主要指标是它的最大载重(压力)、灵敏度、输出输入电阻值、工作电压(激

励电压)(V lN )范围、输岀电压(V OUT )范围。

压力传感器是由特殊工艺材料制成的弹性体以及电阻应变片、温度补偿电路组成,并采用非平衡电桥方式连接,最后密圭寸在弹性体中。

1. 弹性体

一般由合金材料冶炼制成,加工成S形、长条形、圆柱形等。为了产生一定弹性,挖空或

部分挖空其内部。

2. 电阻应变片

金属导体的电阻R与其电阻率「长度L、截面A的大小有关。

(431)

导体在承受机械形变过程中,电阻率、长度、截面都要发生变化,从而导致其电阻变化

(432)

这样就把所承受的应力转变成应变,进而转换成电阻的变化。因此电阻应变片能将弹性体上应力的变化转换为电阻的变化。

电阻应变片一般由基底片、敏感栅、弓I线及履盖片用黏合剂黏合而成。电阻应变片的结构如图4.3.1所示。

1—敏感栅(金属电阻丝);2—基底片;3—覆盖层;4—引出线

(1)敏感栅。敏感栅是感应弹性应变的敏感部分。敏感栅由直径约0.01?0.05 mm的高电阻

系数的细丝弯曲成栅状,它实际上是一个电阻元件,是电阻应变片感受构件应变的敏感部分。敏

感栅用黏合剂固定在基底片上。b x 1称为应变片的使用面积[应变片工作宽度b,应变片标距(工

作基长)1],应变片的规格一般以使用面积和电阻值来表示,女口3X 10 mm2,350」(2)基底片。基底将构件上的应变准确地传递到敏感栅上去,因此基底必须做得很薄,一

般为0.03?0.06 mm,使它能与试件及敏感栅牢固地黏结在一起,另外,它还具有良好的绝缘性、

抗潮性和耐热性,基底材料有纸、胶膜和玻璃纤维布等。

引岀线的作用是将敏感栅电阻元件与测量电路相连接,一般由0.1?0.2 mm低阻镀锡钢丝制

成,并与敏感栅两输出端相焊接,覆盖片起保护作用。

(3)黏合剂。将应变片用黏合剂牢固地粘贴在被测试件的表面上,随着试件受力形变,应变片的敏感栅也获得同样的形变,从而使其电阻随之发生变化,通过测量电阻值的变化可反映岀外力作用的

大小。

3. 压力传感器

将四片电阻片分别粘贴在弹性平行梁A的上下两表面适

当的位置,如图4.3.2所示。R i、R2、R3、R4是四片电阻片,梁

77 F

压力传感器

的一端固定,另一端自由,用于加载荷(如外力F)o 图4.3.2弹性梁受载荷作用而弯曲,梁的上表面受拉,电阻片R i、

R3亦受拉伸作用电阻增大,梁的下表面受压,R2、R4电阻减小。这样外力的作用通过梁的形变

而使四个电阻值发生变化,这就是压力传感器。

应变片可以把应变的变化转换为电阻的变化,为了显示和记录应变的大小,还需把电阻的变化再转换为电压或电流的变

化。最常用的测量电路为电桥电路。

4. 非平衡电桥测量技术

1)电桥及分类

电桥是将电阻、电容、电感等电参数变化量变换成电压或电流值的一种电路。电桥电路在检测技术中应用非常广泛,根据激励电源的性质不同,可把电桥分为直流电桥和交流电桥两种。

根据桥臂阻抗性质的不同,可分为电阻电桥、电容电桥和电感电桥三种。根据电桥工作时是否平

衡来区分,可分为平衡电桥和非平衡电桥两种。平衡电

桥用于测量电阻、电容和电感,而非平衡电桥在传感技术和非电量测量技

术中广泛用作测量信号的转换。

2)单臂、双臂电桥

(1)单臂输入时电桥电压输出特性。

图4.3.3所示是惠斯登电桥的基本电路。当电桥平衡时,R1 : R2=

R3 : R4,电路中A、B两点间电位差U AB =0,若此时使一个桥臂的电阻

(如R3)增加很小的电

阻值厶R,即R3=^R + R0,则电桥失去平衡,电路中A、

B两点间存在一定的电势差U AB。该电势差即为电桥不

平衡时输出电压。

若电桥供电电源的电压为U。,根据串联电阻分压

原理,若以图4.3.3所示电路中C点为零电势参考点,则电桥的输岀电压为E

图5"单1臂原理

(437)U AB=U A —U B =

R D R

Ro+AR + Rt +R2

R

- U o

(R^ -R Rt)(R i R2)

U o = R)(V . :R/R)- R4/R o)(1 R^/R2) U°

令电桥比率K唁

根据电桥平衡条件, 邑=色,且当.R<

U AB

K U o

2

(1 K) (R o/.R)

(433)

AR

若二^不能略去,则式(5.3.3)应为R o

R/ R D UAB "(1 K) (. :R/R o)K Il

(434)

定义S u占为电桥的输岀电压灵敏度,则有

(435)

A R

由式(4.3.3)可知,当——::::::1时,非平衡电桥输岀电压与■ R成线性关系。由式(4.3.5 )R

可知,电桥的输出电压灵敏度由选择的电桥比率当K=1时,电桥输岀电压灵敏度最大。且为

K及供电电源电压决定。电桥供电电压疋,

Sm

4 R D

(436)

(2)双臂输入时电桥的电压输岀特性。

在惠斯登电桥电路中,若在相邻臂内接入两个变化量

大小相等、符号相反的可变电阻,这种电桥电路称为半桥差动电路,

如图4.3.4所示。

对于半桥差动电路,若电桥开始时是平衡的,R2= R3 : R4。在对称情况下,R i = R2= R3 = R4,=^R4=」R,则半桥差动电路输岀电压为

u _U^R

u

AB -

2R o

电桥的输出电压灵敏度为

S=2R 则R i :

R3

双臂原理

图 4.3.4

(438)

可见,半桥差动电路的输岀电压灵敏度比单臂输入时的最大电桥电压灵敏度提高了一倍。3)四臂输入时电桥的电压输岀特性

假设

L R =

.:: R2 - - R^ _ : R^ _ : R

将式(4.3.11 )、( 4.3.13 )代入式(4.3.12 )后,得

% =E 下

由式(4.3.14)可知,电桥输岀的不平衡电压

U o 与电阻的变化 R 成正比,

即可反映外力F 的大小。由式(4.3.14)还可说明电源电压不稳定将给测量结果带来误差,因此 电源电压一定要稳定。另外,若要获得较大的输岀电压 U o ,可以采用较高的电源电

压,但电源

电压的提高受两方面的限制,一是应变片的允许温度,一是应变电桥电阻的温度误差。

【实验内容】

压力传感器内部的应变片的电路连接采用了非平衡电桥连接方式,这种技术在传感技术和 非电量测量技术中用作测量信号的转换,所以用电阻电桥来演示这种技术。

实验1

1. 测定单臂输入时电桥的电压输岀特性

(1) 按实验电路接好测量电路。其中 R 1和R 2在实验板(见图 4.3.6)上为

固定电阻,

R x1和

R x2用电阻箱调节,供电电源电压 E o = 6oo V (见图4.3.7)。

(2) R 1 = R 2= 1 M J ,l 卩K = 1;再调节R x1 = R x2= 47 k i 「,即使U AB = o 。但由于电阻箱在惠斯登电桥电路中,若电桥的四个臂均采用可变电阻,即将两个变化量符号相反的可变 电阻接入相邻桥臂内,而将两个变化量符号相同的可变电阻接入 相对桥臂内,这样构成的电桥电路称为全桥差动电路。 为了消除电桥电路的非线性误差,通常采用不平衡电桥进行 测量。传感器上的电阻 R i 、R 2、R 3、R 4接成如图435所示的直流 桥路,cd 两端接稳压电源 E ,ab 两端为电桥电压输岀端,输岀电 压为U o ,由图4.3.5可得 U o 二E

R i

R

, R 4

R 3 +R 4』

(439)

当电桥平衡时,U o = 0,于是可得

Ri R 3 — R 2 R 4

(4310)

1l|l —

图 4.3.5

式(4.3.10 )就是我们熟悉的电桥平衡条件,在传感器上贴的电阻片是相同的四片电阻片, 其电阻值相同。

即有 R| =R 2 =R 3 = R 4 =R

(4.3.11)

所以,当传感器不受外力作用时,电桥满足平衡条件,

当梁受到载荷 F 的作用时,R 1和R 3增大,R 2和R 4减小,如图4.3.5所示, 并有

a 、

b 两端输岀的电压 U o = o 。

这时电桥不平衡,

U o

(

=E

[R 十织+R 2 _酿 R 3

+巳-职丿

(4.3.12)

(4.3.13)

(4.3.14)

如测岀U o 的大小

存在一定误差,以及接触电阻等因素的影响,此时电桥未必能平衡,即U AB工0,为此需要微调电压表,使U AB= 0。

实验板

实验电路 图 4.3.6

图 4.3.7

(3) 使R xi 每次增大20 0」用电压表测岀电

桥相应的输岀电压 U AB ,直到R xi 增大1.200 0 2。

记录在表4.3.1中。

2. 测定双臂输入时电桥的电压输岀特性

(1) 调节R xi = R x2= 10 k ;],使电桥平衡。 (2)

使R x1每次增大200,而R x2相应每次减少200门 测岀电桥的相应输岀电压 U AB 。直

到R x1、R x2的最大改变量为

1.200 0 kJ 。记录在表 4.3.2中。

实验2

1. 仪器连接

仪器的连接如图4.3.8所示,电源电压接压力传感特性测试仪的电源输岀端,为传感器提供 工作电源,传感器输岀端接压力传感器特性测试仪的信号输入端, 从而对不平衡电桥

(即压力传

感器)的输出电压进行放大、测量和显示。

IIC-1PF 力传感軒惟测试仅

电瀬电压(V )

仪器连接 图 4.3.8

2. 仪器调节

先将仪器电源打开,预热 15 min 以上,调节电源电压为 10.0 V 。再旋转调零旋钮,使压力

电压显示值为 0.000 V 。

3. 测量

(1)

按顺序增加砝码的数量(每次增加

1 kg ,

共9次),记录每次加载时的输岀电压值

U 。

(2) 再按相反次序将砝码逐一取下,记录输出电压值 U

。。

电压

输出

(3)用逐差法求岀传感器的灵敏度S o

S 二-U0(V/kg ) (4315)

4. 用压力传感器测量任意物体的重量

(1)将一个未知重量的物体放置于加载平台上,测岀电压U o,同一物体测量三次求岀平均值U o。

(2)物体的重量

1

w =U0(4.3.16)

S

(3)共测三个未知重量的物体,样品由实验室提供或学生自己提供被测物体。

5. 测量传感器电源电压E与电桥输岀电压U的关系(保持加载砝码的质量为 1 kg)

(1)改变HC-IPF压力传感特性测试仪的电源电压,使其由2.0 V变至10.0 V,每隔1.0 V

记录一个输出电压值U o。

(2)作E-U o关系曲线,分析是否为线性关系。

6. 测岀本实验系统的最小分辨重量

(1)用实验室提供的砝码1?9g,由1 g加载,每加1 g记录传感器输岀电压值U。。

(2)分析测量结果,给岀实验系统所能测岀的最小重量以及能分辨的最小重量。

注意事项

在实验前应预热15 min以上,实验中所加重量不能超过10 kg,加减砝码时要轻拿轻放,以免损坏应变片。

【思考题】

1、传感器的灵敏度与电源电压有何关系?电源电压可无限加大吗,为什么?

2、本实验所用系统能当电子称使用吗?

3、分析给岀本系统的最小分辨重量。

4、分析此种压力传感器是否是线性传感元件。

5、此种压力传感器的主要参数及其含义是什么。

压力传感器分类与简介

将压力转换为电信号输出的传感器。通常把压力测量仪表中的电测式仪表称为压力传感器。压力传感器一般由弹性敏感元件和位移敏感元件(或应变计)组成。弹性敏感元件的作用是使被测压力作用于某个面积上并转换为位移或应变,然后由位移敏感元件(见位移传感器)或应变计(见电阻应变计、半导体应变计)转换为与压力成一定关系的电信号。有时把这两种元件的功能集于一体,如压阻式传感器中的固态压力传感器。压力是生产过程和航天、航空、国防工业中的重要过程参数,不仅需要对它进行快速动态测量,而且还要将测量结果作数字化显示和记录。大型炼油厂、化工厂、发电厂和钢铁厂等的自动化还需要将压力参数远距离传送(见遥测),并要求把压力和其他参数,如温度、流量、粘度等一起转换为数字信号送入计算机。因此压力传感器是极受重视和发展迅速的一种传感器。压力传感器的发展趋势是进一步提高动态响应速度、精度和可靠性以及实现数字化和智能化等。常用压力传感器有电容式压力传感器、变磁阻式压力传感器(见变磁阻式传感器、差动变压器式压力传感器)、霍耳式压力传感器、光纤式压力传感器(见光纤传感器)、谐振式压力传感器等。 传感器的基本知识 一、传感器的定义 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 二、传感器的分类 目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种: 1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器 2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。 3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。 关于传感器的分类: 1.按被测物理量分:如:力,压力,位移,温度,角度传感器等; 2.按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等; 3.按照传感器转换能量的方式分: (1)能量转换型:如:压电式、热电偶、光电式传感器等; (2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等; 4.按照传感器工作机理分: (1)结构型:如:电感式、电容式传感器等; (2)物性型:如:压电式、光电式、各种半导体式传感器等; 5.按照传感器输出信号的形式分: (1)模拟式:传感器输出为模拟电压量; (2)数字式:传感器输出为数字量,如:编码器式传感器。 三、传感器的静态特性 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方

什么是陀螺仪

什么是陀螺仪 陀螺仪简介 绕一个支点高速转动的刚体称为陀螺(top)。通常所说的陀螺是特指对称陀螺,它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴。由苍蝇后翅(特化为平衡棒)仿生得来。 在一定的初始条件和一定的外力矩在作用下,陀螺会在不停自转的同时,还绕着另一个固定的转轴不停 地旋转,这就是陀螺的旋进(precession),又称为回转效应(gyroscopic effect)。陀螺旋进是日常生活中常 见的现象,许多人小时候都玩过的陀螺就是一例。 人们利用陀螺的力学性质所制成的各种功能的陀螺装置称为陀螺仪(gyroscope),它在科学、技术、军事等各个领域有着广泛的应用。比如:回转罗盘、定向指示仪、炮弹的翻转、陀螺的章动、地球在太阳(月球)引力矩作用下的旋进(岁差)等。 陀螺仪的种类很多,按用途来分,它可以分为传感陀螺仪和指示陀螺仪。传感陀螺仪用于飞行体运动的 自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示陀螺仪主要用于飞行状态的指示, 作为驾驶和领航仪表使用。 陀螺仪原理 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这 个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转 得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信 号传给控制系统。 现代陀螺仪 现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广 泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略 意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂, 它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的 阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅 速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作 可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航 仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集 成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞 格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度, 那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生 变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,就可以制 造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是 通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个 简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。 编辑本段陀螺仪的用途 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪, 但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要 的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保

光纤压力传感器实验

光纤压力传感器实验 一、实验目的 1、了解并掌握传导型光纤压力传感器工作原理及其应用 二、实验内容 l、传导型光纤压力传感光学系统组装调试实验; 2、发光二极管驱动及探测器接收实验; 3、传导型光纤压力传感器测压力原理实验。 三、实验仪器 1、光纤压力传感器实验仪1台 2、气压计1个 3、气压源l套 4、光纤1根 5、2#迭插头对若干 6、电源线1根 四、实验原理 通常按光纤在传感器中所起的作用不同,将光纤传感器分成功能型(或 称为传感型)和非功能型(传光型、结构型)两大类。功能型光纤传感器使 用单模光纤,它在传感器中不仅起传导光的作用,而且又是传感器的敏感元件。但这类传感器的制造上技术难度较大,结构比较复杂,且调试困难。 非功能型光纤传感器中,光纤本身只起传光作用,并不是传感器的敏感元件。它是利用在光纤端面或在两根光纤中间放置光学材料、机械式或光学式的敏感元件感受被测物理量的变化,使透射光或反射光强度随之发生变化。所以这种传感器也叫传输回路型光纤传感器。它的工作原理是:光纤把测量对象辐射的光信号或测量对象反射、散射的光信号直接传导到光电元件上,实现对被测物理量的检测。为了得到较大的受光量和传输光的功率,这种传感器所使用的光纤主要是孔径大的阶跃型多模光纤。光纤传感器的特点是结构简单、可靠,技术上容易实现,便于推广应用,但灵敏度较低,测量精度也不高。 本实验仪所用到的光纤压力传感器属于非功能型光纤传感器。 本实验仪重点研究传导型光纤压力传感器的工作原理及其应用电路设计。在传导型光纤压力传感器中,光纤本身作为信号的传输线,利用压力一电一光一光一电的转换来实现压力的测量。主要应用在恶劣环境中,用光纤代替普通电缆传送信号,可以大大提高压力测量系统的抗干扰能力,提高测量精度。 相关参数: l、光源 高亮度白光LED,直径5mm

压力传感器

给煤机称重传感器原理和使用知识 2011-8-23 20:11:00 来源: 称重传感器按转换原理分为电磁力式、光电式、液压式、电容式、磁极变形式、振动式、陀螺仪式、电阴应变式等8类传感器,以电阻应变式使用最广。在称重传感器主要技术指标的基本概念和评价方法上,新旧国标有质的差异。本文介绍称重传感器的工作原理和使用注意事项等知识。 电阻应变式称重传感器是基于这样一个原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。 由此可见,电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。下面就这三方面简要论述称重传感器工作原理。 称重传感器原理图 一、传感器电阻应变片 电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。他的一个重要参数是灵敏系数K。我们来介绍一下它的意义。 设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。当这根电阻丝未受外力作用时,它的电阻值为R: R = ρL/S(Ω) (2—1) 当他的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。 对式(2--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有: ΔR = ΔρL/S + ΔLρ/S –ΔSρL/S2 (2—2) 用式(2--1)去除式(2--2)得到 ΔR/R = Δρ/ρ + ΔL/L –ΔS/S (2—3) 另外,我们知道导线的横截面积S = πr2,则Δs = 2πr*Δr,所以 ΔS/S = 2Δr/r (2—4) 从材料力学我们知道 Δr/r = -μΔL/L (2—5)

压力传感器的特性试验

压力传感器的特性及非平衡电桥信号转换技术 【实验目的】 (1)了解应变压力传感器的组成、结构及工作参数。 (2)了解非电量的转换及测量方法 —— 电桥法。 (3)掌握非平衡电桥的测量技术。 (4)掌握应变压力传感器灵敏度及物体重量的测量。 (5)了解多个应变压力传感器的线性组成、调整与定标。 【实验原理】 压力传感器是把一种非电量转换成电信号的传感器。弹性体在压力(重量)作用下产生形变(应变),导致(按电桥方式连接)粘贴于弹性体中的应变片产生电阻变化。 压力传感器的主要指标是它的最大载重(压力)、灵敏度、输出输入电阻值、工作电压(激励电压)(V IN )范围、输出电压(V OUT )范围。 压力传感器是由特殊工艺材料制成的弹性体以及电阻应变片、温度补偿电路组成,并采用非平衡电桥方式连接,最后密封在弹性体中。 1. 弹性体 一般由合金材料冶炼制成,加工成S 形、长条形、圆柱形等。为了产生一定弹性,挖空或部分挖空其内部。 2. 电阻应变片 金属导体的电阻R 与其电阻率ρ、长度L 、截面A 的大小有关。 L R A ρ= (4.3.1) 导体在承受机械形变过程中,电阻率、长度、截面都要发生变化,从而导致其电阻变化。 R L A R L A ρρ????=+- (4.3.2) 这样就把所承受的应力转变成应变,进而转换成电阻的变化。因此电阻应变片能将弹性体上应力的变化转换为电阻的变化。 电阻应变片一般由基底片、敏感栅、引线及履盖片用黏合剂黏合而成。电阻应变片的结构如图4.3.1所示。 电阻应变片结构示意 图4.3.1 1—敏感栅(金属电阻丝);2—基底片;3—覆盖层;4—引出线 (1)敏感栅。敏感栅是感应弹性应变的敏感部分。敏感栅由直径约0.01~0.05 mm 的高电阻系数的细丝弯曲成栅状,它实际上是一个电阻元件,是电阻应变片感受构件应变的敏感部分。敏

压力传感器工作原理

电阻应变式压力传感器工作原理细解 2011—10-14 15:37元器件交易网 字号: 中心议题: 电阻应变式压力传感器工作原理 微压力传感器接口电路设计 微压力传感器接口系统得软件设计 微压力传感器接口电路测试与结果分析 解决方案: 电桥放大电路设计 AD7715接口电路设计 单片机接口电路设计 本文采用惠斯通电桥滤出微压力传感器输出得模拟变量,然后用INA118放大器将此信号放大,用7715A/D 进行模数转换,将转换完成得数字量经单片机处理,最后由LCD 将其显示,采用LM334 做得精密5 V 恒流源为电桥电路供电,完成了微压力传感器接口电路设计,既能保证检测得实时性,也能提高测量精度。 微压力传感器信号就是控制器得前端,它在测试或控制系统中处于首位,对微压力传感器获取得信号能否进行准确地提取、处理就是衡量一个系统可靠性得关键因素.后续接口电路主要指信号调节与转换电路,即能把传感元件输出得电信号转换为便于显示、记录、处理与控制得有用电信号得电路。由于用集成电路工艺制造出得压力传感器往往存在:零点输出与零点温漂,灵敏度温漂,输出信号非线性,输出信号幅值低或不标准化等问题。本文得研究工作,主要集中在以下几个方面: (1)介绍微压力传感器接口电路总体方案设计、系统得组成与工作原理。

(2)系统得硬件设计,介绍主要硬件得选型及接口电路,包括A/D 转换电路、单片机接口电路、1602显示电路。 (3)对系统采用得软件设计进行研究,并简要阐述主要流程图,包括主程序、A/D转换程序、1602显示程序。 1 电阻应变式压力传感器工作原理 电阻应变式压力传感器就是由电阻应变片组成得测量电路与弹性敏感元件组合起来得传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面得电阻应变片也会产生应变,表现为电阻值得变化。这样弹性体得变形转化为电阻应变片阻值得变化。把4 个电阻应变片按照桥路方式连接,两输入端施加一定得电压值,两输出端输出得共模电压随着桥路上电阻阻值得变化增加或者减小。一般这种变化得对应关系具有近似线性得关系。找到压力变化与输出共模电压变化得对应关系,就可以通过测量共模电压得到压力值。 当有压力时各桥臂得电阻状态都将改变,电桥得电压输出会有变化. 式中:Uo为输出电压,Ui 为输入电压。 当输入电压一定且ΔRi 〈

最全的陀螺仪基础知识详解

最全的陀螺仪基础知识详解 陀螺仪,又叫角速度传感器,是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置,同时,利用其他原理制成的角运动检测装置起同样功能的装置也称陀螺仪。 一、陀螺仪的名字由来 陀螺仪名字的来源具有悠久的历史。据考证,1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中地的转子(rotor),由于它具有惯性,它的旋转轴永远指向一固定方向,因此傅科用希腊字gyro(旋转)和skopein(看)两字合为“gyroscopei”一字来命名该仪器仪表。 最早的陀螺仪的简易制作方式如下:即将一个高速旋转的陀螺放到一个万向支架上,靠陀螺的方向来计算角速度。 其中,中间金色的转子即为陀螺,它因为惯性作用是不会受到影响的,周边的三个“钢圈”则会因为设备的改变姿态而跟着改变,通过这样来检测设备当前的状态,而这三个“钢圈”所在的轴,也就是三轴陀螺仪里面的“三轴”,即X轴、y轴、Z轴,三个轴围成的立体空间联合检测各种动作,然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。因此一开始,陀螺仪的最主要的作用在于可以测量角速度。 二、陀螺仪的基本组成 当前,从力学的观点近似的分析陀螺的运动时,可以把它看成是一个刚体,刚体上有一个万向支点,而陀螺可以绕着这个支点作三个自由度的转动,所以陀螺的运动是属于刚体绕一个定点的转动运动,更确切地说,一个绕对称轴高速旋转的飞轮转子叫陀螺。将陀螺安装在框架装置上,使陀螺的自转轴有角转动的自由度,这种装置的总体叫做陀螺仪。 陀螺仪的基本部件有:陀螺转子(常采用同步电机、磁滞电机、三相交流电机等拖动方法来使陀螺转子绕自转轴高速旋转,并见其转速近似为常值);内、外框架(或称内、外环,它是使陀螺自转轴获得所需角转动自由度的结构);附件(是指力矩马达、信号传感器等)。 三、陀螺仪的工作原理 陀螺仪侦测的是角速度。其工作原理基于科里奥利力的原理:当一个物体在坐标系中直线移动时,假设坐标系做一个旋转,那么在旋转的过程中,物体会感受到一个垂直的力和垂直方向的加速度。 台风的形成就是基于这个原理,地球转动带动大气转动,如果大气转动时受到一个切向力,便容易形成台风,而北半球和南半球台风转动的方向是不一样的。用一个形象的比喻解释了科里奥利力的原理。

扩散硅压阻式压力传感器的压力测量实验

实验十一 扩散硅压阻式压力传感器的压力测量实验 一、实验目的: 了解扩散硅压阻式压力传感器测量压力的原理与方法。 二、实验仪器 压力传感器模块、温度传感器模块、数显单元、直流稳压源+5V 、±15V。 三、实验原理 在具有压阻效应的半导体材料上用扩散或离子注入法,摩托罗拉公司设计出X 形硅压力传感器如下图所示:在单晶硅膜片表面形成4个阻值相等的电阻条。并将它们连接成惠斯通电桥,电桥电源端和输出端引出,用制造集成电路的方法封装起来,制成扩散硅压阻式压力传感器。 扩散硅压力传感器的工作原理:在X 形硅压力传感器的一个方向上加偏置电压形成电流 i ,当敏感芯片没有外加压力作用,内部电桥处于平衡状态,当有剪切力作用时,在垂直电流方向将会产生电场变化i E ??=ρ,该电场的变化引起电位变化,则在端可得到被与电流 垂直方向的两测压力引起的输出电压Uo 。 i d E d U O ???=?=ρ (11-1) 式中d为元件两端距离。 实验接线图如图11-2所示,MPX10有4个引出脚,1脚接地、2脚为U o+、3脚接+5V电源、4脚为Uo-;当P1>P2时,输出为正;P1

压力传感器对电压的要求

一般普通压力传感器的输出为模拟信号,近距离满量程输出电压可达100 - 150mV ,输出电流为0- 0101mA. 远距离输出信号电压便会衰减,应采用电流信号输出。经压力变送器将电流放大后可以输出20mA 以下的电流信号。这样,价格就成倍增加。 另外,只有经过A/ D 和V/ F 变换后才能得到数字信号和频率信号。 恒流源和恒压源都是通常传感器采用的两种激励源。两种激励方法是有区别的,其作用不同。 恒流源激励有利于热灵敏度漂移的补偿作用。 因为桥臂电阻器的温度系数为正,而灵敏度温度系数为负。恒流源激励时的输出信号电压的温度系数是两者的代数和。而恒压激励不能直接提供灵敏度温度补偿效果。但用恒压源激励时可在桥外串接热敏电阻或二极管以补偿热灵敏度漂移。用恒流源激励时,这种灵敏度补偿方法便不起作用。可见,恒压源激励和恒流源激励相互之间不能随意互换。 一般精度测量时用恒流源激励。恒压源激励时,测量的精度取决于恒压源稳压器件的精度。 另外,又可将压力传感器的激励电源分为正比激励和固定激励。前者是将压力传器电桥直接接到电源上,当电源改变时,压力传感器的灵敏度和零点都随之发生变化。后者内部有一个参照电压,压力传感器电桥由参照电压供电激励。参考电压是恒定的,与电源电压无关。只要电源电压在一指定电压范围内变化,参照电压不变。因而传感器的输出不变,不受电源电压的影响。 压力传感器可以用电池供电,但更普遍的是采用直流稳压电源技术。电池供电时噪声小,但随电池使用,供电电压逐渐降低,特别是当传感器用正比激励时,灵敏度便逐渐减小。这就会造成读数不准。因此要采用补偿办法(例如压力传感器和A/ D 变换器共用一个电池供电),或者使用低功耗、小电流的压力传感器,长寿命电池,或者测量压力时接上电源,测量完毕后,将电池关闭节省电能。换上新电池后,压力传感器需要重新校准标定。这是因为不同牌号的电池其电动势、内阻都存在一定的差异。压力传感器的电桥激励电压的变化会造成灵敏度的改变。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.360docs.net/doc/799081123.html,/

陀螺仪的详细介绍

陀螺仪 科技名词定义 中文名称:陀螺仪 英文名称:gyroscope 定义:利用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。 应用学科:船舶工程(一级学科);船舶通信导航(二级学科) 本内容由全国科学技术名词审定委员会审定公布 陀螺仪 用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。 目录

编辑本段

陀螺仪 结构 基本上陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子,转子装在一支架内;在通过转子中心轴XX1上加一内环架,那么 陀螺仪就可环绕飞机两轴作自由运动;然后,在内环架外加上一外环架;这个陀螺仪有两个平衡环,可以环绕飞机三轴作自由运动,就是一个完整的太空陀螺仪(space gyro)。 历史 1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字 gyro(旋转)和skopein(看)两字合为gyro scopei 一字来命名这种仪表。 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪,但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。 编辑本段陀螺仪原理 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 在现实生活中,陀螺仪发生的进给运动是在重力力矩的作用下发生的。

【人力资源】实验4-18用压力传感器和温度传感器资料

第五章 热学实验 热学实验是大学物理实验中的重要内容。在理想热学实验中,应遵循两条基本原则:其一是保持系统为孤立系统;其二是测量一个系统的状态参量时,应保证系统处于平衡态。我们的实验内容设计了对空气的比热容比进行测定。 §5.1空气比热容比的测定 气体的定压比热容与定容比热容之比称为气体的绝热指数,它是一个重要的热力学常数,在热力学方程中经常用到,本实验用新型扩散硅压力传感器测空气的压强,用电流型集成温度传感器测空气的温度变化,从而得到空气的绝热指数;要求观察热力学现象,掌握测量空气绝热指数的一种方法,并了解压力传感器和电流型集成温度传感器的使用方法及特性。 【预习重点】 1.了解理想气体物态方程,知道理想气体的等温及绝热过程特征和过程方程。 2.预习定压比热容与定容比热容的定义,进而明确二者之比即绝热指数的定义。 3.认真预习实验原理及测量公式。 【实验目的】 1.用绝热膨胀法测定空气的比热容比。 2.观测热力学过程中状态变化及基本物理规律。 3.了解压力传感器和电流型集成温度传感器的使用方法及特性。 【实验原理】 理想气体的压强P 、体积V 和温度T 在准静态绝热过程中,遵守绝热过程方程:PV γ 等于恒量,其中γ是气体的定压比热容P C 和定容比热容V C 之比,通常称γ=V P C C /为该气体的比热容比(亦称绝热指数)。 如图5.1.1所示,我们以贮气瓶内空气(近似为理想气体)作为研究的热学系统,试进行如下实验过程。

(1)首先打开放气阀A ,贮气瓶与大气相通,再关闭A ,瓶内充满与周围空气同温(设为0T )同压(设为0P )的气体。 (2)打开充气阀B ,用充气球向瓶内打气,充入一定量的气体,然后关闭充气阀B 。此时瓶内空气被压缩,压强增大,温度升高。等待内部气体温度稳定,即达到与周围温度平衡,此时的气体处于状态I (1P ,1V ,0T )。 (3)迅速打开放气阀A ,使瓶内气体与大气相通,当瓶内压强降至0P 时,立刻关闭放气阀A ,将有体积为ΔV 的气体喷泻出贮气瓶。由于放气过程较快,瓶内保留的气体来不及与外界进行热交换,可以认为是一个绝热膨胀的过程。在此过程后瓶中的气体由状态I (1P ,1V ,0T )转变为状态II (0P ,2V ,1T )。2V 为贮气瓶容积,1V 为保留在瓶中这部分气体在状态I (1P ,0T )时的体积。 (4)由于瓶内气体温度1T 低于室温0T ,所以瓶内气体慢慢从外界吸热,直至达到室温 0T 为止,此时瓶内气体压强也随之增大为2P 。则稳定后的气体状态为III (2P ,2V ,0T )。从 状态II →状态III 的过程可以看作是一个等容吸热的过程。由状态I →II →III 的过程如图5.1.2所示。 图5.1.1 试验装置简图 图5.1.2 气体状态变化及P-V

实验九.进气管绝对压力传感器检修

实验九:进气管绝对压力传感器检测 一、实验目的和要求: 1.掌握进气管绝对压力传感器的结构及工作原理。 2.掌握进气管绝对压力传感器的检测方法。 二、实验设备及器材 丰田8A电喷发动机故障实验台1台、数字万用表几块、手动真空泵 三、实验内容及步骤 本次实验的内容主要是检测进气管绝对压力传感器。 在汽油机上,进气管绝对压力传感器是用来测量进气管内气体的绝对压力,并将信号送入ECU,作为燃油喷射控制和点火控制的主控制信号。进气管绝对压力传感器按照检测原理分为压敏电阻式、电容式、膜盒式、表面弹性波式等,但目前应用最广泛的是压敏电阻式和电容式。这里主讲述压敏电阻式进气管绝对压力传感器的检测方法,与ECU的连接电路如图1所示。 图1 压敏电阻式进气管绝对压力传感器电路 ECU通过Vcc端子给传感器提供标准的5V参考电压,传感器信号经PIM端子输送给ECU,E2为搭铁端子。 检测步骤如下: 1.电源电压检测: 点火开关置于“OFF”位置,拆开线束插接器。然后将点火开关置于“ON”位置(不起动发动机),在线束侧用万用表电压当测量线束插接器电源端子Vcc 和搭铁端子E2之间的电压,其电压值应为4.5~5.5V。如有异常,应检查进气管绝对压力传感器与ECU 之间的线路是否导通。若断路,应更换或修理线束。 2.输出信号电压检测: 将点火开关置于“ON”位置(不起动发动机),拆下连接进气歧管绝对压力传感器与进气歧管的真空软管,然后用真空泵向进气歧管绝对压力传感器内施加真空,同时在ECU侧用万用表电压挡测量端子PIM与E2之间的传感器输出信号电压,将测量的数据填入表1中。 表1 输出信号电压测量记录表

压力传感器生产厂家

压力传感器将压力转换成电输出信号,如电压、电流、频率,同时,允许传感器按比例对压力施加的力。压力传感器通常用于压力测量,从泄漏检测空气质量监测。有许多行业所依赖的压力传感器,包括:暖通空调(压缩机、过滤器监测、能源管理);机器人(工厂自动化设备);发电厂(管道蒸汽压力);交通运输(断裂、压缩机、电梯、空调);非公路车辆(称重系统和液压反馈);天然气设备(压缩机、点胶设备)。市面上有众多压力传感器厂家,无论是价格和质量都有一定差别,航伽科技提醒您:一定要选择口碑好、技术先进且售后服务完善的压力传感器厂家,只有这样才能更好的满足您的需求,如果想要深度了解压力传感器可以直接拨打屏幕上的电话或者在线与我们技术专家沟通。 压力传感器工作原理 压力传感器有五种常见的类型,以下是五种常见压力传感器的工作原理介绍: 1、压电式压力传感器:压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 2、陶瓷压力传感器:陶瓷压力传感器基于压阻效应,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥,由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0/3.0/3.3mv/v等,可以和应变式传感器相兼容。 3、扩散硅压力传感器:扩散硅压力传感器工作原理也是基于压阻效应,利用压阻效应原理,被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,利用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。

压阻式压力传感器的压力测量实验

实验二压阻式压力传感器的压力测量实验 一、实验目的: 了解扩散硅压阻式压力传感器测量压力的原理和方法。 二、基本原理: 扩散硅压阻式压力传感器在单晶硅的基片上扩散出P型或N型电阻条,接成电桥。在压力作用下根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,我们把这一变化引入测量电路,则其输出电压的变化反映了所受到的压力变化。 图一压阻式压力传感器压力测量实验 三、需用器件与单元: 主机箱、压阻式压力传感器、压力传感器实验模板、引压胶管。 四、实验步骤: 1、将压力传感器安装在实验模板的支架上,根据图二连接管路和电路(主机箱内的气源部分,压缩泵、贮气箱、流量计已接好)。引压胶管一端插入主机箱面板上气源的快速接口中(注意管子拆卸时请用双指按住气源快速接口边缘往内压,则可轻松拉出),另一端口与压力传感器相连。压力传感器引线为4芯线: 1端接地线,2端为U0+,3端接+4V电源, 4端为Uo-,接线见图9-2。

2、实验模板上R W2用于调节放大器零位,R W1 调节放大器增益。按图9-2将实 验模板的放大器输出V02接到主机箱(电压表)的Vin插孔,将主机箱中的显示选 择开关拨到2V档,合上主机箱电源开关,R W1 旋到满度的1/3位置(即逆时针旋 到底再顺时针旋2圈),仔细调节R W2 使主机箱电压表显示为零。 3、输入气压,压力上升到4Kpa左右时调节调节Rw2(低限调节),,使电压表显示为相应的0.4V左右。再仔细地反复调节旋钮使压力上升到19Kpa左右时调节差动放大器的增益电位器Rw1(高限调节),使电压表相应显示1.9V左右。 4、再使压力慢慢下降到4Kpa,调节差动放大器的调零电位器,使电压表显示为相应的0.400V。再仔细地反复调节汽源使压力上升到19Kpa时调节差动放大器的增益电位器,使电压表相应显示1.900V。 5、重复步骤4过程,直到认为已足够精度时仔细地逐步调节流量计旋钮,使压力在4-19KPa之间变化,每上升3KPa气压分别读取电压表读数,将数值列于表1。 作业: 1、画出实验曲线,并计算本系统的灵敏度和非线性误差。实验完毕,关闭所有电源。

压力传感器-调研报告

一、压力传感器芯体 1、概述 陶瓷压力传感器:抗腐蚀的陶瓷压力传感器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥(闭桥),由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号。 2、技术参数 综合误差:包括线性度、迟滞性和重复性。 温度漂移:温度漂移指的是因温度变化所导致的输出电压变化,以ppm/oC为单位来表示。温度漂移可用多种方法(斜坡、蝶形电路或逻辑框)来确定,但最常用的 方法是逻辑框法,计算公式如下: TC|ppm/oC|=((Vmax-Vmin)*10^6)/((Tmax-Tmin)*Vnom) 由温度变化所引起的半导体器件参数的变化是产生零点漂移现象的主要原 因,因此也称零点漂移为温度漂移,简称温漂。 灵敏度: 稳定性:稳定性是指“测量仪器保持其计量特性随时间恒定的能力”。 3、各厂商产品 、公司名称:上海全宇机电科技发展有限公司 公司简介:全宇公司系中美合资企业,引进美国先进产品设计、生产经验和自动化设备,专业生产经营压力传感器、变送器,温度传感器、变送器,配套仪表和工业自动控制系统等,早期代理德国E+H产品,在以压力传感器为主导产品的经营生产中不断坚持技术创新,提高效率和产品品质。 陶瓷压力传感器网址链接: 产品介绍: QYP18c是全温度补偿型,保证在使用温度范围内,温度漂移最大不超过±% FS /°

QYP18c-500 - 50125/ QYP18c-1000 - 100200/ QYP18c-2000 - 200400/ 综合精度(线性+ 迟滞性) < ±% FS [端点线性度] 重复性< ±% FS 电气规格: ·最大激励电压30 Vdc ·桥路阻抗11 KW ±30% ·零点偏移£ ±mV/V ·抗绝缘性> 2 KV ·零点长期稳定性@ 20 °C ±% FSO, typ. (无时间累积性) 环境规格: ·直接接触液体材料Alumina Al2 O3 –96% ·使用温度- 40 up to + 135°C ·储藏温度- 50 up to + 150°C ·温度漂移(零位&灵敏度) £ ±% FS / °C [范围2 ~ 100 bar] £ ±% FS / °C [范围200 bar] ·相对湿度(1) 0 - 100% ·传感器重量< 7 g 、公司名称:深圳市新世联科技有限公司 公司简介:深圳市新世联科技有限公司(Apollo Electronics),是主要面向OEM厂商服务的传感器产品销售和传感器技术支持的公司。 Apollo是以传感仪表和自动控制技术、光电技术、网络与信息技术为主要发展方向的高科技公司,于2000年创立于香港,目前Apollo及其关联公司和业务发展遍及全球各地。 在传感和控制产品领域,它为全球驰名的厂商提供中国地区产品销售和技术支持服务,也是目前中国及香港地区较大规模和增长迅速的专业的传感和控制产品供应商。 它已具备10年以上传感和控制产品经验,专业技术背景的销售人员提供客户强大的技术支持,它可提供的传感与控制元件产品覆盖面极为广泛,它已成为业界最为优秀的整体传感产品方案配套商。 陶瓷压力传感器网址链接: 产品介绍: 技术参数 供电电压:5~30VDC 桥臂电阻:11K±20% 量程范围:1bar~600bar bar 响应时间:<1mS 综合误差(包括:线性,迟滞, ~FS% 重复性) 零点输出:0±mV/V 满量程输出:~mV/V 温度特性:(温补范围:0~70℃)±%FS/℃稳定性:<%FSO/年 工作温度:-40~125℃

压力传感器(大学物理)

一、实验目的 1. 了解应变压力传感器的组成、结构及工作参数。 2. 了解非电量的转换及测量方法——电桥法。 3. 掌握非平衡电桥的测量技术。 4. 掌握应变压力传感器灵敏度及物体重量的测量。 5. 了解多个应变压力传感器的线性组成、调整与定标。 二、实验原理 压力传感器是把一种非电量转换成电信号的传感器。弹性体在压力(重量)作用下产生形变(应变),导致(按电桥方式联接)粘贴于弹性体中的应变片,产生电阻变化的过程。 压力传感器的主要指标是它的最大载重(压力)、灵敏度、输出输入电阻值、工作电压(激励电压)(VIN)、输出电压(VOUT)范围。 压力传感器是由特殊工艺材料制成的弹性体、电阻应变片、温度补偿电路组成;并采用非平衡电桥方式联接,最后密封在弹性体中。 弹性体: 一般由合金材料冶炼制成,加工成S 型、长条形、圆柱型等。为了产生一定弹性,挖空或部分挖空其内部。 电阻应变片: 金属导体的电阻R 与其电阻率ρ、长度L 、截面A 的大小有关。 A L R ρ = (1) 导体在承受机械形变过程中,电阻率、长度、截面都要发生变化,从而导致其电阻变化。 A A L L R R ?- ?+ ?=?ρ ρ (2) 这样就把所承爱的应力转变成应变,进而转换成电阻的变化。因此电阻应变片能将弹性体上应力的变化转换为电阻的变化。 电阻应变片的结构:电阻应变片一般由基底片、敏感栅、引线及履盖片用粘合剂粘合而成。 电阻应变片的结构如图1所示: 1-敏感栅(金属电阻丝) 2-基底片 3-覆盖层 4-引出线 图1 电阻丝应变片结构示意图 敏感栅:是感应弹性应变的敏感部分。敏感栅由直径约0.01~0.05毫米高电阻系数的细丝弯曲成栅状,它实际上是一个电阻元件,是电阻应变片感受构件应变的敏感部分.敏感栅用粘合剂固定在基底片上。b ×l 称为应变片的使用面积(应变片工作宽度,应变片标距(工作基长)l ),应变片的规格一般以使用面积和电阻值来表示,如3×10平方毫米,350欧姆。 基底片:基底将构件上的应变准确地传递到敏感栅上去.因此基底必须做得很薄,一般为0.03~0.06毫米,使它能与试件及敏感栅牢固地粘结在一起,另外它还具有良好的绝缘性、抗潮性和耐热性.基底材料有纸、胶膜和玻璃纤维布等。 引出线的作用是将敏感栅电阻元件与测量电路相连接,一般由0.1-0.2毫米低阻镀锡钢丝制成,并与敏感栅两输出端相焊接,覆盖片起保护作用.

压力传感器工作原理

电阻应变式压力传感器工作原理细解 2011-10-14 15:37元器件交易网 字号: 中心议题: 电阻应变式压力传感器工作原理 微压力传感器接口电路设计 微压力传感器接口系统的软件设计 微压力传感器接口电路测试与结果分析 解决方案: 电桥放大电路设计 AD7715接口电路设计 单片机接口电路设计 本文采用惠斯通电桥滤出微压力传感器输出的模拟变量,然后用INA118放大器将此信号放大,用7715A/D 进行模数转换,将转换完成的数字量经单片机处理,最后由LCD 将其显示,采用LM334 做的精密5 V 恒流源为电桥电路供电,完成了微压力传感器接口电路设计,既能保证检测的实时性,也能提高测量精度。 微压力传感器信号是控制器的前端,它在测试或控制系统中处于首位,对微压力传感器获取的信号能否进行准确地提取、处理是衡量一个系统可靠性的关键因素。后续接口电路主要指信号调节和转换电路,即能把传感元件输出的电信号转换为便于显示、记录、处理和控制的有用电信号的电路。由于用集成电路工艺制造出的压力传感器往往存在:零点输出和零点温漂,灵敏度温漂,输出信号非线性,输出信号幅值低或不标准化等问题。本文的研究工作,主要集中在以下几个方面:

(1)介绍微压力传感器接口电路总体方案设计、系统的组成和工作原理。 (2)系统的硬件设计,介绍主要硬件的选型及接口电路,包括A/D 转换电路、单片机接口电路、1602显示电路。 (3)对系统采用的软件设计进行研究,并简要阐述主要流程图,包括主程序、A/D 转换程序、1602显示程序。 1 电阻应变式压力传感器工作原理 电阻应变式压力传感器是由电阻应变片组成的测量电路和弹性敏感元件组合起来的传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面的电阻应变片也会产生应变,表现为电阻值的变化。这样弹性体的变形转化为电阻应变片阻值的变化。把4 个电阻应变片按照桥路方式连接,两输入端施加一定的电压值,两输出端输出的共模电压随着桥路上电阻阻值的变化增加或者减小。一般这种变化的对应关系具有近似线性的关系。找到压力变化和输出共模电压变化的对应关系,就可以通过测量共模电压得到压力值。 当有压力时各桥臂的电阻状态都将改变,电桥的电压输出会有变化。 式中:Uo 为输出电压,Ui 为输入电压。 当输入电压一定且ΔRi <

光纤陀螺仪指标 国军标

光纤陀螺仪测试方法 1范围 本标准规定了作为姿态控制系统、角位移测量系统和角速度测量系统中敏感器使用的单轴干涉性光纤陀螺仪(以下简称光纤陀螺仪)的性能测试方法。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注目期的引用文件,其随后所有的修改单(不包含勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB321-1980优先数和优先系数 CB998低压电器基本实验方法 GJB585A-1998惯性技术术语 GJB151军用设备和分系统电磁发射和敏感度要求 3术语、定义和符号 GJB585A-1998确立的以及下列术语、定义和符号适用于本标准。

3.1术语和定义 3.1.1干涉型光纤陀螺仪interferometric fiber optic gyroscope 仪萨格奈克(Sagnac)效应为基础,由光纤环圈构成的干涉仪型角速度测量装置。当绕其光纤环圈等效平面的垂线旋转时,在环圈中以相反方向传输出的两束相干光间产生相位差,其大小正比于该装置相对于惯性空间的旋转角速度,通过检测输出光干涉强度即反映出角速度的变化。 3.1.2陀螺输入轴input axis of gyro 垂直于光纤环圈等效平面的轴。当光纤陀螺仪绕该轴有旋转角速度输入时,产生光纤环圈相对于惯性空间输入角速度的输出信号。 3.1.3标度因数非线性度scale factor nonlinearity 在输入角速度范围内,光纤陀螺仪输出量相对于最小二乘法拟合直线的最大偏差值与最大输出量之比。 3.1.4零偏稳定性bias stability 当输入角速度为零时,衡量光纤陀螺仪输出量围绕其均值的离散程度。以规定时间内输出量的标准偏差相应的等效输入角速度表示,也可称为零漂。

相关文档
最新文档