5.采样信号量化误差分析

5.采样信号量化误差分析
5.采样信号量化误差分析

实验五采样信号量化误差分析

一. 实验目的

1. 通过本实验熟悉a/d、d/a变换中的量化误差。

2. 了解a/d、d/a器件位数与量化误差的关系。

二. 实验原理

把连续时间信号转换为与其相对应的数字信号的过程称之为模-数(a/d)转换过程,反之则称为数-模(d/a)转换过程,它们是数字信号处理的必要程序.一般在进行a/d转换之前,需要将模拟信号经抗频混滤波器预处理,变成带限信号,再经a/d转换成为数字信号,最后送入数字信号分析仪或数字计算机完成信号处理.如果需要,再由d/a转换器将数字信号转换成模拟信号,去驱动计算机外围执行元件或模拟式显示、记录仪等。

a/d转换包括了采样、量化、编码等过程,其工作原理如图5.1所示。

图5.1 信号a/d转换过程

1)采样--或称为抽样,是利用采样脉冲序列p(t),从连续时间信号x(t)中抽取一系列离散样值,使之成为采样信号x(nts)的过程.n= 0,1….tst称为采样间隔,或采样周期,1/ts = fs 称为采样频率。

由于后续的量化过程需要一定的时间τ,对于随时间变化的模拟输入信号,要求瞬时采样值在时间τ内保持不变,这样才能保证转换的正确性和转换精度,这个过程就是采样保持。正是有了采样保持,实际上采样后的信号是阶梯形的连续函数。

2)量化--又称幅值量化,把采样信号x(nts)经过舍入或截尾的方法变为只有有限个有效数字的数,这一过程称为量化。若取信号x(t)可能出现的最大值a,令其分为d个间隔,则每个间隔长度为r=a/d,r称为量化增量或量化步长。当采样信号x(nts)落在某一小间隔内,经过舍入或截尾方法而变为有限值时,则产生量化误差,如图5.2所示。

一般又把量化误差看成是模拟信号作数字处理时的可加噪声,故而又称之为舍入噪声或截尾噪声。量化增量d愈大,则量化误差愈大,量化增量大小,一般取决于计算机a/d卡的位数.例如,8位二进制为28=256,即量化电平r为所测信号最大电压幅值的1/256。

图5.2 信号的6等分量化过程

3)编码--将离散幅值经过量化以后变为二进制数字的过程。

信号x(t)经过上述变换以后,即变成了时间上离散、幅值上量化的数字信号。

本实验采用软件模拟的方法来演示不同等分情况下对数据采集的影响。

三. 实验仪器和设备

1. 计算机 n台

2. drvi快速可重组虚拟仪器平台 1套

3. 打印机 1台

四. 实验步骤及内容

1. 启动服务器,运行drvi主程序,开启drvi数据采集仪电源,然后点击drvi快捷工具条上的"联机注册"图标,选择其中的"drvi采集仪主卡检测"进行服务器和数据采集仪之间的注册。联机注册成功后,分别从drvi工具栏和快捷工具条中启动"drvi微型web服务器"和"内置的web服务器",开始监听8500和8600端口。

2. 打开客户端计算机,启动计算机上的drvi客户端程序,然后点击drvi快捷工具条上的"联机注册"图标,选择其中的"drvi局域网服务器检测",在弹出的对话框中输入服务器ip地址(例如:192.168.0.1),点击"发送"按钮,进行客户端和服务器之间的认证,认证完毕即可正常运行客户端所有功能。

3. 在drvi软件平台的地址信息栏中输入如下信息"http://服务器ip地址:8600/gccslab/index.htm",打开web版实验指导书,在实验目录中选择"采样信号量化误差分析"实验,根据实验原理和要求设计该实验。

4. 该实验首先需要设计一个正弦信号发生器,来提供原始信号,drvi中提供了一个"数字信号发生器"芯片,将其中的"信号类型"设置为2就可以产生正弦信号,再用一片"启/停按钮"芯

片控制信号是否产生;为计算信号的量化误差,需要添加一片"信号量化误差计算"芯片,同时,为了便于对等分数的选择,使用一片"数字调节按钮"芯片,并将其步长设置为2;另

外选择二片"波形/频谱显示"芯片,用于显示原始波形和经量化误差芯片处理后的波形;最后根据连接这些芯片所需的数组型数据线数量,插入2片"内存条"芯片,扩展2条数组型数据线,用于存储动态数据;再加上一些文字显示芯片和装饰芯片,就可以完成"采样信号量

化误差"实验的设计过程。所需的虚拟仪器软件芯片数量、种类、与软件总线之间的信号流动和连接关系如图5.3所示,根据该原理设计图在drvi软面包板上插入上述软件芯片,然后修改芯片属性窗中相应的连线参数就可完成该实验的搭建过程。

图5.3 采样信号量化误差实验原理设计图

5. 对于"数字调节按钮"芯片,将其最大值设置为64,最小值设置为2,"步长"设置为2即

每调节一次数字跳变数为2,"输入线号"设置为2即和"信号量化误差计算"芯片的"满量程等分数线号"的值相同,使得每改变一次"数字调节按钮"的数值,就相应的改变"信号量化误差计算"芯片的等分计算数值,同时,修改"信号量化误差计算"芯片的"输入波形存储芯片号"为6000,"输出波形存储芯片号"为6001,在此特别举例说明设置方法。

图5.4 "数字调节按钮"芯片参数设置样例图5.5 "信号量化误差计算"芯片参数设置样例

6. 也可以点击附录中"该实验脚本文件"的链接,在弹出的浏览器窗口中用"全选"功能选择所有脚本信息,然后选?quot;复制"。返回到drvi的客户端,点击客户端软件快捷工具条中的"粘贴ic 资源脚本"图标,将本实验的脚本文件贴入并启动该实验。实验效果图如图5.6所示。

图5.6 采样信号的量化误差实验

7. 点击"采样信号量化误差"实验中的"运行"按钮,然后在"等分数"选择框中选择各种不同的等分数,并分析和观察等分数从低到高时量化误差的大小和对信号波形的影响。

五. 实验报告要求

1. 简述实验目的和原理。

2. 根据实验要求整理实验原理设计图。

3. 根据实验中的数据结果分析采样分辨率对信号转换精度的影响。

六. 思考题

1. 常用的a/d转换器件的位数有那几种,以输入的模拟电压的变化范围为-5v—+5v之间,对于几种不同的位数,其分辨率和转换精度分别为多少?

2. 实际测量中是否a/d转换器件的位数越高越好,如何合理的选择一个a/d转换器件?

信号采样与重建的编程实现

课程设计任务书 学生:凯鑫专业班级:电信1203班 指导教师:阙大顺,王虹工作单位:信息工程学院 题目: 信号采集与重建的编程实现 初始条件: 1.Matlab6.5以上版本软件; 2.课程设计辅导资料:“Matlab语言基础及使用入门”、“数字信号处理原理与实现”、“Matlab及 在电子信息课程中的应用”等; 3.先修课程:信号与系统、数字信号处理、Matlab应用实践及信号处理类课程等。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.课程设计时间:1周(课实践); 2.课程设计容:信号采样与重建的编程实现,具体包括:连续信号的时域采样、频谱混叠分析、 由离散序列恢复模拟信号等; 3.本课程设计统一技术要求:研读辅导资料对应章节,对选定的设计题目进行理论分析,针对具 体设计部分的原理分析、建模、必要的推导和可行性分析,画出程序设计框图,编写程序代码(含注释),上机调试运行程序,记录实验结果(含计算结果和图表),并对实验结果进行分析和总结; 4.课程设计说明书按学校“课程设计工作规”中的“统一书写格式”撰写,具体包括: ①目录; ②与设计题目相关的理论分析、归纳和总结; ③与设计容相关的原理分析、建模、推导、可行性分析; ④程序设计框图、程序代码(含注释)、程序运行结果和图表、实验结果分析和总结; ⑤课程设计的心得体会(至少500字); ⑥参考文献; ⑦其它必要容等。 时间安排: 1)第1-2天,查阅相关资料,学习设计原理。 2)第3-4天,方案选择和电路设计仿真。 3)第4-5天,电路调试和设计说明书撰写。 4)第6天,上交课程设计成果及报告,同时进行答辩。

实验五 信号的采样与恢复

信号与系统实验报告 【实验原理】 1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。抽样信号f s (t )可以看成连续信号f (t )和一组开关函数s (t )的乘积。s (t )是一组周期性窄脉冲,见图1,T s 称为抽样周期,其倒数T s =1T S ?称抽样频率。 图1矩形抽样脉冲 对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。平移的频率等于抽样频率f s 及其谐波频率2f s 、3f s ……。当抽样信 号是周期性窄脉冲时,平移后的频率幅度按(sinx)x ?规律衰减。抽样信号的频谱是原信号 频谱周期的延拓,它占有的频带要比原信号频谱宽得多。 2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。 3、但原信号得以恢复的条件是f s ≥2B ,其中f s 为抽样频率,B 为原信号占有的频带宽度。而f min =2B 为最低抽样频率又称“奈奎斯特抽样率”。当f s <2B 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。在实际使用中,仅包含有限频率的信号是极少的。因此即使f s =2B ,恢复后的信号失真还是难免的。图2画出了当抽样频率f s ≥2B (不混叠时)及当抽样频率f s <2B (混叠时)两种情况下冲激抽样信号的频谱。 (a)连续信号的频谱

数字信号处理实验六-时域采样与信号的重建

实验目的: 1.了解用MATLAB语言进行时域抽样与信号重建的方法 2.进一步加深对时域信号抽样与恢复的基本原理的理解 3.掌握采样频率的确定方法和内插公式的编程方法。 二.实验内容 1认真阅读并输入实验原理与方法中介绍的例子,观察输出波形曲线,理解每一条语句的含义。. 2.已知一个连续时间信号f(t)=sinc(t)。取最高有限带宽频率fm=1Hz。(1)分别显示原连续时间信号波形和Fm=fm、Fm=2fm、Fm=3fm三种情况下抽样信号的波形。 实验程序: dt=0.1; f0=1; T0=1/f0; fm=f0; Tm=1/fm; t=-2:dt:2; f=sinc(t); subplot(4,1,1),plot(t,f,'k'); axis([min(t) max(t) 1.1*min(f) 1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3; fs=i*fm; Ts=1/fs;

n=-2:Ts:2; f=sinc(n); subplot(4,1,i+1),stem(n,f,'filled','k'); axis([min(n) max(n) 1.1*min(f) 1.1*max(f)]); end 实验截图: (2)求解原连续信号波形和抽样信号所对应的幅度谱。实验程序: dt=0.1;t=-4:dt:4;

N=length(t);f=sinc(t);Tm=1;fm=1/Tm; wm=2*pi*fm;k=1:N; w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt; subplot(4,1,1),plot(w1/(2*pi),abs(F1));grid axis([0 max(4*fm) 1.1*min(F1) 1.1*max(F1)]); for i=1:3; if i<= 2 c=0 ,else c=0.2,end fs=(4-i+c)*fm; Ts=1/fs; n=-4:Ts:4; f=sinc(n); N=length(n); wm=2*pi*fs; k=1:N; w=k*wm/N; F=f*exp(-j*n'*w)*Ts; subplot(4,1,5-i),plot(w/(2*pi),abs(F),'k');grid axis([0 max(4*fm) 1.1*min(F) 1.1*max(F)]); end 实验截图:

信号实验:连续信号的采样和恢复

电子科技大学 实 验 报 告 学生姓名: 学号: 指导老师: 日期:2016年 12月 10日

一、实验室名称: 连续信号的采样和恢复 二、实验项目名称: 实验项目四:连续信号的采样和恢复 三、实验原理: 实际采样和恢复系统如图3.4-1所示。可以证明,奈奎斯特采样定理仍然成立。 ? ) x t ) (t P T ) 图3.4-1 实际采样和恢复系统 采样脉冲: 其中,T s πω2=, 2/)2/sin(τωτωτs s k k k T a =,T <<τ。 采样后的信号: ∑∞ -∞ =-=?→←k s S F S k j X T j X t x ) ((1)()(ωωω 当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的 ()()2() F T T k s k p t P j a k ωπδωω+∞ =-∞ ←?→= -∑

信号)(t x S 恢复原始信号)(t x 。 目的:1、使学生通过采样保持电路理解采样原理。 2、使学生理解采样信号的恢复。 任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢 复的波形与频谱,并与观察结果比较。 四、实验内容 实验内容(一)、采样定理验证 实验内容(二)、采样产生频谱交迭的验证 五、项目需用仪器设备名称:数字信号处理实验箱、信号与系统实验板的低通滤 波器模块U11和U22、采样保持器模块U43、PC 机端信号与系统实验软件、+5V 电源 六、实验步骤: 打开PC 机端软件SSP.EXE ,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。 实验内容(一)、采样定理验证 实验步骤: 1、连接接口区的“输入信号1”和“输出信号”,如图3.4-2所示。 图3.4-2 观察原始信号的连线示意图 2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz ”。 按“F4”键把采样脉冲设为10kHz 。 七、实验数据及结果分析:

抽样调查误差分析

抽样误差 跟据开元捷问多年的市场调查经验总结抽样误差的来源具体如下: 1、由调查研究设计者(调查机构)的差错造成的误差主要有哪些 2、由调查员(访问员)的差错造成的误差主要有哪些 3、由被调查者(受访者)的差错造成的误差主要由哪些 具体分析 1、由调查研究设计者(调查机构)的差错造成的误差主要有哪些 (1)代用信息误差可以定义为是调研问题所需的信息与调研者所搜集的信息之间的变差。 (2)测量误差可以定义为是所搜寻的信息与由调研者所采用的测量过程所生成的信息之间的变差。 (3)总体定义误差可以定义为与手中要研究的问题相关的真正总体与调研者所定义的总体之间的变差。 (4)抽样框误差可以定义为是由调研者定义的总体与所使用的抽样框隐含的总体之间的变差。 (5)数据分析误差指的是由问卷中的原始数据转换成调查结果时产生的误差。 2、由调查员(访问员)的差错造成的误差主要有哪些 调查员提问的方式、顺序、态度,以及调查员本人的身份、特征都会影响被调查者回答的准确程度,此外,调查员的现场记录和登记也可能出现误差。由调查员引起的误差可归纳为以下几种: (1)指导语误差。如果调查员没有完全准确地按问卷中所给出的指导语去访问,那么即使是微小的偏离也会引起误差。如果有了许多次措词的微小变化,调查员记忆中的指导语和书面的指导语可能有很大的差异。 (2)问答误差。表示询问被调查者时产生的误差,或是在需要更多的信息时没有进一步询问而产生的误差。调查员需要向被调查者提问取得资料。如果调查员的措词不当,就会产生误差。例如,“请间您的年龄是多少?”和“你多大了?”这两种问法,前者得到的年龄数字比后者要准确。调查员的个人情感、态度也会影响被调查者产生误差,特别是诱导性的语言,例如,“您赞同(同意)……吗?”,或“大多数人认为……,您认为如何?”。这样,有些被调查者就会自然地顺着调查员的思路回答问题。 (3)记录误差。是由于在听、理解和记录被调查者的回答时造成的误差。

实验五(信号抽样与恢复)

实验五 信号抽样与恢复 一、实验目的 学会用MA TLAB 实现连续信号的采样和重建 二、实验原理 1.抽样定理 若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱 )(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。因此,当s ω≥m ω时,不会发生频 率混叠;而当 s ω

多模卫星导航信号误差分析(精)

第8卷第3期2008年2月167121819(2008)320715205 科学技术与工程 ScienceTechnologyandEngineering Vol.8No.3Feb.2008 Ζ2008Sci.Tech.Engng. 航空航天 多模卫星导航信号误差分析 牟奇锋 1,2 刘根旺潘卫军 32 (西南交通大学交通运输学院1,成都610031;中国民航飞行学院空中交通管理学院2,广汉电子科技大学空天科学技术研究院3,成都) 摘要(GNSS)技术发展状况的了解和对系统的脆弱性分析,逐一对误差的性质、,。最后介绍了高动态环境下误差关键词静态误差高动态中图法分类号.24;文献标志码 A 随着GNSS信号和星座数量的增加,未来的空中导航倾向于采用多套星基系统的组合型态以提升卫星导航的抗干扰稳定性,简化GNSS地面构造并缓解由于依赖单一的服务提供者而产生的制度上的隐忧 [1,2] 差。载体动态越大,码相位和载波相位改变越快。本文侧重于多模卫星导航接收机信号模拟器关键技术研究 [3] ,对上述静态误差部分物理特性进行了 详细的分析并建模,同时也介绍了高动态环境下误差模型的一般研究方法。 。未来星基系统包括美国的全球卫星 导航系统(GPS)、俄罗斯的全球卫星导航系统(GLONASS)、国际海事卫星通信系统(INMAR2SAT)、欧洲伽利略卫星导航系统(GALILEO)以及类 1误差分析和建模

1.1静态误差模型 1.1.1与GPS自身有关的误差 GPS信号的自身误差,包括星历误差(轨道误 似我国“北斗”的其他卫星导航系统。随着GNSS的发展,未来将出现以不同方式使用独立GNSS要素的不同组合的机载接收装置。接收机随载体运动,在这样一种高动态环境下,多种模式卫星信号在传输,直至到达机载接收机过程中将产生不等的误差,其组合误差形式将在很大程度上影响相关当局对使用多要素组合的标准化问题的决策。 卫星定位误差主要来源于三种:与卫星有关的误差、与信号传播有关的误差和与接收机有关的偏 2007年10月31日收到 差)、卫星钟差及相对论效应的影响等,对测量距离的影响为1.5~15m。 (1)星历误差 卫星星历误差是指卫星星历给出的卫星空间位置与卫星实际位置间的偏差。由于卫星空间位置是由地面监控系统根据卫星测轨结果计算求得的,所以又称为卫星轨道误差。误差大小取决于卫星跟踪站的数量及空间分布、观测值的数量及精度、轨道计算时所有的轨道模型及定轨软件的完善程度等。星历误差是GPS测量误差的重要数据来源。 为了估算GPS广播星历误差单因素对定位结果的影响,可通过建立如图1所示的星历误差影响与预测模型来实现误差的估计与分析。 国家高技术研究计划(863)项目 (2006AA12A111)、 民航飞行技术与飞行安全科研(2006KF02)资助 第一作者简介:牟奇锋(1972—),男,副教授,博士研究生,研究方向:交通运输规划与管理。E2mail:mouqifeng@https://www.360docs.net/doc/7a14087649.html,。 ? 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. https://www.360docs.net/doc/7a14087649.html,

MATLAB在数字信号处理中的应用:连续信号的采样与重建

MATLAB 在数字信号处理中的应用:连续信号的采样与重建 一、 设计目的和意义 随着通信技术的迅速发展以及计算机的广泛应用,利用数字系统处理模拟信号的情况变得更加普遍。数字电子计算机所处理和传送的都是不连续的数字信号,而实际中遇到的大都是连续变化的模拟量,现代应用中经常要求对模拟信号采样,将其转换为数字信号,然后对其进行计算处理,最好在重建为模拟信号。 采样在连续时间信号与离散时间信号之间其桥梁作用,是模拟信号数字化的第一个步骤,研究的重点是确定合适的采样频率,使得既要能够从采样信号(采样序列)中五失真地恢复原模拟信号,同时由要尽量降低采样频率,减少编码数据速率,有利于数据的存储、处理和传输。 本次设计中,通过使用用MATLAB 对信号f (t )=A1sin(2πft)+A2sin(4πft)+A3sin(5πft)在300Hz 的频率点上进行采样,并进行仿真,进一步了解MA TLAB 在数字信号处理上的应用,更加深入的了解MA TLAB 的功能。 二、 设计原理 1、 时域抽样定理 令连续信号 xa(t)的傅立叶变换为Xa (j Ω),抽样脉冲序列p(t)傅立叶变换为P (j Ω),抽样后的信号x^(t)的傅立叶变换为X^(j Ω)若采用均匀抽样,抽样周期Ts ,抽样频率为Ωs= 2πfs ,有前面分析可知:抽样过程可以通过抽样脉冲序列p (t )与连续信号xa (t )相乘来完成,即满足:x^(t)p(t),又周期信号f (t )傅立叶变换为: F[f(t)]=2[(]n s n F j n π δ∞ =-∞Ω-Ω∑ 故可以推得p(t)的傅立叶变换为: P (j Ω)=2[(]n s n P j n π δ∞ =-∞Ω-Ω∑ 其中: 根据卷积定理可知: X (j Ω)=12π Xa (j Ω)*P(j Ω) 得到抽样信号x (t )的傅立叶变换为: X (j Ω)= [()]n n s n P X j n ∞=-∞Ω-Ω∑ 其表明:信号在时域被抽样后,他的频率X (j Ω)是连续信号频率X (j Ω)的形状以抽样频率Ωs 为间隔周期重复而得到,在重复过程中幅度被p (t )的傅立叶级数Pn 加权。因为只是n 的函数,所以X (j Ω)在重复过程中不会使其形状发生变化。 假定信号x (t )的频谱限制在-Ωm~+Ωm 的范围内,若以间隔Ts 对xa (t )进行抽样信号X^(j Ω)是以Ωs 为周期重复。显然,若早抽样过程中Ωs<Ωm ,则 X^ (j Ω)将会发生频谱混叠的现象,只有在抽样的过程中满足Ωs>2Ωm 条件,X^(j Ω)才不会产生混频的混叠,在接收端完全可以有x^(t )恢复原连续信号xa (t ),这就是低通信号的抽样定理的核心内容。

(仅供参考)信号的采样和复现

8-2信号的采样和复现的数学描述 一、采样过程 所谓理想采样,就是把一个连续信号)(t e ,按一定的时间间隔逐点地取其瞬时值,从而得 到一串脉冲序列信号)(t e *。可见在采样瞬时,)(t e *的脉冲强度等于相应瞬时)(t e 的幅值,即 )0(T e ,)1(T e ,)2(T e ,…)(nT e , …如图8-8所示。因此,理想采样过程可以看成是一个幅值调制过程,如图8-9所示。采样器好比是一个幅值调制器,理想脉冲序列)(t T d 作为幅值调制器的载波信号,)(t T d 的数学表达式为 ?¥¥== -n nT)-(t )(d d t T (8-1) 其中=n 0,±1,±2,…)(t e 调幅后得到的信号,即采样信号)(t e *为 ?¥-¥=* -==n T nT t t e t t e t e )()()()()(d d (8-2) 通常在控制系统中,假设当0

部信息呢?因为从采样(离散化)过程来看,“采样”是有可能会损失信息的。下面我们将从频率域着手研究这个问题。 二、采样信号的频谱 假设连续信号)(t e 的富氏变换式为)(w j E ,采样后信号*()e t 的富氏变换式用*()E j w 表示,下面我们来看)(w j E *的具体表达式。 由于理想脉冲序列)(t T d 是一个周期函数,其周期为T ,因此它可以展开成指数形式的富氏级数,即 ?¥-¥ ==n t jn T s e T t w d 1)((8-5)其中T s p w 2=为采样角频率。 将式(8-5)的结果代入(8-2)式得?¥ -¥=*==n t jn T s e t e T t t e t e w d )(1)()()((8-6) 根据复位移定理;若[()]()F e t E j w =,则 [()]() at F e t e E j a w ±=m 因此,式(8-6)的富氏变换式为 ?¥ -¥=**-==n s jn j E T j E t e F )(1)()]([w w w (8-7) 假定连续信号)(t e 的频谱如图8-10(a )所示,则根据式(8-7)可得采样(离散)信号)(t e *的频谱如图8-10(b )所示。 由图8-10,可得到如下结论: (1)0=n 的项为)(1w j E T ,通常称为基本频谱。它正比于原连续信号)(t e 的频谱。

数字信号处理实验五

实验五:FIR数字滤波器设计与软件实现 信息学院 10电本2班王楚炘 2010304224 10.5.1 实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验内容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图10.5.1所示; 图10.5.1 具有加性噪声的信号x(t)及其频谱如图(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,

调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本书 第7章和第?章; 采样频率Fs=1000Hz,采样周期T=1/Fs; 根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率,通带最大衰为0.1dB,阻带截至频率,阻带最小衰为60dB。]实验程序框图如图10.5.2所示,供读者参考。 Fs=1000,T=1/Fs xt=xtg 产生信号xt, 并显示xt及其频谱 用窗函数法或等波纹最佳逼近法 设计FIR滤波器hn 对信号xt滤波:yt=fftfilt(hn,xt) 1、计算并绘图显示滤波器损耗函数 2、绘图显示滤波器输出信号yt End 图10.5.2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. 答:用窗函数法设计线性相位低通滤波器的设计步骤: a.根据对阻带衰减及过渡带的指标要求,选择窗函数的类型,并估计窗口的长度N; b.构造希望逼近的频率响应函数; c.计算h d(n); d.加窗得到设计结果h(n)=h d(n)w(n)。 (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为和,阻带上、下截止频率为和,试求理想带通滤波器的截止频率。 答:希望逼近的理想带通滤波器的截止频率分别为:

五 信号抽样与重构

实验五 信号的抽样和重构 实验目的 (1)熟悉抽样信号及其频谱。 (2)掌握抽样定理。 (3)了解理想低通滤波器。 一、实验原理 1.抽样信号 抽样信号相当于连续信号与周期性的冲击序列相乘。 )()()(t t f t f T s δ?= 在Matlab 中可以很方便的用不同的时间间隔实现对连续信号不同频率的抽样。 抽样信号的频谱等于原始信号的频谱与冲击序列的频谱的卷积。 ∑∑∞ -∞ =∞-∞=-=-*=n s n s s n F T n T F F )(1)(1)()(ωωωωδωω 抽样信号的频谱是对原始信号的频谱的周期性延拓,周期大小为抽样品率,其中每一个周期 都复制了原始信号的频谱。 2.抽样定理 一个带宽为wm 的带限信号f(t),可唯一地由它的均匀取样信号fs(nTs)确定,其中,取样间隔Ts<π/wm 。 3.低通滤波器 为了从抽样信号中恢复原始信号,可以让抽样信号通过一个低通滤波器,把一个周期的频谱取出来。理想低通滤波器的频率响应H(jw),是一个自变量为w 的门函数。让抽样信号的频谱Fs(jw)与滤波器的H(jw)相乘,可以得到抽样信号一个周期的频谱Fa(jw)。对Fa(jw)求傅立叶逆变换,可以重构原始信号。 二、验证性实验 1.绘制宽度为2的门信号G 2(t)=u(t+1)-u(t-1)的图形和频谱。 门信号并非严格意义上的有限带宽信号,但是,由于其频率f>1/τ的分量所具有的能量占有很少的比重,所以一般定义f m =1/τ为门信号的截止频率。其中的τ为门信号在时域的宽度。在本例中选取f m =0.5,临界采样频率为f s =2f m=1,过采样频率为f s >1(为了保证精度,可以将其值提高到该值的50倍),欠采样频率为f s <1。 MATLAB 程序: Ts=0.01;%采样周期=0.01,fs=100>>2fm=1 t=-4:Ts:4; f=rectpuls(t,2);% 宽度为2的门信号 w1=2*pi*10; % 频谱范围[-20*pi 20*pi] N=1000; % 计算出2*1000+1个频率点 k=0:N;

实验九信号的自然采样与恢复

实验九信号的自然采样与恢复 一、实验目的: 1、理解信号的采样及采样定理以及自然采样信号的频谱特征。 2、掌握和理解信号自然采样以及信号重建的原理,并能用MATLAB实现。 二、实验原理及方法: 本实验主要涉及采样定理的相关内容以及低通滤波器恢复原连续信号的相关知识。信号的抽样与恢复示意图如图7-1所示。 图7-1 信号的抽样与恢复示意图 信号抽样与恢复的原理框图如图7-2所示。

图 7-2 信号抽样与恢复的原理框图 由原理框图不难看出,A/D 转换环节实现抽样、量化、编码过程;数字信号处理环节对得到的数字信号进行必要的处理;D/A 转换环节实现数/模转换,得到连续时间信号;低通滤波器的作用是滤除截止频率以外的信号,恢复出与原信号相比无失真的信号。 原信号得以恢复的条件是B f s 2≥,其中s f 为采样频率,B 为原信号占有的频带宽度。B f 2min =为最低采样频率,当B f s 2<时,采样信号的频率会发生混迭,所以无法用低通滤波器获得原信号频谱的全部内容。 三、实验内容及步骤: 给定带限信号 f(t),其频谱为 1、画出此信号的频谱图(ω的取值:-0.5π <ω <0.5π ,精度取0.01rad )。 答:画出f(t)的频谱图即F(W)的图像 程序代码如下: #include #include #define PI 3.14 double f(double w) {

if (w>=-0.5*PI && w<=0.5*PI) return cos(w); else return 0; } main() { double w,F; FILE *fp; for (w=-0.5*PI;w<=0.5*PI;w+=0.01) { F=f(w); printf("w=%.2f, F(w)=%f\n",w,F); fp=fopen("d:\\2.txt","w"); fprintf(fp,"%f\t",F); } system("pause"); } ③F(W)的图像

04采样信号量化误差分析

实验四采样信号量化误差分析 一. 实验目的 1.通过本实验熟悉A/D、D/A变换中的量化误差。 2.了解A/D、D/A器件位数与量化误差的关系。 二. 实验原理 把连续时间信号转换为与其相对应的数字信号的过程称之为模—数(A/D)转换过程,反之则称为数—模(D/A)转换过程,它们是数字信号处理的必要程序.一般在进行A/D转换之前,需要将模拟信号经抗频混滤波器预处理,变成带限信号,防止采样时出现频率混迭现象,然后再经A/D转换成为数字信号,最后送入数字信号分析仪或数字计算机完成信号处理.如果需要,再由D/A转换器将数字信号转换成模拟信号,去驱动计算机外围执行元件或模拟式显示、记录仪等。 图1 信号A/D转换过程 把采样信号x(nT s)经过舍入或截尾的方法变为只有有限个有效数字的数,这一过程称为量化。若取信号x(t)可能出现的最大值A,令其分为D个间隔,则每个间隔长度为R=A/D,R称为量化增量或量化步长。当采样信号x(nT s)落在某一小间隔内,经过舍入或截尾方法而变为有限值时,则产生量化误差,如图2所示。 图2 信号的6等分量化过程 一般又把量化误差看成是模拟信号作数字处理时的可加噪声,故而又称之为舍入噪声或截尾噪声。量化增量D愈大,则量化误差愈大,量化增量大小,一般取决于计算机A/D卡的位数.例如,8位二进制为28=256,即量化电平R为所测信号最大电压幅值的1/256。 三. 实验内容 采用软件模拟的方法对数字信号进行量化处理,观察量化后信号波形的变化,将原始数字信号和量化后的数字信号转化为音频数据流或音频文件(WAV格式),通过计算机声卡和喇叭播放,感受量化后带来的舍入噪声的影响。

信号与系统实验五信号的采样与还原.

深圳大学实验报告 课程名称:信号与系统 实验名称:信号的卷积实验 学院名称:信息工程学院 专业名称:集成电路设计与集成系统 指导教师:廉德亮 报告人:学号:班级:二班 实验时间: 2015年6月04日 提交时间: 2015年6月18日

由此可见,当φ=0或是2π的整数倍时,如右图,x(t) 可以完全恢复。 当2 π φ=-时,()sin( )2 s x t t ω= 该信号在采样周期2s πω整数倍点上的值都 是零;因此 在这个采样频率下所产生的信号全是零。当这个零输入加到理想低通滤波器上时,所得输出当然也都是零。 实验步骤 1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板上的电源(看清标识,防止接错),并打开此模块的电源开关(S1、S2)。 2、用示波器测试H07“CLKR ”的波形,为256kHz 的方波,用导线将H07“CLKR ”和H12连接起来。 3、用示波器测试H01“2kHz ”的输出波形,为2kHz 的方波,用导线连接H01“2kHz ”和H02“输入”。 4、通过测试钩T01观察输入的方波经过截止频率为2kHz 的低通滤波器后得到2kHz 的正弦波。抽样电路将对此正弦波进行抽样,然后经过还原电路还原出此正弦波。 5、用示波器观察测试钩T08“抽样脉冲序列”的波形。通过按键“频率粗调”和按键“频率细调”可以改变抽样脉冲序列的频率。抽样脉冲序列的频率的最小值为500Hz 最大值为11.5kHz 。同样通过“占空比粗调”按键和“占空比细调”按键可以调节抽样脉冲序列的占空比。“复位”按键可以使抽样脉冲序列的频率复位为500Hz 且占空比最小。通过调节抽样脉冲的频率可以实现欠采样、临界采样、过采样。 6、用示波器观察T02“抽样信号”的波形。 7、观察抽样信号经低通滤波器还原后的波形T03。 8、改变抽样频率为fs<2B 和fs ≥2B ,观察抽样信号(T02)和复原后的信号(T03),比较其失真程度。 实验数据 原信号2kHz 正弦波 单通道 抽样脉冲序列

测试技术与信号分析

1.在系统特性测量中常用白噪声信号作为输入信号,然后测量系统的输出,并将输出信号的频谱作为系统频率特性。请用卷积分定理解释这样做的道理。 答:白噪声是指功率谱密度在整个频域内均匀分布的噪声,所有频率具有相同能量的随机噪声称为白噪声。在其频谱上是一条直线。系统频率特性:传递函数的一种特殊情况,是定义在复平面虚轴上的传递函数。时域卷积分定理:两个时间函数的卷积的频谱等于各个时间函数的乘积,即在时域中两信号的卷积等效于在频域中频谱相乘。频域卷积分定理:两个时间函数的频谱的卷积等效于时域中两个时间函数的乘积。y(t)=h(t)*x(t),对y(t)作付式变换,转到相应的频域下Y(f)=H(f)X(f),由于x(t)是白噪声,付式变换转到频域下为一定值,假定X(f)=1,则有Y(f)=H(f),此时就是传递函数。 2.用1000Hz的采样频率对200Hz的正弦信号和周期三角波信号进行采样,请问两个信号采样后是否产生混叠?为什么? 采样频率ωs(2π/Ts)或fs(1/Ts)必须大于或等于信号x(t)中的最高频率ωm的两倍,即ωs>2ωm,或fs>2fm。 为了保证采样后的信号能真实地保留原始模拟信号的信息,采样信号的频率必须至少为原信号中最高频率成分的2倍。这是采样的基本法则,称为采样定理。 但在对信号进行采样时,满足了采样定理,只能保证不发生频率混叠,对信号的频谱作逆傅立叶变换时,可以完全变换为原时域采样信号,而不能保证此时的采样信号能真实地反映原信号。工程实际中采样频率通常大于信号中最高频率成分的3到5倍。 理论上周期三角波的频谱里包含所有奇次谐波分量,也就是说200Hz的周期三角波信号包含600Hz、1kHz、1.4kHz等等谐波,所以用1000Hz采样频率对200Hz周期三角波信号采样,会发生混叠。而对200Hz正弦信号采样不会发生混叠。 3.什么是能量泄露和栅栏效应?能量泄漏与栅栏效应之间有何关系? 能量泄漏:将截断信号的谱XT(ω)与原始信号的谱X(ω)相比较可知,它已不是原来的两条谱线,而是两段振荡的连续谱.这表明原来的信号被截断以后,其频谱发生了畸变,原来集中在f0处的能量被分散到两个较宽的频带中去了,这种现象称之为频谱能量泄漏(Leakage)。 栅栏效应:对采样信号的频谱,为提高计算效率,通常采用FFT算法进行计算,设数据点数为N = T/dt = T.fs则计算得到的离散频率点为Xs(fi) , fi = i.fs/N , i = 0,1,2,…,N/2。这就相当于透过栅栏观赏风景,只能看到频谱的一部分,而其它频率点看不见,因此很可能使一部分有用的频率成分被漏掉,此种现象被称为栅栏效应。 频谱的离散取样造成了栅栏效应,谱峰越尖锐,产生误差的可能性就越大。例如,余弦信号的频谱为线谱。当信号频率与频谱离散取样点不等时,栅栏效应的误差为无穷大。 实际应用中,由于信号截断的原因,产生了能量泄漏,即使信号频率与频谱离散取样点不相等,也能得到该频率分量的一个近似值。从这个意义上说,能量泄漏误差不完全是有害的。如果没有信号截断产生的能量泄漏,频谱离散取样造成的栅栏效应误差将是不能接受的。 能量泄漏分主瓣泄漏和旁瓣泄漏,主瓣泄漏可以减小因栅栏效应带来的谱峰幅值估计误差,有其好的一面,而旁瓣泄漏则是完全有害的。 4.简述传递函数、频响函数和脉冲响应函数间的联系与区别。 传递函数:零初始条件下线性系统响应(即输出)量的拉普拉斯变化(或z变换)与激励(即输入)量的拉普拉斯变换之比。记作G(s)=Y(s)/U(s),其中Y(s)、U(s)分别为输出量和输入量的拉普拉斯变换。 频响函数:(1)简谐激励时,稳态输出相量与输入相量之比。(2)瞬态激励时,输出的傅里叶变换与输入的傅里叶变换之比。(3)平稳随机激励时,输出和输入的互谱与输入的自谱之比。

信号的采样与恢复

信号的采样与恢复实验 一、任务与目的 1. 熟悉信号的采样与恢复的过程。 2. 学习和掌握采样定理。 3. 了解采样频率对信号恢复的影响。 二、原理(条件) PC机一台,TD-SAS系列教学实验系统一套。 1. 采样定理 采样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值表示。这些值包含了该连续信号全部信息,利用这些值可以恢复原信号。采样定理是连续时间信号与离散时间信号之间的桥梁。 采样定理:对于一个具有有限频谱,且最高频率为ωmax的连续信号进行采样,当采样频率ωs满足ωs>=ωmax时,采样信号能够无失真地恢复出原信号。三角波信号的采样如图4-1-1所示。 图4-1-1信号的采样 2. 采样信号的频谱 连续周期信号经过周期矩形脉冲抽样后,抽样信号的频谱为

它包含了原信号频谱以及重复周期为的原信号频谱的搬移,且幅度按规律变化。所以抽样信号的频谱便是原信号频谱的周期性拓延。某频带有限信号被采样前后频谱如图4-1-2。 图4-1-2 限带信号采样前后频谱 从图中可以看出,当ωs ≥2Bf 时拓延的频谱不会与原信号的频谱发生重叠。这样只需要利用截止频率适当的滤波器便可以恢复出原信号。 3. 采样信号的恢复 将采样信号恢复成原信号,可以用低通滤波器。低通滤波器的截止频率f c 应当满足f max ≤f c ≤f x -f max 。实验中采用的低通滤波器原理图如图4-1-3所示,其截止频率固定为 1802f Hz RC π=≈ 图4-1-3 滤波器电路 4. 单元构成 本实验电路由脉冲采样电路和滤波器两个部分构成,滤波器部分不再赘述。其中的采样保持部分电路由一片CD4052完成。此电路由两个输入端,其中IN1端输入被采样信号,Pu 端输入采样脉冲,经过采样后的信号如图4-1-1所示。 三、内容与步骤 本实验在脉冲采样与恢复单元完成。 1. 信号的采样

5.采样信号量化误差分析

实验五采样信号量化误差分析 一. 实验目的 1. 通过本实验熟悉a/d、d/a变换中的量化误差。 2. 了解a/d、d/a器件位数与量化误差的关系。 二. 实验原理 把连续时间信号转换为与其相对应的数字信号的过程称之为模-数(a/d)转换过程,反之则称为数-模(d/a)转换过程,它们是数字信号处理的必要程序.一般在进行a/d转换之前,需要将模拟信号经抗频混滤波器预处理,变成带限信号,再经a/d转换成为数字信号,最后送入数字信号分析仪或数字计算机完成信号处理.如果需要,再由d/a转换器将数字信号转换成模拟信号,去驱动计算机外围执行元件或模拟式显示、记录仪等。 a/d转换包括了采样、量化、编码等过程,其工作原理如图5.1所示。 图5.1 信号a/d转换过程 1)采样--或称为抽样,是利用采样脉冲序列p(t),从连续时间信号x(t)中抽取一系列离散样值,使之成为采样信号x(nts)的过程.n= 0,1….tst称为采样间隔,或采样周期,1/ts = fs 称为采样频率。 由于后续的量化过程需要一定的时间τ,对于随时间变化的模拟输入信号,要求瞬时采样值在时间τ内保持不变,这样才能保证转换的正确性和转换精度,这个过程就是采样保持。正是有了采样保持,实际上采样后的信号是阶梯形的连续函数。 2)量化--又称幅值量化,把采样信号x(nts)经过舍入或截尾的方法变为只有有限个有效数字的数,这一过程称为量化。若取信号x(t)可能出现的最大值a,令其分为d个间隔,则每个间隔长度为r=a/d,r称为量化增量或量化步长。当采样信号x(nts)落在某一小间隔内,经过舍入或截尾方法而变为有限值时,则产生量化误差,如图5.2所示。 一般又把量化误差看成是模拟信号作数字处理时的可加噪声,故而又称之为舍入噪声或截尾噪声。量化增量d愈大,则量化误差愈大,量化增量大小,一般取决于计算机a/d卡的位数.例如,8位二进制为28=256,即量化电平r为所测信号最大电压幅值的1/256。

实验一采样与保持

大学信息数理学院 计算机控制系统实验报告 第一次实验 实验名称采样与保持 专业自动化142 实验组别徐亮学号14417228 同实验者国梁、王凯翔记录 实验时间2017 年06 月11 日成绩审阅教师 ..

..

一、实验目的 (1)了解模拟信号到计算机控制的离散信号的转换—采样过程。 (2)了解判断采样/保持控制系统稳定性的充要条件。 (3)了解采样周期 T 对系统的稳定性的影响。 (4)掌握控制系统处于临界稳定状态时的采样周期 T 的计算。 (5)观察和分析采样/保持控制系统在不同采样周期 T 时的瞬态响应曲线。 二、实验原理及说明 采样实验 采样实验框图如图所示。计算机通过模/数转换模块以一定的采样周期对B9 单元产生的正弦波信号采样,并通过上位机显示。 在不同采样周期下,观察比较输入及输出的波形(失真程度)。 图采样实验框图计算机编程实现以不同采样周期对正弦波采样,调节信号发生器(B5)单元的调宽旋钮,并以此作为 A/D 采样周期T。改变T 的值,观察不同采样周期下输出波形与输入波形相比的复原程度(或失真度)。 对模拟信号采样首先要确定采样间隔。采样频率越高,采样点数越密,所得离散信号就越逼近于原信号。采样频率过低,采样点间隔过远,则离散信号不足以反映原有信号波形特征,无法使信号复原,。 合理的采样间隔应该是即不会造成信号混淆又不过度增加计算机的工作量。采样时,首先要保证能反映信号的全貌,对瞬态信号应包括整个瞬态过程;信号采样要有足够的长度,这不但是为了保证信号的完整,而且是为了保证有较好的频率分辨率。 在信号分析中,采样点数N 一般选为2m 的倍数,使用较多的有512、1024、2048、4096 等。 采样保持器实验 线性连续系统的稳定性的分析是根据闭环系统特征方程的根在S 平面上的位置来进行的。如果特征方程的根都在左半S 平面,即特征根都具有负实部,则系统稳定。采样/保持控制系统的稳定性分析是建立在Z 变换的基础之上, ..

采样计算方法测量交流电压有效值误差分析.953.

采样计算方法测量交流电压有效值误差分析 李沂乘 (北京东方计量测试技术研究所,北京 100086) 摘要:分析了利用采样计算方法测量交流信号有效值的主要误差因素。对于计算方法、周期误差、A/D转换器量化误差和A/D转换器积分非线性误差这四种主 要的误差来源如何影响电压有效值测量结果进行了定量分析,在实际应用的过程中可以有针对性的采取措施来减小误差因素对测量结果的影响。关键词:采样计 算;有效值;误差分析 Error Analysis of Sampling Computation Method for RMS Measurement LI Yicheng (Beijing Orient Institute of Measurement & Test, Beijing 100086, China Abstract: The error genesis, measuring effective value of AC signal with sampling computation method, is analyzed in this paper. Four primary geneses, including computation algorithm, measurement errors in non-synchronous, quantization errors of analogue digital converter (ADC, integral nonlinearity errors of ADC, are discussed; meanwhile, expressions are given in this paper. The result may be taken as a reference for minimizing influence caused by such errors. Keywords: sampling computation; effective value; error analysis 交流电压有效值 的测量方法有很多种,对于低频以及超低频信号电压有效值的测量,目前比较常用的是基于采样计算的测量方法。这主要是因为用常规的测量方法和模拟技术不但要求测量仪表本身具有极高的稳定性,而且仪表极长的响应时间和不合理的电路元件参数使得测量在某些场合很难实现。采样计算的测量方法克服这些传统不利因素的同时也产生了新的问题,分析误差因素对测量结果的影响方式,就能够在实际测量

相关文档
最新文档