低温等离子体

低温等离子体
低温等离子体

文章一

定义低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的着火电压时,气体分子被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的同的。

低温等离子态半导体研究及利用

低温等离子态是指常温下气体被激发为等离子稳定状态。该状态下电子温度远远高于质子,电子迁移率达到1000-10000米/秒。电子浓度1015 个/立方厘米。因此可以近似地认为低温等离子态等效N型半导体。

低温等离子态等效N型半导体性能:

1需要被激发。

2 电子浓度较低,且可调。

3 电子迁移率极高。

4 透明。

5 纯度高。

6 电子逸出功基本为零。

7 没有自边界,不存在浓度梯度。

低温等离子体又称非平衡态等离子体,通常由微波放电,介质阻挡放电,电晕放电,辉光放电等产生。在低温等离字体中重粒子温度接近室温,而电子温度高达10000K以上,远离热平衡状态

由于等离子态只有N型半导体形式,单独的N型半导体基本没有应用的价值。因此低温等离子态半导体必须与P型固体半导体结合形成P-N结。为了防止气体与接触体发生化学反应,最好选择惰性气体。

文章四什么是低温等离子体?

低温等离子体冰升温至0℃会变成水,如继续使温度升至100℃,那么水就会沸腾成为水蒸气。随着温度的上升,物质的存在状态一般会呈现出固态→液态→气态三种物态的转化过程,我们把这三种基本形态称为物质的三态。那么对于气态物质,温度升至几千度时,将会有什么新变化呢? 由于物质分子热运动加剧,相互间的碰撞就会使气体分子产生电离,这样物质就变成由自由运动并相互作用的正离子和电子组成的混合物(蜡烛的火焰就处于这种状态)。我们把物质的这种存在状态称为物质的第四态,即等离子体(plasma)。因为电离过程中正离子和电子总是成对出现,所以等离子体中正离子和电子的总数大致相等,总体来看为准电中性。反过来,我们可以把等离子体定义为:正离子和电子的密度大致相等的电离气体。

从刚才提到的微弱的蜡烛火焰,我们可以看到等离子体的存在,而夜空中的满天星斗又都是高温的完全电离等离子体。据印度天体物理学家沙哈(M.Saha,1893-1956)的计算,宇宙中的99.9%的物质处于等离子体状态。而我们居住的地球倒是例外的温度较低的星球。此外,对于自然界中的等离子体,我们还可以列举太阳、电离层、极光、雷电等。在人工生成等离子体的方法中,气体放电法比加热的办法更加简便高效,诸如荧光灯、霓虹灯、电弧焊、电晕放电等等。在自

然和人工生成的各种主要类型的等离子体的密度和温度的数值,其密度为106(单位:个/m3)的稀薄星际等离子体到密度为1025的电弧放电等离子体,跨越近20个数量级。其温度分布范围则从100K的低温到超高温核聚变等离子体的108-109K(1-10亿度)。温度轴的单位eV(electron volt)是等离子体领域中常用的温度单位,1eV=11600K。

通常,等离子体中存在电子、正离子和中性粒子(包括不带电荷的粒子如原子或分子以及原子团)等三种粒子。设它们的密度分别为ne,ni,nn,由于准电中性,所以电离前气体分子密度为ne≈nn。于是,我们定义电离度β=ne/(ne+nn),以此来衡量等离子体的电离程度。日冕、核聚变中的高温等离子体的电离度都是100%,像这样β=1的等离子体称为完全电离等离子体。电离度大于1%(β≥10-2)的称为强电离等离子体,像火焰中的等离子体大部分是中性粒子(β<10-3 ),称之为弱电离等离子体。

若放电是在接近于大气压的高气压条件下进行,那么电子、离子、中性粒子会通过激烈碰撞而充分交换动能,从而使等离子体达到热平衡状态。若电子、离子、中性粒子的温度分别为了Te,Ti,Tn,我们把这三种粒子的温度近似相等(Te≈Ti≈Tn)的热平衡等离子体称为热等离子体(thermal plasma),在实际的热等离子体发生装置中,阴极和阳极间的电弧放电作用使得流入的工作气体发生电离,输出的等离子体呈喷射状,可用作等离子体射流(plasma jet)、等离子体喷焰(plasma torch)等。

另一方面,数百帕以下的低气压等离子体常常处于非热平衡状态。此时,电子在与离子或中性粒子的碰撞过程中几乎不损失能量,所以有Te>>Ti , Te>>Tn。我们把这样的等离子体称为低温等离子体(cold plasma)。当然,即使是在高气压下,低温等离子体还可以通过不产生热效应的短脉冲放电模式即电晕放电(corona discharge)或电弧滑动喷射式放电来生成。大气压下的辉光放电技术目前也已成为世界各国的研究热点。可产生大气压非平衡态等离子体的机理尚不清楚,在高气压下等离子体的输运特性的研究也刚刚起步,现已形成新的研究热点。

文章五

低温等离子体技术及应用

一、低温等离子体产生的方法

在真空状态下(约10~100Pa),给气体施加电场,气体在电场提供的能量下会有气态转变为等离子体状态(也称物质的“第四态)。其中含有大量的电子、离子、光子和各类自由基等活性粒子。等离子体表面改性技术就是利用这些高能粒子和活性粒子与材料表面发生物理或化学的反应,从而达到改变材料表面性质的目的。

二、等离子体技术原理:

等离子体对材料表面的作用有以下几个方

面:

粒子轰击(又称“微观喷砂”)

即通过粒子轰击作用,对表面残留物

进行清洗,并使得材料的表面微观上变得粗糙,或利用“溅射”现象实现薄膜的沉积。

等离子体清洗可以清除材料表面的油、脂、氧化物等,一般用于待粘结、印

刷、电镀以及喷漆的表面高要求清洁。

清洗过程:

等离子体化学反应

等离子体状态下,离子化的气体与材料表面发生化学反应,如活化、接枝、沉积、聚合等,从而使材料表面的成分组成发生变化,导致表面性能发生明显的变化。可以完成材料表面的亲水化处理、疏水化处理、金属化处理、阻燃处理等功能。活化过程:

3、反应刻蚀

利用等离子体的高度活性,使其与材料的成分发生化学反应,生成气态反应产物,由真空系统排除反应腔外,从而达到刻蚀材料的目的。通过面膜或其它遮挡方式可以精确控制刻蚀区的形状,以达到实际应用的目的。

刻蚀过程:

如:等离子体刻蚀技术在柔性电路板制作中的应用。

4、紫外线辐照

高分子材料中的碳-碳键,在等离子体产生的紫外辐照作用下,会发生断裂,从而在材料表面产生新的自由基或新的活性基团,这些新的自由基或新的活性基团又可以在材料表面重新组合,生成新的物质,从而从根本上改变材料的表面性质。

三、等离子体应用领域:

1)等离子体在高分子材料表面改性处理上的应用

等离子体刻蚀及注入处理。由于等离子体的刻蚀作用,使得基质表面积增大,从而增强了表面分子间的粘合力,可以对不同性质的材料进行复合。

等离子体引发聚合。通过等离子体的引发聚合造成沉降覆膜,使膜的性质与本体材料性能相近,而人为的粘结达不到这一要求。

等离子体的表面接枝处理。利用等离子体对材料进行接枝改性,可以获得许多具有特殊性能的材料。非聚合体有机物和无机物的接枝、有机物和气体的接枝以及先无机物气体后有机物气体的接枝利用普通的化学方法是难以实现,等离子体技术则比较容易做到。

2)等离子体在材料结构研究中的应用

等离子体在纤维结构研究中的应用非常广泛。利用等离子体的刻蚀作用,将基质表层剥离下来,结合电子显微镜检测表面的组成,剖析其结构,这在新材料的研制过程中有非常重要的作用。例如利用等离子体技术,可以对纤维进行鉴别,尤其是对外观难以区分而内部结构不同的纤维,利用等离子体技术可以进行准确鉴别。同时,等离子体技术在检查纤维损伤,纤维各层次的结构分析上的应用也日趋广泛。

3)等离子体在纺织行业中的应用

等离子体在纺织行业的应用甚广,尤其是近几年来,人们对纺织面料性能的要求越来越高。等离子体在合成纤维的亲水化处理,服装的无缝粘结,面料风格的改善,抗静电处理以及改善纤维的表面摩擦性等方面的应用非常广泛。在染整加工过程中,等离子体处理可以改善纤维的染色性和显色性,这一点对于超细纤维和羊绒的染色尤为重要。利用等离子体技术,还可以对纤维进行减量或增量处理,使功能纤维的表面活化或进行涂层整理。

4)低温等离子体在废液处理中的应用

低温等离子体处理废液技术是近年来引起人们极大关注的一项新技术,它对污染物兼具物理作用、化学作用和生物作用,具有处理范围广、快速、高效、无二次污染等特点,特别是用于难降解有毒废液的处理,例如对于含多氯联苯(PCB)、农药六六六、DDT、制药、印染以及生物技术、医院等行业的有毒废液,与常规处理方法相比,其效果更为突出,具备无可比拟的优越性,代表着目前国内外用

于难降解有毒废液处理的发展趋势。

三、等离子体技术的优点

等离子体技术处理材料改性与传统工艺相比较具有以下明显优点:

等离子体对材料改性的技术是一项具有多种功能的有效技术。它可以改善表面的吸湿性、疏水性、防缩防皱、抗静电及阻燃等,而且作用层只有数百埃,不损伤基体力学性能。

等离子体技术属于干法处理,因而大幅度降低水资源的消耗,而节约水资源有着重要的社会经济意义。

等离子体处理的新工艺无三废排放。因此采用了新工艺既可为企业节约排污、治污的费用,使企业负担减轻,又保护了生态环境。

等离子体处理技术效率高, 节约能耗, 可缩短工艺流程,在处理过程中,不使用酸碱化工原料,避免了高温潮湿的生产环境,减轻劳动强度,保护工人身体健康,提高全员劳动生产率。

低温等离子体治理异味气体是利用高能电子等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应,达到降解污染物异味的目的。

利用低温等离子体进行材料表面改性研究属于

多学科、多种技术的综合性研究 ,它包括等离子体物

理、等离子体化学、材料表面物理、表面化学、反应工

程学、气体放电技术和真空技术等。低温等离子体

改性材料表面 ,目前已广泛用于电子、机械、纺织、航

天、印刷、环保和生物医学等领域。低温等离子体材

料表面改性的方法大致可分为以下 4 种 ,等离子体

表面刻蚀、等离子体气相沉积、等离子体表面接枝和

等离子体粘接

低温等离子体技术在表面改性中的应用

低温等离子体技术在表面改性中的应用低温等离子体中粒子的能量一般约为几个至几十电子伏特,大于聚合物材料的结合键能(几个至十几电子伏特),完全可以破裂有机大分子的化学键而形成新键;但远低于高能放射性射线,只涉及材料表面,不影响基体的性能。处于非热力学平衡状态下的低温等离子体中,电子具有较高的能量,可以断裂材料表面分子的化学键,提高粒子的化学反应活性(大于热等离子体),而中性粒子的温度接近室温,这些优点为热敏性高分子聚合物表面改性提供了适宜的条件。 1 形成装置及影响因素 选择适宜的放电方式可获得不同性质和应用特点的等离子体,通常,热等离子体是气体在大气压下电晕放电产生,冷等离子体由低压气体辉光放电形成。 热等离子体装置是利用带电体尖端(如刀状或针状尖端和狭缝式电极)造成不均匀电场,称电晕放电,使用电压和频率、电极间距、处理温度和时间对电晕处理效果都有影响。电压升高、电源频率增大,则处理强度大,处理效果好。但电源频率过高或电极间隙太宽,会引起电极间过多的离子碰撞,造成不必要的能量损耗;而电极间距太小,会有感应损失,也有能量损耗。处理温度较高时,表面特性的变化较快。处理时间延长,极性基团会增多;但时间过长,表面则可能产生分解物,形成新的弱界面层。 冷等离子体装置是在密封容器中设置两个电极形成电场,用真空泵实现一定的真空度,随着气体愈来愈稀薄,分子间距及分子或离子

的自由运动距离也愈来愈长,受电场作用,它们发生碰撞而形成等离子体,这时会发出辉光,故称为辉光放电处理。辉光放电时的气压大小对材料处理效果有很大影响,另外与放电功率,气体成分及流动速度、材料类型等因素有关。 不同的放电方式、工作物质状态及上述影响等离子体产生的因素,相互组合可形成各种低温等离子体处理设备。 2 在表面改性中的应用 低温等离子体技术具有工艺简单、操作方便、加工速度快、处理效果好、环境污染小、节能等优点,在表面改性中广泛的应用。 2.1 表面处理 通过低温等离子体表面处理,材料表面发生多种的物理、化学变化,或产生刻蚀而粗糙,或形成致密的交联层,或引入含氧极性基团,使亲水性、粘结性、可染色性、生物相容性及电性能分别得到改善。 用几种常用的等离子体对硅橡胶进行表面处理,结果表明N2、Ar、O2、CH4-O2及Ar-CH4-O2等离子体均能改善硅橡胶的亲水性,其中CH4-O2和Ar-CH4-O2的效果更佳,且不随时间发生退化[6]。英国派克制笔公司将等离子体技术用于控制墨水流量塑料元件的改性工艺中,提高了塑料的润湿率。 文献表明,用低温等离子体在适宜的工艺条件下处理PE、PP、PVF2、LDPE等材料,材料的表面形态发生的显著变化,引入了多种含氧基团,使表面由非极性、难粘性转为有一定极性、易粘性和亲水性,有利于粘结、涂覆和印刷。

等离子体的应用

等离子体技术与应用 学号 队别 专业 姓名

摘要 等离子体作为物质存在的一种基本形态,自18世纪中期被发现以来,对它的认识和利用不断深化。我们知道,普通化学反应和化工设备中所产生的温度只有二千多度。而在各种形式的气体放电所形成的低温等离子体中电子温度可达一万度以上,足以造成各种化学键的断裂,或使气体分子激发电离,产生许多在通常条件下不能发生的化学反应,获得通常条件下不能得到的化合物或化工产品,并且获得的化合物与化工产品不会产生热分解。目前,等离子体技术已被广泛的用于国防、工业、农业、环境、通信等一系列国民经济发展领域,极大地推动了信息产业的发展,促进了工业科技进步。 关键词等离子体微波放电隐身技术材料的表面改性微波等离子灯 引言 等离子体是由带电的正粒子、负粒子(其中包括正离子、负离子、电子、自由基和各种活性基团等)组成的集合体,其中正电荷和负电荷电量相等故称等离子体。他们在宏观上呈电中性的电离态气体(也有你液态、固态)。当温度足够高时,构成分子的原子也获得足够大的的动能,开始彼此分离,这一过程称为离解。在此基础上进一步提高温度,就会出现一种全新的现象,原子的外层电子将摆脱原子核的束缚而成为自由电子,失去电子的原子变成带正电的离子,这个过程叫电离。等离子体指的就是这种电离气体,它通常由光子、电子、基态原子(或分子)、激发态原子(或分子)以及正离子和负离子六种基本粒子构成的集合体。因此,等离子体也被称为物质的第四态。 内容 一、等离子的性质 物质的第四态等离子体有着许多独特的物理、化学性质。只要表现如下: 1) 温度高、粒子动能大。 2) 作为带电粒子的集合体,具有类似金属的导电性能。等离子体从整体上看是一种导体电流体。 3) 化学性质活泼,容易发生化学反应。 4) 发光特性,可以作光源。 二、等离子技术的应用 2.1微波放电等离子体技术与应用 通常,低气压、低温等离子体是在1~100pa的气体中进行直流或射频放电产生的。直流辉光发电首先被研究和应用,但该等离子体是有极放电,而且密度低、电离度低、运行气压高,这就限制了其应用的广泛性。随后,射频放电技术逐步被发展起来,这是一种无极放电,且等离子体工作与控制参数比辉光放电有所提高,因而获得了较广泛的应用。但是其密度和电离度仍较低,应用范围依然受到限制。 微波放电初始阶段的物理过程如下。微波引入反应腔中建立起电磁场,反应气体中的电子在微波场作用下获得能量,与气体分子碰撞使其电离,从而得到更多的

科技成果——低温等离子体工业废气治理设备

科技成果——低温等离子体工业废气治理设备 技术开发单位中国船舶重工集团公司第七二三研究所 技术简介 低温等离子体废气治理技术是集光、电、化学氧化于一体的空气净化技术,是涉及高能物理、放电物理、放电化学、反应工程学、高压脉冲技术等领域的一门交叉学科。该设备使用电晕放电形式产生低温等离子体,可有效处理工业烟气和挥发性有机污染物(VOCs),如甲醛、有机氯化物等,单台处理风量可达20000m3/h,综合有效处理效率不小于80%,同时该设备针对大气量废气处理需求,研发大功率高频高压电源技术(30kW),采取高压闪络因子检测控制技术,将闪络因子控制在10次/分钟内,提高电源可靠性;自适应控制技术,同时提高能量利用效率;现已完成两套低温等离子体废气治理设备生产销售。 低温等离子体设备是一个电子放电系统,通过将超高频、超高压电流施加到一个与六边形金属管同轴的细金属线上,引起电晕放电(corona discharge),产生大量高能电子,高能电子与周围的气体分子发生碰撞,产生化学上活跃的基团,从而形成低温等离子体。 电晕放电产生大量的高能电子通过非弹性碰撞将能量转化为周围气体分子的内能或动能,这些获得能量的分子被激发或发生电离形成离子和活性基团,包括氮基粒子(-Nx+,N2+,NO-)、氧基粒子(-Ox+,O3+)以及氧化性极强的羟基自由基OH和臭氧O3等活性粒子,这些物种直接与污染物气体分子(如甲醛、萘等)碰撞,使其分子化学键

断裂,直接破坏其分子结构,发生氧化还原反应,将污染物分子分解成无害的小分子物质如H2O、CO2等。 低温等离子体技术能有效处理恶臭气体、挥发性有机物等污染物。对甲醇,甲醛和多种有机污染物、恶臭气体有良好的处理效果,除臭效果非常显著,并可处理PM1-PM10尘粒径范围的粉尘。 技术指标 1、输入 额定输入电压:三相四线制,380V±10%;额定输入频率:50Hz/60Hz±5%;最大输入功率:30kW。 2、输出 输出电压:0到-50kV连续可调;输出电流:不大于600mA;单台设备最大处理风量:20000m3/h;风压:不大于300Pa; 3、风速:不大于7m/s; 4、可靠性及维修性:MTBF2000h;MTTR0.5h; 5、工作环境 工作温度:-10℃到40℃;存放温度:-15℃到55℃; 相对湿度:25℃时≤95%;45℃时≤80%; 6、体积和重量 设备占地:50m2;重量:不大于4.5T; 7、安全及保护性要求 最大输出闪络次数:10次/分;具有智能故障逻辑判断高压重启功能;具有抽风、水冷、发生器门未锁等安全联锁高压保护功能;具

低温等离子体表面处理技术

低温等离子体表面处 理技术

Plasma and first wall Introduction Today I will talk about something about my study on the first wall in the tokamak. Firstly, I will show you that what the plasma is in our life thought the following pictures such as: Fig.1 Lighning Fig.2 Aurora Fig.3 Astrospace Just as the pictures mentioned above , they are all consist of plasma. But, what does have in the plasma, now our scientist had given a definition that the plasma state is often referred to as the fourth state of matter and contains enough free charged particles(negative ions 、positive ions)and electronics. Like the photo below. Fig.4 Plasma production Plasma production In our research, we produce the plasma through an ICP (inductively coupled plasma)

低温等离子废气处理工艺

低温等离子体是继固态、液态、气态之后的物质第四态,当达到气体的放电电压时,气体被击穿,放电过程中整个体系呈现低温状态,所以称为低温等离子体,目前这种技术主要应用于废气处理工业中,有些小伙伴对于整个处理工艺和流程比感兴趣,下面就来一起学习一下。 低温等离子体的工艺技术原理: 异味气体从气体收集系统收集后首先进入除水器中进行水气分离,然后再排入等离子体反应器单元,在该区域由于高能电子的作用,使异味分子受激发,带电粒子或分子间的化学键被打断,产生自由基等活性粒子,这些活性粒子和O2反应达到消除异味目的。同时空气中的水和氧气在高能电子轰击下也会产生OH 自由基、活性氧等强氧化性物质,这些强氧化性物质也会与异味分子反应,使其分解,从而促进异味消除。净化后的气体经排气筒高空排放。 低温等离子处理工艺主要是利用放电来产生很多的高能粒子,然后对分子进行降解、氧化、裂解以及电离。近年来,低温等离子处理工艺成为国内外重视的

一个重点问题。将低温等离子处理工艺应用到低浓度、大风量有机废气处理中,具有处理量大、低能耗等优点。但是,这种处理工艺在应用的过程中会产生很多副产物,不能够完全将有机废气降解为水和二氧化碳。 低温等离子废气处理工艺,低温等离子废气处理技术采用双介质阻挡放电形式产生等离子体,所产生等离子体的密度是其他技术产生等离子体密度的1500倍,初用于氟利昂类、哈隆类物质的分解处理,后延伸恶臭、异味、有毒有害气体处理。该技术节能、环保,应用范围广,所有化工生产环节产生的恶臭异味几乎都可以处理,并对二恶英有良好的分解效果。 低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。

低温等离子体介绍

低温等离子体介绍 基本概念 等离子体是物质存在的第四种状态。它由电离的导电气体组成,其中包括六种典型的粒子,即电子、正离子、负离子、激发态的原子或分子、基态的原子或分子以及光子。 事实上等离子体就是由上述大量正负带电粒子和中性粒子组成的,并表现出集体行为的一种准中性气体,也就是高度电离的气体。无论是部分电离还是完全电离,其中的负电荷总数等于正电荷总数,所以叫等离子体。 等离子体的分类 1、按等离子体焰温度分: (1)高温等离子体:温度相当于108~109 K完全电离的等离子体,如太阳、受控热核聚变等离子体。 (2)低温等离子体: 热等离子体:稠密高压(1大气压以上),温度103~105K,如电弧、高频和燃烧等离子体。 冷等离子体:电子温度高(103~104K)、气体温度低,如稀薄低压辉光放电等离子体、电晕放电等离子体、DBD介质阻挡放电等离子体、索梯放电等离子体等。 2、按等离子体所处的状态: (1)平衡等离子体:气体压力较高,电子温度与气体温度大致相等的等离子体。如常压下的电弧放电等离子体和高频感应等离子体。 (2)非平衡等离子体:低气压下或常压下,电子温度远远大于气体温度的等离子体。如低气压下DC辉光放电和高频感应辉光放电,大气压下DBD介质阻挡放电等产生的冷等离子体。 什么是低温(冷)等离子体? 冰升温至0℃会变成水,如继续使温度升至100℃,那么水就会沸腾成为水蒸气。随着温度的上升,物质的存在状态一般会呈现出固态→液态→气态三种物态的转化过程,我们把这三种基本形态称为物质的三态。那么对于气态物质,温度升至几千度时,将会有什么新变化呢? 由于物质分子热运动加剧,相互间的碰撞就会使气体分子产生电离,这样物质就变成由自由运动并相互作用的正离子和电子组

等离子体及其在微电子封装领域的应用

等离子体及其在微电子封装领域的应用 在微电子元件制造过程中, 封装是一个重要步骤。优良的封装技术可以提高微电子产品的寿命,可靠性和降低环境对产品性能的影响。在微电子封装工艺中,常见的问题是芯片粘接中的空隙, 引线键合中较低的键合强度, 塑料封装后的界面剥离等等。所有这些问题均与材料的表面特性有关。 未经表面处理的材料通常不具备符合粘结的物理和化学特性而需要表面活化。表面上沉积的污染物影响了表面粘结能力而需要表面清洗。等离子工艺提供了有效的表面清洗和活化方法。在保证整体材料性质不变的情况下,等离子工艺能够实现固体表面几个分子层的物理或化学改性。 等离子体介绍 等离子体是部分电离的电中性的气体,是常见的固态,液态,气态以外的第四态。等离子体由电子,离子,自由基,光子,及其它中性粒子组成。由于等离子体中电子, 离子和自由基等活泼粒子的存在, 因而很容易与固体表面发生反应。这种反应可分为物理溅射和化学反应。物理溅射是指等离子体中的正离子在电场中获得能量去撞击表面。这种碰撞能移去表面分子片段和原子,因而使污染物从表面去除。另一方面,物理溅射能够改变表面的微观形态,使表面在分子级范围内变得更加"粗糙",从而改善表面的粘结性能。 等离子体表面化学清洗是通过等离子体自由基参与的化学反应来完成。因为等离子体产生的自由基具有很强的化学活性而降低了反应的活化能,从而有利于化学反应的进行。反应中产生的易挥发产物(主要是气体) 会脱离表面, 因而表面污染物被清除。反应的有效性, 即表面改性的有效性取决于等离子体气源, 等离子系统的组合, 及等离子工艺操作参数。 等离子体表面清洗及活化工艺具有诸多优点。主要表现为: 1. 等离子工艺是有利于环境保护的工艺。等离子清洗过程中仅使用微量气体,没有污染物排放。 2. 等离子清洗工艺成本较低, 容易使用。可以处理拥有各种表面的材料, 并具有良好的均匀性和重复性。 3. 维护及保养费用较低。 4. 适合于高级封装及其它需要表面改性的工艺。 随着电子电路集成化的提高, 芯片尺寸变得越来越小, 表面清洗的要求越来越高。等离子体表面清洗工艺已经成为最好的选择之一。 等离子体应用 集成电路封装工艺包括芯片粘结, 引线键合及塑料封装。由于表面氧化物和有机污染物的存在, 导致了不完全有效的芯片粘结, 不良的引线键合强度, 以及封装后微电子装置中的剥离现象。所有形式的表面污染降低了集成电路封装中的可靠性和产率. 等离子体清洗可应用于芯片粘结工艺之前。等离子清洗和活化后的表面将改善芯片的粘结能力并减少可能产生的空隙。这种良好的粘结性能改善了封装的热消散能力。当共晶焊锡在芯片粘结中被用作粘结材料时, 表面的氧化会影响芯片粘结。等离子工艺能有效去除表面的金属氧化物, 从而确保无空隙的芯片粘结。 金属焊盘上污染物的存在会降低引线的键合能力。在高级封装工业中, 日益缩小的焊盘限制了键合表面尺寸, 从而增加对无污染表面的要求。在引线键合之前, 等离子体被用于去除焊盘上的污染物和氧化物, 增加键合可靠性和能力。研究发现, 经等离子体清洗后的表面, 引线键合力平均增加24.3%。 在BGA封装中, 由于封装化合物和各种材料界面之间存在不良的粘结能力, 易于产生界面剥离。通过增加BGA产品的表面能, 等离子体工艺能极大地改善材料界面的粘结能力,

低温等离子体废气处理

有机、无机废气和恶臭处理技术 市场拓展人员培训教程 (宋文国,男,1968年出生,高级工程师,从事于节能环保项目多年。邮箱:,手机:) 一、行业废气概况 煤化工废气 煤制焦过程废气 焦化废气主要来源于装煤、炼焦、化产回收等过程。装煤初期,煤料在高温条件下与空气接触,形成大量黑烟及烟尘、荒煤气及对人体健康有害的多环芳烃。炼焦时,废气一方面来自化学转化过程中未完全炭化的细煤粉及其析出的挥发组分、焦油、飞灰和泄漏的粗煤气,另一方面来自出焦时灼热的焦炭与空气接触生成的CO、CO2、NOx等,主要污染物包括苯系物(如苯并芘)、酚、氰、硫氧化物以及碳氢化合物等。 煤制气过程废气 煤制气废气的来源主要是气化炉开车过程中由于炉内结渣、火层倾斜等非正常停车而产生的逸散,另外,还有炉内的排空气形成部分废气、固定床气化炉的卸压废气、粗煤气净化工序中的部分尾气、硫和酚类物质回收装置的尾气及酸性气体、氨回收吸

收塔的排放气。这些废气的主要成分包括碳氧化物、硫氧化物、氨气、苯并芘、CO、CH4等,有些还夹杂了煤中的砷、镉、汞、铅等有害物质,对环境及人体健康有较大的危害。 煤制油过程废气 煤的液化可分为直接液化和间接液化。煤直接液化时,经过加氢反应,所有异质原子基本被脱除,也无颗粒物,回收的硫可以获得元素硫,氮大多转化为氨。煤间接液化时,催化合成过程中的排放物不多,未反应的尾气(主要是CO)可以在燃烧器中燃烧,排放的废气中CO2和硫很少,也没有颗粒物的生成。煤液化过程对环境造成的影响较小,主要的污染物是液化残渣,这是一种高碳、高灰和高硫物质,在某些工艺中占到液化原料煤总量的40%左右,需进一步处理。 煤燃烧过程废气 煤燃烧过程主要污染物有粉尘与烟雾、SO2为主的硫化物、N2O、NO、NO2、N2O3、 N2O4等氮氧化物、Hg、Cd、Pb、Cr、As、Se、F等有害微量元素、产生温室效应的CO2等。煤直接燃烧的能量利用率低,环境污染严重。 石油化工厂废气 化工厂在生产过程中会产生大量的废气,比如:氨、三甲胺、硫化氢、二氧化硫、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和硫化氢等无机废气;还有VOC类:苯、甲苯、二甲苯、丙

低温等离子体技术介绍

技术介绍 --低温等离子体 低温等离子体是继固态、液态、气态之后的物质的第四态,当外加电压达到气体的着火电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到分解污染物的目的。 “QHDD-Ⅱ”低温等离子体工业废气处理成套设备和技术作为一种新型的气态污染物的治理技术是一个集物理学、化学、生物学和环境科学于一体的交叉综合性电子化学技术,由于能很容易使污染物分子高效分解且处理能耗低等特点,是目前国内外大气污染治理中最富有前景、最行之有效的技术方法之一,其使用和推广前景广阔,为工业领域VOC类有机废气及恶臭气体的治理开辟了一条新的思路。 低温等离子体废气处理技术与其他废气治理方法优缺点对比 表1-2 几种废气处理工艺的适用范围及优缺点 工艺名称原理适用范围优点缺点 掩蔽法采用更强烈的芳香气味与臭气掺和,以掩蔽臭气,使之能被人接收适用于需立即、暂时地消除低浓度恶臭气体影响地场合,恶臭强度左右,无组织排放源可尽快消除恶臭影响,灵活性大,费用低恶臭成分并没有被去除,麻痹了对原有污染物的感知 热力燃烧法在高温下恶臭物质与燃料气充分混和,实现完全燃烧适用于处理高浓度、小气量的可燃性气体净化效率高,恶臭物质被彻底氧化分解设备易腐蚀,消耗燃料,处理成本高,易形成二次污染,催化剂中毒 催化燃烧法

水吸收法利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的水溶性、有组织排放源的恶臭气体工艺简单,管理方便,设备运转费用低产生二次污染,需对洗涤液进行处理;净化效率低,应与其他技术联合使用,对水溶性差的物质等处理效果差 药液吸收法利用臭气中某些物质和药液产生化学反应的特性,去除某些臭气成分适用于处理大气量、高中浓度的臭气能够有针对性处理某些臭气成分,工艺较成熟净化效率不高,消耗吸收剂,易形成而二次污染 吸附法利用吸附剂的吸附功能使恶臭物质由气相转移至固相适用于处理低浓度,高净化要求的恶臭气体净化效率很高,可以处理多组分恶臭气体吸附剂费用昂贵,再生较困难,要求待处理的恶臭气体有较低的温度和含尘量 生物滤池恶臭气体经过除尘增湿或降温等预处理工艺后,从滤床底部由下向上穿过由滤料组成的滤床,恶臭气体由气相转移至水—微生物混和相,通过固着于滤料上的微生物代谢作用而被分解掉目前研究最多,工艺最成熟,在实际中也最常用的生物脱臭方法,又可细分为土壤脱臭法、堆肥脱臭法、泥炭脱臭法等。净化效率高,处理费用低占地面积大,易堵塞,填料需定期更换,脱臭过程很难控制,受温度和湿度的影响大,生物菌培训需要较长时间,遭到破坏后恢复时间较长。 生物滴滤池原理同生物滤池式类似,不过使用的滤料是诸如聚丙烯小球、陶瓷、木炭、塑料等不能提供营养物的惰性材料。只有针对某些恶臭物质而降解的微生物附着在填料上,而不会出现生物滤池中混和微生物群同时消耗滤料有机质的情况池内微生物数量大,能承受比生物滤池大的污染负荷,惰性滤料可以不用更换,造成压力损失小,而且操作条件极易控制占地面积大,需不断投加营养物质,而且操作复杂,受温度和湿度的影响大,生物菌培训需要较长时间,遭到破坏后恢复时间较长。 洗涤式活性污泥脱臭法将恶臭物质和含悬浮物泥浆的混和液充分接触,使之在吸收器中从臭气中去除掉,洗涤液再送到反应器中,通过悬浮生长的微生物代谢活动降解溶解的恶臭物质有较大的适用范围可以处理大气量的臭气,同时操作条件易于控制,占地面积小设备费用大,操作复杂而且需要投加营养物质 曝气式活性污泥脱臭法将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质适用范围广,目前日本已用于粪便处理场、污水处理厂的臭气处理活性污泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达%以上。受到曝气强度的限制,该法的应用还有一定局限

低温等离子体的产生方法

辉光放电电晕放电介质阻挡放电射频放电滑动电弧放电射流放电大气压辉光放电次大气压辉光放电 辉光放电(Glow Discharge) 辉光放电属于低气压放电(low pressure discharge),工作压力一般都低于 10mbar,其构造是在封闭的容器內放置两个平行的电极板,利用电子将中性原子和分子激发,当粒子由激发态(excited state)降回至基态(ground state)时会以光的形式释放出能量。电源可以为直流电源也可以是交流电源。每种气体都有其典型的辉光放电颜色(如下表所示),荧光灯的发光即为辉光放电。因此,实验时若发现等离子的颜色有误,通常代表气体的纯度有问题,一般为漏气所至。辉光放电是化学等离子体实验的重要工具,但因其受低气压的限制,工业应用难于连续化生产且应用成本高昂,而无法广泛应用于工业制造中。目前的应用范围仅局限于实验室、灯光照明产品和半导体工业等。 部分气体辉光放电的颜色 Gas He Ne(neon) Ar Kr Xe H2N2O2 Air Cathode Layer red yellow pink --

red-brown pink red pink Negative Glow pink orange dark-blue green orange-green thin-blue blue yellow-white blue Positive Column Red-pink red-brown dark-red blue-purple white-green pink red-yellow red-yellow red-yellow 次大气压下辉光放电(HAPGD)产生低温等离子体 由于大气压辉光放电技术目前虽有报道但技术还不成熟,没有见到可用于工业生产的设备。而次大气压辉光放电技术则已经成熟并被应用于工业化的生产中。次大气压辉光放电可以处理各种材料,成本低、处理的时间短、加入各种气体的气氛含量高、功率密度大、处理效率高。可应用于表面聚合、表面接枝、金属渗氮、冶金、表面催化、化学合成及各种粉、粒、片材料的表面改性和纺织品的表面处理。次大气压下辉光放电的视觉特征呈现均匀的雾状放电;放电时电极两端的电压低而功率密度大;处理纺织品和碳纤维等材料时不会出

等离子体及其技术的应用

等离子体及其技术的应用 摘要: 随着等离子体技术的迅速发展,逐渐形成了一个新兴的等离子体化工体系。我们知道,普通化学反应和化工设备中所产生的温度只有二千多度。而在各种形式的气体放电所形成的低温等离子体中电子温度可达一万度以上,足以造成各种化学键的断裂,或使气体分子激发电离,产生许多在通常条件下不能发生的化学反应,获得通常条件下不能得到的化合物或化工产品,并且获得的化合物与化工产品不会产生热分解。这势必会造就很多性能优良的新物质,其也将会有广泛的应用前景。 关键词:等离子体;喷涂;焊接;尾气处理;隐身技术

Plasma and its technical application ABSTRACT With the rapid development of plasma technology, and gradually formed a new plasma chemical system.We know, the common chemical reaction and chemical engineering equipments only produce two thousand degrees temperature.The temperatures that in low temperature plasma electronic produced by all forms of gas discharge up to ten thousand degrees or above,more enough to fracture all sorts of the chemical bonds, or make the gas molecule ionization, produce many chemical reactions that can't happened in usual conditions , get compound or chemical products that can't achieved in usual conditions , and the products won't occur thermal decomposition.It will produce a lot of new substances that performance excellent ,and have a broad application prospect. keywords:plasma;flame plating;soldering;tail gas treatment;invisible technology

低温等离子体消毒

低温等离子体消毒 1.消毒灭菌的定义 2.低温等离子体灭菌技术 3.低温等离子体的消毒机理 4.低温等离子灭菌的优缺点 5.低温等离子体杀菌消毒技术的应用 消毒灭菌的定义 消毒:消毒是指用化学的或物理的方法杀灭或消除传播媒介上的病原微生物,使之达到无传播感染水平的处理即不再有传播感染的危险。灭菌:灭菌是指杀灭或去除外界环境中一切微生物的过程。包括致病性微生物和不致病的微生物,如细菌(含芽胞)、病毒、真菌(含孢子)等,一般认为不包括原虫和寄生虫卵,以及藻类。灭菌是获得纯培养的必要条件,也是食品工业和医药领域中必需的技术。 灭菌是个绝对的概念,意为完全杀灭所处理微生物,经过灭菌处理的物品可以直接进入人体无菌组织而不会引起感染,因此,灭菌是最彻底的消毒。然而事实上要达到这样的程度是困难的,因此国际上通用方法规定,灭菌过程必须使物品污染的微生物的存活概率减少到E-6 (灭菌保证水平),换句话说,要将目标微生物杀灭率达到99.9999%。在当前面对如此严苛的灭菌要求,理想的灭菌器应该具有如下的特点和性能: ( 1 )灭菌速度应尽量快,时间要短; ( 2 )灭菌温度应该低于 5 5℃左右,对器械、物品损伤尽量小;

( 3 )灭菌时对整个环境无影响,灭菌残留物是无害的; ( 4 )能够满足多种物品的灭菌要求; ( 5 )使用耗材价格不能过高。 现如今所使用的灭菌方法多为热力灭菌、辐射灭菌、环氧乙烷灭菌、低温甲醛蒸汽灭菌以及使用各种灭菌剂如戊二醛、二氧化氯、过氧乙酸和过氧化氢等长时间浸泡的方法。 这些灭菌方法存在着许多限制条件,如会对环境造成危害、灭菌时间过长、灭菌温度过高致使器械损伤较大、食品营养流失等 随着对消毒、灭菌的处理要求越来越高。传统灭菌方法的局限性正在促使新的灭菌技术的产生和发展。 低温等离子体灭菌技术 等离子体灭菌技术是新一代的高科技灭菌技术,它能克服现有灭菌方法的一些局限性和不足之处,提高消毒灭菌效果。 例如对于不适宜用高温蒸汽法和红外法消毒处理的塑胶、光纤、人工晶体及光学玻璃材料、不适合用微波法处理的金属物品,以及不易达到消毒效果的缝隙角落等地方,采用本技术,能在低温下很好地达到消菌灭菌处理而不会对被处理物品造成损坏。本技术采用的等离子体工作物质无毒无害。本技术还可应用到生产流水线上对产品进行消毒灭菌处理。 在环境问题越来越受到人们关注的今天,常压低温等离子体消毒作为一种清洁的消毒方法将会有一个广阔的应用前景。等离子体灭菌是医疗卫生、制药、生物工程食品行业灭菌技术的未来发展方向。

低温等离子体在有机净化废气中的应用与进展介绍

低温等离子体技术在有机净化废气 中的应用与进展 姓名:xxx 专业:环境工程 班级:xxx 指导老师:xxx 2015年12月xx日

低温等离子体技术在净化有机废气中的应用与进展 摘要 随着现代工业的快速发展,工业三废的排放量与日俱增,尤其是挥发性有机废气(VOCs)的排放,挥发性有机废气种类繁多、毒性强、扩散面广,是继颗粒物、二氧化硫、氮氧化合物之后又一类不容忽视的大气污染物。传统的有机废气处理方法存在流程复杂、运行成本高、处理效率低下、易产生二次污染等问题。低温等离子体技术利用自由基、高能电子等活性粒子与有机废气分子发生一系列理化反应,使有害气体在短时间内迅速催化降解为CO2和H2O以及其他小分子化合物。低温等离子体技术工艺流程简单、开停方便、运行费用低、去除效率高,在治理上具有明显优势,是国内外目前的研究热点之一。本文综述了低温等离子体在催化剂处理挥发性有机废气方面的技术研究进展,并展望了等离子体技术在废气处理领域的发展方向。 关键词:低温等离子体;有机挥发性废气(VOCs);催化降解

1 引言 工农业生产过程不可避免地要排放挥发性有机废气(VOCs),这是污染环境、危害人类健康的重要来源[1-2]。挥发性有机废气排放到大气中会引起光化学烟雾、臭氧层破坏等环境问题;大部分的VOCs 还具有毒性、刺激性、甚至致癌作用,对人体健康造成严重的危害[3]。为了应对(VOCs)对环境的破坏以及对人体健康的威胁,挥发性有机废气处理技术迅速成为国内外的研究热点之一。 2 常用有机废气处理技术 目前国内外有多种技术用于处理挥发性有机废气,其中较为常见的方法有:燃烧法、冷凝法、吸收法、吸附法、生物法、低温等离子体法等。 2.1 燃烧法 通过燃烧将VOCs转化为无害物质的过程称为燃烧法[4]。燃烧法的原理是燃烧氧化作用及在高温下的热分解。因此,燃烧法只适用于处理可燃的或在高温下易分解的VOCs。 2.2 冷凝法 冷凝法处理VOCs是利用废气中的各组分饱和蒸汽压不同这一特点,采用降温、升压等方法,将气态的VOCs液化分离[5],但冷凝法不适用于低浓度废气的处理。 2.3 吸收法 吸收法的原理是吸收质(VOCs)与吸收剂(水、酸溶液、碱溶液等)发生化学反应从而达到吸收去除效果。当VOCs成分复杂需多段净化时,该方法便不再适用,并且该法设备易腐蚀,易形成二次污染[6]。 2.4 吸附法 吸附法是用多孔性固体活性炭、分子筛、交换树脂、硅胶、飞灰等吸附去除废气。吸附法对大部分VOCs均适用,一般作为其他方法的后续处理[7]。但是吸附法也有它的缺点投资高、吸附剂用量大、再生困难、能耗大、占地面积大等缺点。

2.2和2.3气体放电等离子体及其应用

电容耦合射频放电 为了维持直流辉光放电,电极必须是可导电的。如果其中一端或两端电极都不可导电,如当辉光放电用于绝缘材料的光谱化学分析或介质薄膜的沉积,此时电极表面附着绝缘材料,电极因正负电荷的积累而充电,辉光放电熄灭。为了解 决这个问题,可以在电极间加交流电压,这样,每个电极都可以充当阳极和阴极,在电压正半周期时积累的部分电荷将会在电压负半周期时被抵消。 通常,电压频率为射频范围(1kHz-310kHz ,常见频率为13.56MHz )。严格的说,在其他电压频率时,也会产生电容耦合放电,所以称其为交流放电更合适。另外,频率应该很高,这样半个周期才会比绝缘体充满电的时间短。否则,电极将会相继呈相反极性,引起短暂放电,而不是持续放电。由计算可得,当所加电压频率大于100kHz 时,放电能持续。实际上,很多射频辉光放电过程产生于13.56MHz 。因为该频率是国际通信局规定的,其在传播一定能量的时候不会对通信产生干扰。 此时需要强调,所谓电容耦合,指的是将输入功率耦合为放电一种方式,也就是说,利用两个电极及其鞘层形成一个电容。后面会讲到,射频功率也可以利用其它方法耦合放电。 在典型射频频率下,电子和离子的行为完全不同,这可通过它们不同的质量解释。电子质量小,可以跟得上射频电压产生的时变电场的变化。实际上,电子的固有频率,或所谓的电子等离子体频率为:;02εe e pe m e n w = e pe n f 9000=(Hz ) (1) e n 用3-cm 表示。当电子密度从1010变化到 31310-cm 时,等离子体频率由9×810变化至3× 1010Hz ,比13.56MHz 大很多。如果电压频率小于 离子等离子体频率,离子可以跟得上鞘层内的电 场的变化。由于离子等离子体频率与质量呈反 比,电子可以跟的上典型射频时电场的变化,而 离子只能跟得上随时间均匀变化的电场。 电容耦合射频放电的另一个重要的方面是, 自给偏压现象,也是由电子和离子质量的不同引 起的。当两电极大小不同时,或当射频电源与电 极之间形成耦合电容时,或电极是绝缘的(因为可以把它当作电容),自给偏压也称直流偏压便会形成。当在由电极形成的电容上施加一方波(见图3)时,等离子体电压值将达到所加电压的值。当所加电压刚开始为正时,如图3,电子将加速向电极运动。因此,电容将通过电子电流迅速充电,等离子体电压下降。半个周期后,所加电压极性改变时,等离子体电压改变相同的数值(即施加电压幅值的2倍)。电容此时通过离子电流已充电完成,等离子体电压将下降,但比先前下降的少,因为离子的迁移率较低,导致离子流通量较小。又经过半个周期时,电压极性改变,同样等离子体电压极性也改变。此时,等离子体电压下降更快,因为电容因电子流又充满了电。此过程周而复始,直到电容最终充满足够的阴极电荷,此时电子和离子在一个射频周期内流量相同。最终在射频功率电极间形成一个随时间均匀变化的负直流偏压(图3中的虚线表示)。需要说明的是,该现象也会发生在地极中,但影响很小。图4为一典型的正弦电压,其频率为13.56MHz ,以及其所对应的直流偏压。

低温等离子体对材料的表面改性

低温等离子体对材料的表面改性 张 波 冷等离子体对材料的表面改性,通过放电等离子体来优化材料的表面结构,是一种非常先进的材料表面改性方法。冷等离子体的特殊性能可以对金属、半导体、高分子等材料进行表面改性,该技术已广泛应用于电子、机械、纺织等工程领域。 等离子体是 物质的第四态 ,它是由许多可流动的带电粒子组成的体系。等离子体的状态主要取决于它的化学成分、粒子密度和粒子温度等物理化学参量,其中粒子的密度和温度是等离子体的两个最基本参量。实验室中采用气体放电方式产生的等离子体主要由电子、离子、中性粒子或粒子团组成。描述等离子体的密度参数和温度参数主要有:电子温度T e、电子密度n e、离子温度T i、离子密度n i、中性粒子温度T g、中性粒子密度n g。在一般情况下,等离子体呈现宏观电中性,当等离子体处在平衡状态时,n e n i=n g。可以用物理参量电离度 =n e/ (n e+n g)来描述等离子体的电离程度,低气压放电产生的等离子体是弱电离的等离子体( 1), =1时,为完全电离等离子体。 等离子体按照其组成粒子的能量大小及热力学性质,可分为高温等离子体和低温等离子体。高温等离子体中带电粒子的温度可达到绝对温度几千万度到上亿度,如太阳上的核聚变及地球上的热核聚变反应等。低温等离子体又分为热等离子体(热力学平衡)和冷等离子体(非热力学平衡),其中热等离子体中粒子的能量特别高,通常用于需要高温作业的领域,如磁流体发电,等离子体焊接、切割,等离子体冶炼,等离子体喷涂,等离子体制备超细粉等。实验室中采用低气压放电产生的等离子体,电子温度T e约为1~10eV(1eV=11600K),而离子温度T i只有数百开尔文,基本上等于中性粒子的温度,所以这种等离子体称为冷等离子体。正因为冷等离子体的宏观温度与室温相差无几,所以有着重要应用价值,如用于材料的表面改性以及光源等。 对于冷等离子体对高分子材料表面改性的作用机理,一般认为冷等离子体中含有大量电子、离子,激发态的分子和原子、自由基及紫外光等活性粒子,这些粒子的能量大多在0~20eV之间,而高分子材料大多是由C、H、O、N四种元素组成,这些分子之间的键能也多在l~10eV之间,如C-H(4 3eV)、C-N(2 9eV)、C-C(3 4eV)、C=C(6 leV)等,恰恰在等离子体的能量作用范围之内,因而等离子体对高分子材料表面改性十分有效,可改变其表面的化学组分和化学结构。冷等离子体对高分子材料的表面改性可分为三类:第一种是非聚合性气体的等离子体表面处理,这是通过非聚合性气体(如O2、N2、NH3等)在等离子体的气氛下使材料表面化学组分和结构发生变化;第二种是聚合性气体的等离子体聚合,这是用有机物、有机硅化合物或金属有机化合物等在材料表面生成聚合物薄膜;第三种是等离子体接枝,即在被等离子体激活的材料表面引进化学基团。总之,由于冷等离子体中含有大量电子、离子,激发态的原子、分子和自由基等活性粒子,这些活性粒子和材料相互作用使材料表面发生氧化、还原、裂解、交联和聚合等各种物理和化学反应,从而优化材料表面性能,增加材料表面的吸湿性(或疏水性)、可染性、粘接性、抗静电性及生物相容性等。 冷等离子体发生装置与 真空紫外光对材料改性的影响 冷等离子体装置,在密封容器中设置特定的电极形成电场,用真空泵实现一定的真空度,随着气体愈来愈稀薄,分子间距及分子或离子的自由运动距离也愈来愈长,它们在电场作用下发生碰撞而形成等离子体;因这时会发出辉光,故称为辉光放电。辉光放电时的气压大小对材料处理效果有很大影响,其他影响因素还有放电功率、气体成分、材料类型等。电源作为等离子体发生装置的主要部件,功率范围一般在50~500W之间,根据电源频率的不同可分为直流、低频(50Hz~50kHz)、射频(指定频率13 56MH z)、微波(常用2450MHz)。图1~图3分别是各种辉光放电装置示意图。 冷等离子体对材料表面改性的原理研究,过去一般停留在等离子体(电子、离子等)对材料表面的作用,这里介绍表面改性机制的新进展 真空紫外光(VUV)对材料的表面改性。一般认为,材料表面改性的机制,主要是自由基化学反应,但自由基扩

等离子体及其技术应用

等离子体及其技术应用 生化系化学教育姓名:蒋敏学号:20101420 摘要:通过介绍等离子体的概念、分类、特性、原理及其在化学工业、材料工业、电子工业、能源方面和机械工业、国防工业、生物医学及环境保护方面的技术应用。 关键词:等离子体、概念、特性、原理、应用 前言:等离子体是宇宙中物质存在的一种状态。物质除固、液、气三态外,还有第四种状态即等离子态。所谓等离子体就是气体在外力作用下发生电离,产生电荷相反、数量相等的电子和正离子以及游离基(电子、离子和游离基之间又可复合成原子和分子),由于在宏观上呈中性,故称之为等离子体。处于等离于态的各种物质微粒具有较强的化学活性,在一定的条件下可获得较完全的化学反应,物质的各态之间是可以相互转化的。 1. 等离子体 等离子体是由电子、离子等带电粒子以及中性粒子(原子、分子、微料等)组成的, 宏观上呈现准中性, 且具有集体效应的混合气体。所谓准中性是指在等离子体中的正负离子数目基本相等, 系统在宏观上呈现中性, 但在小尺度上则呈现出电磁性, 而集体效应则突出地反映了等离子体与中性气体的区别。 1.1等离子体的含义 由电子、离子和中性粒子三种成分组成。其中电子和离子的电荷总数基本相等,因而作为整体是电中性的。等离子体是由大量带电粒子组成的有宏观空间尺度和时间尺度的体系。 1.2等离子体的产生 对液体加热使之温度升高,可以使它转化为气体。在通常的气体中,物质的最小单元是分子。如果对气体再加热使气体温度升高时,分子会分解成单个原子,这种以原子为基本单元而组成的气体叫做原子气体。使原子气体的温度再升高,原子运动的速度增大。通过相互碰撞使之电离出自由电子和阳离子,当许多原子被电离之后,会形成一个电离过程、电离成的离子与电子复合成中性微粒过程之间的动态平衡,因此

低温等离子原理

根据中华人民共和国环境保护部《挥发性有机物(VOCs)污染防治技术政策》,目前,VOCs 的末端控制技术可以分为两大类:即回收技术和销毁技术,回收技术是通过物理的方法,改变温度、压力或采用选择性吸附剂和选择性渗透膜等方法来富集分离有机污染物的方法,主要包括吸附技术、吸收技术等。回收的挥发性有机物可以直接或经过简单纯化后返回工艺过程再利用。销毁技术是通过化学或生化反应,用热、光、催化剂或微生物等将有机化合物转变成为二氧化碳和水等无毒害无机小分子化合物的方法,主要包括高温焚烧、催化燃烧、生物氧化、低温等离子体破坏和光催化氧化技术等。本项目采用低温等离子体技术处理有机废气VOCs 。 低温等离子放电过程中,电子从电场中获得能量,通过碰撞将能量转化为污染物分子的内能或动能,这些获得能量的分子被激发或发生电离形成活性基团,同时空气中的氧气和水分在高能电子的作用下也可产生大量的新生态氢、活性氧和羟基氧等活性基团,这些活性基团相互碰撞后便引发了一系列复杂的物理、化学反应。从等离子体的活性基团组成可以看出,等离子体内部富含极高化学活性的粒子,如电子、离子、自由基和激发态分子等。废气中的污染物质与这些具有较高能量的活性基团发生反应,最终转化为CO2和H2O等物质,从而达到净化废气的目的。 等离子体化学反应过程大致如下: (1). 电场+电子高能电子 (3). 活性基团+氧气生成物+热 (4).活性基团+活性基团生成物+热 从以上反应过程可以看出,电子先从电场获得能量,通过激发或电离将能量转移到污染物分子中去,那些获得能量的污染物分子被激发,同时有部分分子被

电离,从而成为活性基团。然后这些活性基团与氧气、活性基团与活性基团之间 相互碰撞后生成稳定产物和热。 技术优点: ◇可根据废气的成份、浓度、流量等指标,编制相应的废气治理方案,做到高效、安全、可靠运行。 ◇密集型高压电晕放电产生的低温等离子体中,废气分子始终处于电离状态,很快被电离、氧化分解,具有很强的广谱性。 ◇低温等离子体发射源采用高压、高频、直流电源,运行过程安全可靠,运行费用低廉,只消耗少量电能。 ◇净化设备结构分内胆、壳体式,便于维护保养。并可串并联组合;当处理大流量废气时,可并联分流。当处理难降解废气分子时,可叠加串联。 ◇可根据废气中的腐蚀程度选择内胆材质,内胆以不锈钢304、316L,钛 合金等为主,发射丝为特殊合金具备很好的防腐性与导电性。 另外,高能电子也能被卤素和氧气等电子亲和力较强的物质俘获,成为负离子。这类负离子具有很好的化学活性,在化学反应中起着重要的作用。

相关文档
最新文档