K-均值聚类法实例解析

K-均值聚类法实例解析
K-均值聚类法实例解析

例:

为了更深入了解我国环境的污染程度状况,现利用2009 年数据对全国31个省、自治区、直辖市进行聚类分析。

解:现在要分析我国各个地区的环境污染程度,案例中选择了各地区“工业废气排放总量”、“工业废水排放总量”和“二氧化硫排放总量”三个指标来反映不同污染程度的环境状况,同时选择了北京等省市的数据加以研究。这个问题属于典型的多元分析问题,需要利用多个指标来分析各省市之间环境污染程度的差异。因此,可以考虑利用快速聚类分析来研究各省市之间的差异性,具体操作步骤如下。

1)打随书光盘中的数据文件9-2.sav,选择菜单栏中的【A nalyze(分析)】→【Classify(分

类)】→【K-Means Cluster(K均值聚类)】命令,弹出【K-Means Cluster Analysis(K均值聚类分析)】对话框。

2)在左侧的候选变量列表框中将X1、X2和X3变量设定为聚类分析变量,将其添加至

【Variables(变量)】列表框中;同时选择Y作为标识变量,将其移入【Label Cases by (个案标记依据)】列表框中。

3)在【Number of Clusters(聚类数)】文本框中输入数值“3”,表示将样品利用聚类分析

分为三类,如下图所示。

4)单击【Save(保存)】按钮,弹出【K-Means Cluster Analysis:Save(K均值聚类分析:

保存)】对话框;勾选【Cluster membership(聚类新成员)】和【Distanc e from cluster center (与聚类中心的距离)】复选框,表示输出样品的聚类类别及距离,其他选项保持系统默认设置,如下图所示,单击【Continue(继续)】按钮返回主对话框。

5)单击【Options(选项)】按钮,弹出【K-Means Cluste r Analysis:Options(K均值聚类分

析:选项】对话框;勾选【Statistics(统计量)】选项组中的复选框,其他选项保持系统默认设置,如下图所示,单击【C ontinue(继续)】按钮返回主对话框,单击【OK (确定)】按钮完成操作。

实例结果及分析

(1)快速聚类分析的初始中心

SPSS软件首先给出了进行快速聚类分析的初始中心数据。由于这里是要求将样品分为三类,因此软件给出了三个中心位置。但是,这些中心位置可能在后续的迭代计算中出现调整。

(2)迭代历史表

下表显示了快速聚类分析的迭代过程。可以看到,第一次迭代的变化值最大,其后随之减少。最后第三次迭代时,聚类中心就不再变化了。这说明,本次快速聚类的迭代过程速度很快。

(3)聚类分析结果列表

通过快速聚类分析的最终结果列表可以看到整个样品被分为以下三大类。

第一类:北京、天津、山西、内蒙古等20个地区。这些地区工业废水、废气及二氧化硫的排放总量相对最低。

第二类:河北、福建、河南、湖北、湖南、广西和四川。它们的污染程度在所有省份中位居中等水平。

第三类:江苏、浙江、山东和广东。这些地区的工业废水、废气及二氧化硫排放总量是最高的,因此环境污染也最为严重。

表中最后一列显示了样品和所属类别中心的聚类,此表中的最后两列分别作为新变量保存于当前的工作文件中。

(4)最终聚类分析中心表

如下表所示列出了最终聚类分析中心。可以看到,最后的中心位置较初始中心位置发生了较大的变化。

(5)最终聚类中心位置之间的距离

如下表所示为快速聚类分析最终确定的各类中心位置的距离表。从结果来看,第一类和第三类之间的距离最大,而第二类和第三类之间的距离最短,这些结果和实际情况是相符合的。

(6)方差分析表

如下表所示为方差分析表,显示了各个指标在不同类的均值比较情况。各数据项的含义

依次是:组间均方、组间自由度、组内均方、组内自由度。可以看到,各个指标在不同类之间的差异是非常明显的,这进一步验证了聚类分析结果的有效性。

(7)聚类数目汇总

如下表所示是聚类数据汇总表,显示了聚类分析最终结果中各个类别的数目。其中第一类的数目最多,等于2 0;而第三类的数目最少,只有4个。

实验三 K-均值聚类算法实验报告

实验三 K-Means聚类算法 一、实验目的 1) 加深对非监督学习的理解和认识 2) 掌握动态聚类方法K-Means 算法的设计方法 二、实验环境 1) 具有相关编程软件的PC机 三、实验原理 1) 非监督学习的理论基础 2) 动态聚类分析的思想和理论依据 3) 聚类算法的评价指标 四、算法思想 K-均值算法的主要思想是先在需要分类的数据中寻找K组数据作为初始聚类中心,然后计算其他数据距离这三个聚类中心的距离,将数据归入与其距离最近的聚类中心,之后再对这K个聚类的数据计算均值,作为新的聚类中心,继续以上步骤,直到新的聚类中心与上一次的聚类中心值相等时结束算法。 实验代码 function km(k,A)%函数名里不要出现“-” warning off [n,p]=size(A);%输入数据有n个样本,p个属性 cid=ones(k,p+1);%聚类中心组成k行p列的矩阵,k表示第几类,p是属性 %A(:,p+1)=100; A(:,p+1)=0; for i=1:k %cid(i,:)=A(i,:); %直接取前三个元祖作为聚类中心 m=i*floor(n/k)-floor(rand(1,1)*(n/k)) cid(i,:)=A(m,:); cid; end Asum=0; Csum2=NaN; flags=1; times=1; while flags flags=0; times=times+1; %计算每个向量到聚类中心的欧氏距离 for i=1:n

for j=1:k dist(i,j)=sqrt(sum((A(i,:)-cid(j,:)).^2));%欧氏距离 end %A(i,p+1)=min(dist(i,:));%与中心的最小距离 [x,y]=find(dist(i,:)==min(dist(i,:))); [c,d]=size(find(y==A(i,p+1))); if c==0 %说明聚类中心变了 flags=flags+1; A(i,p+1)=y(1,1); else continue; end end i flags for j=1:k Asum=0; [r,c]=find(A(:,p+1)==j); cid(j,:)=mean(A(r,:),1); for m=1:length(r) Asum=Asum+sqrt(sum((A(r(m),:)-cid(j,:)).^2)); end Csum(1,j)=Asum; end sum(Csum(1,:)) %if sum(Csum(1,:))>Csum2 % break; %end Csum2=sum(Csum(1,:)); Csum; cid; %得到新的聚类中心 end times display('A矩阵,最后一列是所属类别'); A for j=1:k [a,b]=size(find(A(:,p+1)==j)); numK(j)=a; end numK times xlswrite('data.xls',A);

SPSS因子、聚类案例分析报告.pdf

喀什大学实验报告 《多元统计分析SPSS》 实验报告 实验课程:基于SPSS的数据分析 实验地点:现代商贸实训中心实验室名称:经济统计实验室 学院: xxx学院年级专业班: xxx班 学生姓名: xxx 学号: XXXX1808015 完成时间: XXXX年x月x日 开课时间: XXXX 至 2017 学年第 1 学期

实验项目:中国上市银行竞争力分析 (一)实验目的 本实验目的围绕上市商业银行竞争力这一主线,遵循一般理论、具体分析到对策建议的研究思路,以我国国内上市的十家商业银行为研究对象,采用其XXXX 年度财务报告的数据,从盈利能力、安全能力和发展能力三方面共选取了8个重要指标,试图通过这些指标量化影响竞争力的因素,构建我国上市商业银行的竞争力评价指标体系,并运用因子分析方法,对我国上市商业银行的竞争力状况进行了分析评价。最后针对分析的结果,通过对我国上市银行竞争力进行优劣势比较,提出了提升我国上市商业银行竞争力的一些建议。 (二)实验资料 通过对资产利润率、不良贷款率、资产负债率、资本充足率、每股收益增长率、贷款增长率、存款增长率、总资产增长率等指标的选择分析不同指标在进行因子分析时所考虑的因素是否存在差异,影响我国上市商业银行的竞争力状况的因素与上述指标是否有关。 具体数据如下所示: 十家同类型上市商业银行XXXX年指标 (三)实验步骤 1、选择菜单

2、选择参与因子分析的变量到(变量V)框中 3、选择因子分析的样本 4、在所示窗口中点击(描述D)按钮,指定输出结果,输出基本统计量、图形等 5、在所示窗口中点击(抽取E)按钮指定提取因子的方法为:主成分分析法 6、在所示的窗口中点击(旋转T)按钮选择因子旋转方法

K均值聚类算法优缺点

J.B.MacQueen 在 1967 年提出的K-means算法[22]到目前为止用于科学和工业应用的诸多聚类算法中一种极有影响的技术。它是聚类方法中一个基本的划分方法,常常采用误差平方和准则函数作为聚类准则函数,误差平方和准则函数定义为: (3-1)其中,是类中数据对象的均值,即,(j=1,2,…,n),是K个聚类中心,分别代表K个类。 K-means算法的工作原理:算法首先随机从数据集中选取 K个点作为初始聚类中心,然后计算各个样本到聚类中的距离,把样本归到离它最近的那个聚类中心所在的类。计算新形成的每一个聚类的数据对象的平均值来得到新的聚类中心,如果相邻两次的聚类中心没有任何变化,说明样本调整结束,聚类准则函数已经收敛。本算法的一个特点是在每次迭代中都要考察每个样本的分类是否正确。若不正确,就要调整,在全部样本调整完后,再修改聚类中心,进入下一次迭代。如果在一次迭代算法中,所有的样本被正确分类,则不会有调整,聚类中心也不会有任何变化,这标志着已经收敛,因此算法结束。 算法描述如下: 算法:K-means。划分的 K-means 算法基于类中对象的平均值。 输入:类的数目K和包含N个对象的数据库。 方法: ① 对于数据对象集,任意选取K个对象作为初始的类中心; ② 根据类中对象的平均值,将每个对象重新赋给最相似的类; ③ 更新类的平均值,即计算每个类中对象的平均值; ④ Repeat ②③; ⑤ 直到不再发生变化。 其中,初始聚类中心的选择对聚类结果的影响是很大的,如图3.1,图a是三个类的实际分布,图b是选取了好的初始聚类中心(+字标记的数据对象)得到的结果。图c是选取不好的初始聚类中心得到的结果,从中可以看到,选择初始聚类中心是很关键的。 a b c

K 均值聚类算法(原理加程序代码)

K-均值聚类算法 1.初始化:选择c 个代表点,...,,321c p p p p 2.建立c 个空间聚类表:C K K K ...,21 3.按照最小距离法则逐个对样本X 进行分类: ),(),,(min arg J i i K x add p x j ?= 4.计算J 及用各聚类列表计算聚类均值,并用来作为各聚类新的代表点(更新代表点) 5.若J 不变或代表点未发生变化,则停止。否则转2. 6.),(1∑∑=∈=c i K x i i p x J δ 具体代码如下: clear all clc x=[0 1 0 1 2 1 2 3 6 7 8 6 7 8 9 7 8 9 8 9;0 0 1 1 1 2 2 2 6 6 6 7 7 7 7 8 8 8 9 9]; figure(1) plot(x(1,:),x(2,:),'r*') %%第一步选取聚类中心,即令K=2 Z1=[x(1,1);x(2,1)]; Z2=[x(1,2);x(2,2)]; R1=[]; R2=[]; t=1; K=1;%记录迭代的次数 dif1=inf; dif2=inf; %%第二步计算各点与聚类中心的距离 while (dif1>eps&dif2>eps) for i=1:20 dist1=sqrt((x(1,i)-Z1(1)).^2+(x(2,i)-Z1(2)).^2); dist2=sqrt((x(1,i)-Z2(1)).^2+(x(2,i)-Z2(2)).^2); temp=[x(1,i),x(2,i)]'; if dist1

聚类分析的案例分析(推荐文档)

《应用多元统计分析》 ——报告 班级: 学号: 姓名:

聚类分析的案例分析 摘要 本文主要用SPSS软件对实验数据运用系统聚类法和K均值聚类法进行聚类分析,从而实现聚类分析及其运用。利用聚类分析研究某化工厂周围的几个地区的 气体浓度的情况,从而判断出这几个地区的污染程度。 经过聚类分析可以得到,样本6这一地区的气体浓度值最高,污染程度是最严重的,样本3和样本4气体浓度较高,污染程度也比较严重,因此要给予及时的控制和改善。 关键词:SPSS软件聚类分析学生成绩

一、数学模型 聚类分析的基本思想是认为各个样本与所选择的指标之间存在着不同程度的相 似性。可以根据这些相似性把相似程度较高的归为一类,从而对其总体进行分析和总结,判断其之间的差距。 系统聚类法的基本思想是在这几个样本之间定义其之间的距离,在多个变量之间定义其相似系数,距离或者相似系数代表着样本或者变量之间的相似程度。根据相似程度的不同大小,将样本进行归类,将关系较为密切的归为一类,关系较为疏远的后归为一类,用不同的方法将所有的样本都聚到合适的类中,这里我们用的是最近距离法,形成一个聚类树形图,可据此清楚的看出样本的分类情况。 K 均值法是将每个样品分配给最近中心的类中,只产生指定类数的聚类结果。 二、数据来源 《应用多元统计分析》第一版164 页第6 题 我国山区有一某大型化工厂,在该厂区的邻近地区中挑选其中最具有代表性的 8 个大气取样点,在固定的时间点每日 4 次抽取6 种大气样本,测定其中包含的8 个取样点中每种气体的平均浓度,数据如下表。试用聚类分析方法对取样点及 大气污染气体进行分类。 三、建立数学模型 一、运行过程

K-均值聚类分析

1案例题目: 选取一组点(三维或二维),在空间内绘制出来,之后根据K均值聚类,把这组点分为n类。 此例中选取的三维空间内的点由均值分别为(0,0,0),(4,4,4),(-4,4,-4), 协方差分别为 300 030 003 ?? ?? ?? ?? ?? , 000 030 003 ?? ?? ?? ?? ?? , 300 030 003 ?? ?? ?? ?? ?? 的150个由mvnrnd函数随机 生成。 2原理运用与解析: 2.1聚类分析的基本思想 聚类分析是根据“物以类聚”的道理,对样本或指标进行分类的一种多元统计分析方法,它们讨论的对象是大量的样本,要求能合理地按各自的特性进行合理的分类。对于所选定的属性或特征,每组内的模式都是相似的,而与其他组的模式差别大。一类主要方法是根据各个待分类模式的属性或特征相似程度进行分类,相似的归为一类,由此将待分类的模式集分成若干个互不重叠的子集,另一类主要方法是定义适当的准则函数运用有关的数学工具进行分类。由于在分类中不需要用训练样本进行学习和训练,故此类方法称为无监督分类。 聚类的目的是使得不同类别的个体之间的差别尽可能的大,而同类别的个体之间的差别尽可能的小。聚类又被称为非监督分类,因为和分类学习相比,分类学习的对象或例子有类别标记,而要聚类的例子没有标记,需要由聚类分析算法来自动确定,即把所有样本作为未知样本进行聚类。因此,分类问题和聚类问题根本不同点为:在分类问题中,知道训练样本例的分类属性值,而在聚类问题中,需要在训练样例中找到这个分类属性值。 聚类分析的基本思想是认为研究的样本或变量之间存在着程度不同的相似性(亲疏关系)。研究样本或变量的亲疏程度的数量指标有两种:一种叫相似系数,性质越接近的样本或变量,它们的相似系数越接近1或-1,而彼此无关的变量或样本它们的相似系数越接近0,相似的为一类,不相似的为不同类。另一种叫距离,它是将每一个样本看做p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。 2.2动态聚类法思想

聚类分析实例分析题

5.2酿酒葡萄的等级划分 5.2.1葡萄酒的质量分类 由问题1中我们得知,第二组评酒员的的评价结果更为可信,所以我们通过第二组评酒员对于酒的评分做出处理。我们通过excel计算出每位评酒员对每支酒的总分,然后计算出每支酒的10个分数的平均值,作为总的对于这支酒的等级评价。 通过国际酿酒工会对于葡萄酒的分级,以百分制标准评级,总共评出了六个级别(见表5)。 在问题2的计算中,我们求出了各支酒的分数,考虑到所有分数在区间[61.6,81.5]波动,以原等级表分级,结果将会很模糊,不能分得比较清晰。为此我们需要进一步细化等级。为此我们重新细化出5个等级,为了方便计算,我们还对等级进行降序数字等级(见表6)。 通过对数据的预处理,我们得到了一个新的关于葡萄酒的分级表格(见表7):

考虑到葡萄酒的质量与酿酒葡萄间有比较之间的关系,我们将保留葡萄酒质量对于酿酒葡萄的影响,先单纯从酿酒葡萄的理化指标对酿酒葡萄进行分类,然后在通过葡萄酒质量对酿酒葡萄质量的优劣进一步进行划分。 5.2.2建立模型 在通过酿酒葡萄的理化指标对酿酒葡萄分类的过程,我们用到了聚类分析方法中的ward 最小方差法,又叫做离差平方和法。 聚类分析是研究分类问题的一种多元统计方法。所谓类,通俗地说,就是指相似元素的集合。为了将样品进行分类,就需要研究样品之间关系。这里的最小方差法的基本思想就是将一个样品看作P 维空间的一个点,并在空间的定义距离,距离较近的点归为一类;距离较远的点归为不同的类。面对现在的问题,我们不知道元素的分类,连要分成几类都不知道。现在我们将用SAS 系统里面的stepdisc 和cluster 过程完成判别分析和聚类分析,最终确定元素对象的分类问题。 建立数据阵,具体数学表示为: 1111...............m n nm X X X X X ????=?????? (5.2.1) 式中,行向量1(,...,)i i im X x x =表示第i 个样品; 列向量1(,...,)'j j nj X x x =’,表示第j 项指标。(i=1,2,…,n;j=1,2,…m) 接下来我们将要对数据进行变化,以便于我们比较和消除纲量。在此我们用了使用最广范的方法,ward 最小方差法。其中用到了类间距离来进行比较,定义为: 2||||/(1/1/)kl k l k l D X X n n =-+ (5.2.2) Ward 方法并类时总是使得并类导致的类内离差平方和增量最小。 系统聚类数的确定。在聚类分析中,系统聚类最终得到的一个聚类树,如何确定类的个数,这是一个十分困难但又必须解决的问题;因为分类本身就没有一定标准,人们可以从不同的角度给出不同的分类。在实际应用中常使用下面几种方法确定类的个数。由适当的阀值确定,此处阀值为kl D 。

matlab实现Kmeans聚类算法

matlab实现Kmeans聚类算法 1.简介: Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量)

2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上有4中“标签”,每个“标签”使用不同的颜色来表示。所有黄色点我们可以用标签以看出,有3个类离的比较远,有两个类离得比较近,几乎要混合在一起了。 当然,数据集不一定是坐标,假如你要对彩色图像进行聚类,那么你的向量就可以是(b,g,r),如果使用的是hsv颜色空间,那还可以使用(h,s,v),当然肯定可以有不同的组合例如(b*b,g*r,r*b) ,(h*b,s*g,v*v)等等。 在本文中,初始的类的中心点是随机产生的。如上图的红色点所示,是本文随机产生的初始点。注意观察那两个离得比较近的类,它们几乎要混合在一起,看看算法是如何将它们分开的。 类的初始中心点是随机产生的。算法会不断迭代来矫正这些中心点,并最终得到比较靠5个中心点的距离,选出一个距离最小的(例如该点与第2个中心点的距离是5个距离中最小的),那么该点就归属于该类.上图是点的归类结果示意图. 经过步骤3后,每一个中心center(i)点都有它的”管辖范围”,由于这个中心点不一定是这个管辖范围的真正中心点,所以要重新计算中心点,计算的方法有很多种,最简单的一种是,直接计算该管辖范围内所有点的均值,做为心的中心点new_center(i). 如果重新计算的中心点new_center(i)与原来的中心点center(i)的距离大于一定的阈值(该阈值可以设定),那么认为算法尚未收敛,使用new_center(i)代替center(i)(如图,中心点从红色点

聚类分析案例

SPSS软件操作实例——某移动公司客户细分模型 数据准备:数据来源于telco.sav,如图1所示,Customer_ID表示客户编号,Peak_mins表示工作日上班时期电话时长,OffPeak_mins表示工作日下班时期电话时长等。 图1 telco.sav数据 分析目的:对移动手机用户进行细分,了解不同用户群体的消费习惯,以更好的对其进行定制性的业务推销,所以需要运用聚类分析。 操作步骤: 1,从菜单中选择【文件】——【打开】——【数据】,在打开数据窗口中选择数据位置以及文件类型,将数据telco.sav导入SPSS软件中,如图2所示。 图2 打开数据菜单选项 2,从菜单中选择【分析】——【描述统计】——【描述】,然后在描述性窗口中,将需要标准化的变量选到右边的“变量列表”,勾选“将标准化得分另存为变量”,点确定,如图3所示。

图3 数据标准化 3,从菜单中选择【分析】——【分类】——【K-均值聚类】,在K-均值聚类分析窗口中将标准化之后的结果选入右边“变量列表”,客户编号选入“个案标记依据”,聚类数改为5。点击迭代按钮,在迭代窗口将最大迭代次数改为100,点击继续。点击保存按钮,在保存窗口勾选“聚类成员”、“与聚类中心的距离”,点击继续。点击选项按钮,在选项窗口勾选“ANOV A表”、“每个个案的聚类信息”,点击继续。点击确定按钮,运行聚类分析,如图4所示。 图4 聚类分析操作

由最终聚类中心表可得最终分成的5个类它们各自的均值。 第一类:依据总通话时间长,上班通话时间长,国际通话时间长等特征,将第一类命名为高端商用客户。 第二类:依据其在各项指标中均较低,将第二类命名为不常使用客户。 第三类:依据总通话和上班通话时间居中等特征,将第三类命名为中端商用客户。第四类:依据下班通话时间最长等特征,将第四类命名为日常客户。 第五类:依据平均每次通话时间最长等特征,将第五类命名为长聊客户。 由ANOVA表可根据F值大小近似得到哪些变量对聚类有贡献,本例题中重要程度排序为:总通话时长>工作日上班时期电话时长>工作日下班时期电话时

基于K―means聚类的客户细分案例分析

基于K―means聚类的客户细分案例分析 【摘要】当今流行的客户细分理论的视角主要关注在 消费市场的细分上,现有的客户细分理论中根据客户购买的 产品特征进行细分的分析和研究相对较少,因此本文的研究 就是把某品牌鞋子的风格特征作为细分变量,基于某企业的 销售数据来进行分析,选择K-means聚类分析方法结合企业 的实际情况,划分出不同的客户群,企业可以根据不同客户 群的需求和对企业的贡献制定不同的宣传营销策略,降低企 业的销售成本,提高企业的竞争力。 【关键词】客户细分K-means聚类案例分析营销策略 一、案例介绍 某公司是一个以鞋类的研发制造及品牌管理为主的时 尚集团公司,业务遍及大中华区(中国大陆、香港、台湾)、亚洲、欧洲及北美洲,是中国最成功的国内品牌之一。该公 司在中国经营的组织架构为:总公司――分公司――专卖 店。其中,总公司负责拓展策略和公司年度工作计划的制定, 以及成本控制和分公司事务管理。分公司负责执行总公司的 战略,对专卖店、专卖店人员实施管理,工作内容包括:新 开专卖店寻址、申请开店、签约、开店;对分公司人员管理、分公司销售指标达成、执行总公司促销活动等。

二、数据处理 (一)数据准备 原始数据包括两张表:客户交易记录表和鞋子具体属性 表,其中客户交易记录表与鞋子属性表连接的变量是鞋子 ID,交易记录数据的时间是过去一年2013年9月1日到2014年9月1日。 (二)数据清洗 该企业一年的交易记录有几千万条,所以原始的交易数 据量非常大,这样就很容易出现噪声数据、空缺数据和不一 致数据,所以必须要经过一系列的分析与处理,包括对缺失 值的处理和异常值的处理,例如:去除客户属性为空的客户 记录、剔除消费额和消费次数不在正常范围内的客户记录 等。 (1)剔除异常的正负交易。从客户交易记录表中选出 过去一年交易ID不为空的正常交易记录,交易记录表中的 金额有正负之分,正表示购买记录,负表示退货记录,要剔 除掉没有正交易与之对应的退货记录。 (2)剔除异常的购买数量和金额。由于有些客户不是 会员,专卖店的销售员会帮客户刷自己的会员卡,这样就会 出现一个会员ID在一段时间内交易数量和交易金额超出正 常范围。本文用3δ准则剔除不在正常范围内异常客户。 (三)数据转换和整合

模糊聚类分析例子

1. 模糊聚类分析模型 环境区域的污染情况由污染物在4个要素中的含量超标程度来衡量。设这5个环境区域的污染数据为1x =(80, 10, 6, 2), 2x =(50, 1, 6, 4), 3x =(90, 6, 4, 6), 4x =(40, 5, 7, 3), 5x =(10, 1, 2, 4). 试用模糊传递闭包法对X 进行分类。 解 : 由题设知特性指标矩阵为: * 80106250164906464057310124X ????????=???????? 数据规格化:最大规格化' ij ij j x x M = 其中: 12max(,,...,)j j j nj M x x x = 00.8910.860.330.560.1 0.860.671 0.60.5710.440.510.50.11 0.1 0.290.67X ????????=?? ?????? 构造模糊相似矩阵: 采用最大最小法来构造模糊相似矩阵55()ij R r ?=, 1 0.540.620.630.240.5410.550.700.530.62 0.5510.560.370.630.700.5610.380.24 0.530.370.381R ?? ??? ???=?? ?????? 利用平方自合成方法求传递闭包t (R ) 依次计算248,,R R R , 由于84R R =,所以4()t R R =

2 10.630.620.630.530.6310.560.700.530.62 0.5610.620.530.630.700.6210.530.530.530.530.531R ?? ??????=?? ??????, 4 10.630.620.630.530.6310.620.700.530.62 0.6210.620.530.630.700.6210.530.53 0.530.530.531R ????????=?? ?????? =8R 选取适当的置信水平值[0,1]λ∈, 按λ截矩阵进行动态聚类。把()t R 中的元素从大到小的顺序编排如下: 1>0.70>0.63>062>053. 依次取λ=1, 0.70, 0.63, 062, 053,得 11 000001000()0 010******* 0001t R ????? ? ??=?? ??????,此时X 被分为5类:{1x },{2x },{3x },{4x },{5x } 0.7 1000001010()001000101000001t R ?????? ??=?? ??????,此时X 被分为4类:{1x },{2x ,4x },{3x },{5x } 0.63 1101011010()001001101000001t R ?????? ??=?? ??????,此时X 被分为3类:{1x ,2x ,4x },{3x },{5x } 0.62 1111011110()11110111100 0001t R ?????? ??=?? ?????? ,此时X 被分为2类:{1x ,2x ,4x ,3x },{5x }

K-均值聚类法实例解析

例: 为了更深入了解我国环境的污染程度状况,现利用2009 年数据对全国31个省、自治区、直辖市进行聚类分析。 解:现在要分析我国各个地区的环境污染程度,案例中选择了各地区“工业废气排放总量”、“工业废水排放总量”和“二氧化硫排放总量”三个指标来反映不同污染程度的环境状况,同时选择了北京等省市的数据加以研究。这个问题属于典型的多元分析问题,需要利用多个指标来分析各省市之间环境污染程度的差异。因此,可以考虑利用快速聚类分析来研究各省市之间的差异性,具体操作步骤如下。 1)打随书光盘中的数据文件9-2.sav,选择菜单栏中的【A nalyze(分析)】→【Classify(分 类)】→【K-Means Cluster(K均值聚类)】命令,弹出【K-Means Cluster Analysis(K均值聚类分析)】对话框。 2)在左侧的候选变量列表框中将X1、X2和X3变量设定为聚类分析变量,将其添加至 【Variables(变量)】列表框中;同时选择Y作为标识变量,将其移入【Label Cases by (个案标记依据)】列表框中。 3)在【Number of Clusters(聚类数)】文本框中输入数值“3”,表示将样品利用聚类分析 分为三类,如下图所示。 4)单击【Save(保存)】按钮,弹出【K-Means Cluster Analysis:Save(K均值聚类分析: 保存)】对话框;勾选【Cluster membership(聚类新成员)】和【Distanc e from cluster center (与聚类中心的距离)】复选框,表示输出样品的聚类类别及距离,其他选项保持系统默认设置,如下图所示,单击【Continue(继续)】按钮返回主对话框。

基于Matlab环境下的K均值聚类算法

基于Matlab环境下的K均值聚类算法 摘要:为了将模式识别方法与图像处理技术相结合,掌握利用均值聚类算法进行图行处理,往往能得到比较好的处理结果,本文在matlab环境下,对有效图像点进行K均值聚类算法,与传统K近邻聚类方法比照,得出了比较好的实验效果。 关键词:K均值聚类算法matlab 图像 引言 k-means算法,也被称为k-平均或k-均值,是一种得到最广泛使用的聚类算法。它是将各个聚类子集内的所有数据样本的均值作为该聚类的代表点,算法的主要思想是通过迭代过程把数据集划分为不同的类别,使得评价聚类性能的准则函数达到最优,从而使生成的每个聚类内紧凑,类间独立。 1、K-均值聚类的分析 K-均值聚类的目的是将数据拆成K个不同的群组,该算法的特点是运算结果受到所选择的聚类中心数目、初始位置、模式样本的几何性质以及读入次序的影响。 具体的算法如下: 1、在n维空间中随机生成K个中心点 2、将每个数据项分配给与其距离最近的中心点。 3、将中心点位置移动到所有分配给它的数据项的中心。如果中心点位置没有改变,则结束算法,否则回到第二步。 2、K均值聚类算法与K近邻算法的区别 K近邻算法的基本思想是是使体积为数据的函数,而不是样本N的函数。K-最近邻也是一种用来进行预测的算法。它的工作原理是接受一个用以进行数值预测的新数据项,然后将它与一组已经赋过值的数据项进行比较。算法会从中找出与待预测数据最为接近的K项,并且这K项其求均值以得到最终的结果。优点:能利用复杂函数进行数值预测,又简单易懂,并且我们可以很容易在算法中实现查看用哪些近邻进行预测。缺点:每次进行预测,它都会使用所有的样本,这会导致效率的低下。因此,寻找缩放因子是一种很乏味的事情。 3、K均值聚类法分为如下几个步骤

k-均值聚类

K-均值聚类算法 摘要关于对生活中各种各样的数据的聚类分类问题己经成为众多学者的研究热题之一。聚类方法有很多种,其中最简单的形式便是划分式聚类,划分式聚类试图将给定的数据集合分割成不相交的子集,使具体的聚类准则是最优的。一种最流行的基于最小聚类误差平法和的聚类方法是K-均值算法。然而,K-均值算法是一个局部搜索的算法,它存在一些严重的不足,比如K值需要预先确定、聚类结果的好坏依赖于初始点的选取。本文对聚类进行了简单的介绍,并对K-均值算法进行了研究分析。 关键词数据挖掘;聚类分析;K-均值聚类算法 1.引言 在因特网无处不在的今天,人们所面临的形形色色的数据量呈急速增长状态。然而,在数据如此海量的同时,人们却缺乏对这些数据中所隐含的信息或知识的充分理解。在这种需求情况下,数据挖掘技术应运而生。 聚类分析作为数据挖掘在实际应用中的主要任务之一,是数据挖掘中一个很活跃的研究领域,与其他学科的研究方向具有很好的的交叉性。在识别数据内部结构方面具有极其重要的作用。 K-均值聚类算法是聚类分析中的一种基本划分式方法。由于其算法简便易懂,且在计算速度上具有无可比拟的优势,通常被作为大样本聚类分析的首选方案。 2.数据挖掘中聚类分析算法的相关介绍 聚类分析是多元统计分析方法中的一种,是非监督模式识别的一个重要分支。所谓聚类就是按照事物的某些属性,把事物聚集成簇,使簇内的对象之间具有较高的相似性,而不同簇的对象之间的相似程度较差。聚类是一个无监督的学习过程,它同分类的根本区别在于:分类是需要事先知道所依据对象的类别特征,而聚类是要找到这个对象的类别特征,因此,在很多应用中,聚类分析作为一种数据预处理过程,是进一步分析和处理数据的基础。 2.1 关于聚类分析的概述 聚类问题是普遍存在于众多领域的基本问题,如模式识别、图像处理、机器学习和统计学等。聚类的基本形式定义为在已给的数据集合中寻找数据点集的同类集合。每一个集合叫做一个类,并确定了一个区域,在区域中对象的密度高于其他区域中的密度。其他区域中的密度。 Everitt在1974年给出的定义: 聚类就是“将数据分成许多类簇,其中一个类簇内的实体是相似的,不同类簇的实体是不相似的;一个类簇是测试空间中点的会聚,同一类簇的任意两个点间的距离小于不同类簇的任意两个点间的距离;类簇可以描述为一个包含密度相对较高的点集的多维空间中的连通区域,它们借助包含密度相对较低的点集的区域与其他区域(类簇)相分离。” 2.2 聚类分析中的数据类型

K-means聚类算法基本思想讲解学习

K-m e a n s聚类算法基 本思想

精品文档 K-means聚类算法基本思想 聚类分析以相似性为基础,在一个聚类中的模式之间比不在同一聚类中的模式之间具有更多的相似性。K-means也是聚类算法中最简单的一种。以星团划分为例,,首先随机选取k个宇宙中的点(或者k个星星)作为k 个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取距离最近的那个星团作为 ,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的 星星坐标求平均)。重复迭代第一步和第二步直到质心不变或者变化很小。 K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。 聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。 聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。 在聚类问题中,给我们的训练样本是,每个,没有了y。 K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下: 1、随机选取k个聚类质心点(cluster centroids)为。 2、重复下面过程直到收敛 { 对于每一个样例i,计算其应该属于的类 对于每一个类j,重新计算该类的质心 } K是我们事先给定的聚类数,代表样例i与k个类中距离最近的那个类,的值是1到k中的一个。质心 代表我们对属于同一个类的样本中心点的猜测,拿星团模型来解释就是要将所有的星星聚成k个星团,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距 离,然后选取距离最近的那个星团作为,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的星星坐标求平均)。重复迭代第一步和第二步直到质心不变或者变化很小。 下图展示了对n个样本点进行K-means聚类的效果,这里k取2。 收集于网络,如有侵权请联系管理员删除

一篇文章透彻解读聚类分析及案例实操

一篇文章透彻解读聚类分析及案例实操 【数盟致力于成为最卓越的数据科学社区,聚焦于大数据、分析挖掘、数据可视化领域,业务范围:线下活动、在线课程、猎头服务、项目对接】【限时优惠福利】数据定义未来,2016 年 5 月12 日-14 日DTCC2016 中国数据库技术大会登陆北京!大会云集了国内外数据行业顶尖专家,设定2 个主会场,24 个分会场,将吸引共3000 多名IT 人士参会!马上领取数盟专属购票优惠88 折上折,猛戳文末“阅读原文” 抢先购票!摘要:本文主要是介绍一下SAS 的聚类案例,希望大家都动手做一遍,很多问题只有在亲自动手的过程中才会有发现有收获有心得。这里重点拿常见的工具SAS+R语言+Python 介绍! 1 聚类分析介绍1.1 基本概念聚类就是一种寻找数据之间一种内在结构的技术。聚类把全体数据实例组织成一些相似组,而这些相似组被称作聚类。处于相同聚类中的数据实例彼此相同,处于不同聚类中的实例彼此不同。聚类技术通常又被称为无监督学习,因为与监督学习不同,在聚类中那些表示数据类别的分类或者分组信息是没有的。通过上述表述,我们可以把聚类定义为将数据集中在某些方面具有相似性的数据成员进行分类组织的过程。因此,聚类就是一些数据实例的集合,这个集合中的元素彼此相似,但是它们都与其他聚类中的元素不同。在聚类的相关文献中,一个数据实例有时又被称为对象,因为现实世界中的一个对象可以用数据实例来描述。同时,它有时也被称作数据点(Data Point) ,因为我们可以用r 维空间的一个点来表示数据实例,其中r 表示数据的属性个数。下图显示了一个二维数据集聚类过程,从该图中可以清楚

数学建模 聚类分析因子分析实例

多元统计分析中的降维方法在四川省社会福利中的应用 由于计算机的发展和日益广泛的使用,多元分析方法也很快地应用到社会学、农业、医学、经济学、地质、气象等各个领域。在国外,从自然科学到社会科学的许多方面,都已证实了多元分析方法是一种很有用的数据处理方法;在我国,多元分析对于农业、气象、国家标准和误差分析等许多方面的研究工作都取得了很大的成绩,引起了广泛的注意。在许多领域的研究中,为了全面系统地分析问题,对研究对象进行综合评价,我们常常需要考虑衡量问题的多个指标(即变量),由于变量之间可能存在着相关性,如果采用一元统计方法,把多个变量分开,一次分析一个变量,就会丢失大量的信息,研究结果也会偏差很大。因此需要采用多元统计分析的方法,同时对所有变量的观测数据进行分析。多元统计分析就是一种同时研究多个变量之间的相互关系,经过对变量的综合处理,充分提取变量之间的信息,进行综合分析和评价的统计方法。多元统计分析法主要包括降维、分类、回归及其他统计思想。 一.多元统计分析方法中降维的方法 1.概述 多元统计分析方法是同时对多个变量的观察数据做综合处理和分析。在不损失有价值信息的情况下,简化观测数据或数据结构,尽可能简单地将被研究对象描述出来,使得对复杂现象的解释变得更容易些。同时,采用多元统计分析中的聚类分析或判别分析可以对变量或样品进行分类与分组。根据所测量的特征和分类规则将一些“类似的”对象或变量分组。多元统计分析也可以研究变量间依赖性。即对变量间关系的本质进行研究。是否所有的变量都相互独立?还是一个变量或多个变量依赖于其他变量?它们又是怎样依赖的?通过观测变量数据的散点图,我们可以建立多元回归统计模型,确定出变量之间具体的依赖关系,进而可以根据某些变量的观测值预测另一个或另一些变量的值对事物现象的发展作预测。最后我们需要构造假设,并对所建立的以多元总体参数形式陈述的多种特殊统计假设进行检验。 在多元统计分析方法中数据简化或结构简化,实质上就是数学中的降维方法。多元统计分析中的降维方法主要包括聚类分析、判别分析、主成分分析、因子分析、对应分析和典型相关分析等几种方法。其中主成分分析和因子分析是在作综合评价方面应用最广泛、较为有效的方法。本文主要介绍这两种多元统计分析方法的应用。 2 主成分分析 2.1主成分分析的基本思想 在大部分实际问题中,需要考察的变量多,变量之间是有一定的相关性的,主成分分析就是以损失很少部分信息为代价,保留绝大部分信息的前提下, 将原来众多具有一定线性相关性的p个指标压缩成少数几个互不相关的综合指 标(主成分),并通过原来变量的少数几个的线性组合来给出各个主成分的具有实际背景和意义的解释。由于主成分分析浓缩了众多指标的信息,降低了指标的

k均值课程设计报告

模式识别课程设计报告 姓名:陈继智 学号: 20091002205 班级序号: 191094 01 指导老师:蒋良孝 时间: 2012年4月

K均值聚类(k-means)优化 ——基于遗传算法 一、K均值聚类的算法和遗传算法的概述 1、K均值聚类(k-means)就是将对物理或抽象对象的集合分组成为由类似的对象组成的多个簇的过程。聚类分析是指事先不知样本的类别,而利用样本的先验知识来构造分类器(无监督学习),可以用两个准则来做(1)聚类准则函数,(2)误差平方和准则(最常用的)。 2、遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化搜索算法。生物的进化过程主要是通过染色体之间的交叉和变异来完成的,与此相对应,遗传算法中最优解的搜索过程也模仿了生物的进化过程,使用遗传操作数作用于群体进行遗传操作,从而得到新一代群体,其本质是一种求解问题的高效并行全局搜索算法。它能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程,从而得到最优解或准最优解。算法以适应度函数为依据,通过对群体个体施加遗传操作实现群体内个体结构重组的迭代处理。在这一过程中,群体个体一代代地优化并逐渐逼近最优解。鉴于遗传算法的全局优化性,本文给出了一种基于遗传算法的K均值聚类算法来克服K均值算法的局部性。二、K均值算法的基本思想 K均值算法是一种使用最广泛的聚类算法。算法以K为参数,把n个对象分为K个簇,使簇内具有较高的相似度,而簇间相似度较低。算法首先随机选择K个对象,每个对象初始地代表了一个簇的平均值或中心,对剩余的每个对象根据其与各个簇中心的距离,将它赋给最近的簇,然后重新计算每个簇的平均值,不断重复该过程,直到准则函数收敛。准则函数如下: 其中,ix为簇C的平均值。i K均值算法的描述如下: (1)任意选择K个记录作为初始的聚类中心。 (2)计算每个记录与K个聚类中心的距离,并将距离最近的聚类作为该点所属的类。 (3)计算每个聚集的质心(聚集点的均值)以及每个对象与这些中心对象的距离,并根据最小距离重新对相应的对象进行划分。重复该步骤,直到式(1)不再明显地发生变化。 三、基于遗传算法的K均值聚类算法 本文将遗传算法应用到聚类分析中,把遗传算法的全局优化能力与聚类分析的局部优化能力相结合来克服聚类算法的局部性,在种群进化过程中,引入K均值操作,同时,为了避

K均值聚类算法

k均值算法是模式识别的聚分类问题,这是用C#实现其算法 以下是程序源代码: using System; using System.Drawing; using System.Collections; using https://www.360docs.net/doc/7b15312560.html,ponentModel; using System.Windows.Forms; using System.Data; namespace KMean_win { /// /// Form1 的摘要说明。 /// public class Form1 : System.Windows.Forms.Form { /// /// 必需的设计器变量。 /// private https://www.360docs.net/doc/7b15312560.html,ponentModel.Container components = null; private static int k = 2; //类数,此例题为2类 private static int total = 20; //点个数 private int test = 0; private PointF[] unknown = new PointF[total]; //点数组 private int[] type = new int[total]; //每个点暂时的类 public PointF[] z = new PointF[k]; //保存新的聚类中心 public PointF[] z0 = new PointF[k]; //保存上一次的聚类中心private PointF sum; private int temp = 0; private System.Windows.Forms.TextBox textBox1; private int l = 0; //迭代次数 //构造函数,初始化 public Form1() { unknown[0]=new Point(0,0); unknown[1]=new Point(1,0); unknown[2]=new Point(0,1); unknown[3]=new Point(1,1); unknown[4]=new Point(2,1); unknown[5]=new Point(1,2); unknown[6]=new Point(2,2); unknown[7]=new Point(3,2); unknown[8]=new Point(6,6); unknown[9]=new Point(7,6); unknown[10]=new Point(8,6);

相关文档
最新文档