平行四边形性质和判定综合习题精选

平行四边形性质和判定综合习题精选
平行四边形性质和判定综合习题精选

第十九章平行四边形性质和判定综合习题精选

一.解答题(共30小题)

1.如图所示,□AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.

求证:四边形ABCD是平行四边形.

2如图,已知,□ABCD中,AE=CF,M、N分别是DE、BF的中点.

求证:四边形MFNE是平行四边形.

3如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.

求证:四边形AECF是平行四边形.

4.在□ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.

5已知:如图,在□ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE 都是平行四边形.

6如图:□ABCD中,MN∥AC,试说明MQ=NP.

7已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.

8如图,已知在□ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:四边形GEHF是平行四边形;

9.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.

求证:四边形EFCD是平行四边形;

答案与评分标准

一.解答题(共30小题)

1.(2011?资阳)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.

(1)求证:BE=DF;

(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).

考点:平行四边形的判定与性质;全等三角形的判定与性质。

分析:(1)根据平行四边形的性质和已知条件证明△ABE≌△CDF即可得到BE=DF;

(2)根据平行四边形的判定方法:有一组对边平行且相等的四边形为平行四边形判定四边形MENF的形状.解答:(1)∵四边形ABCD是平行四边形,

∴AB=CD,AB∥CD,

∴∠ABD=∠CDB,

∵AE⊥BD于E,CF⊥BD于F,

∴∠AEB=∠CFD=90°,

∴△ABE≌△CDF(A.A.S.),

∴BE=DF;

(2)四边形MENF是平行四边形.

证明:有(1)可知:BE=DF,

∵四边形ABCD为平行四边行,

∴AD∥BC,

∴∠MDB=MBD,

∵DM=BN,

∴△DNF≌△BNE,

∴NE=MF,∠MFD=∠NEB,

∴∠MFE=∠NEF,

∴MF∥NE,

∴四边形MENF是平行四边形.

点评:本题考查了平行四边形的性质以及平行四边形的判定和全等三角形的判定以及全等三角形的性质.

2.(2011?昭通)如图所示,?AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.

求证:四边形ABCD是平行四边形.

考点:平行四边形的判定与性质;全等三角形的判定与性质。

专题:证明题。

分析:平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形.

解答:证明:∵四边形AECF是平行四边形

∴OE=OF,OA=OC,AE∥CF,

∴∠DFO=∠BEO,∠FDO=∠EBO,

∴△FDO≌△EBO,

∴OD=OB,

∵OA=OC,

∴四边形ABCD是平行四边形.

点评:本题考查平行四边形的性质定理和判定定理,以及全等三角形的判定和性质.

3.(2011?徐州)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.

(1)求证:△ABE≌△CDF;

(2)若AC与BD交于点O,求证:AO=CO.

考点:平行四边形的判定与性质;全等三角形的判定与性质。

专题:证明题。

分析:(1)由BF=DE,可得BE=CF,由AE⊥BD,CF⊥BD,可得∠AEB=∠CFD=90°,又由AB=CD,在直角三角形中利用HL即可证得:△ABE≌△CDF;

(2)由△ABE≌△CDF,即可得∠ABE=∠CDF,根据内错角相等,两直线平行,即可得AB∥CD,又由AB=CD,根据有一组对边平行且相等的四边形是平行四边形,即即可证得四边形ABCD是平行四边形,则可得AO=CO.

解答:证明:(1)∵BF=DE,

∴BF﹣EF=DE﹣EF,

即BE=DE,

∵AE⊥BD,CF⊥BD,

∴∠AEB=∠CFD=90°,

∵AB=CD,

∴Rt△ABE≌Rt△CDF(HL);

(2)∵△ABE≌△CDF,

∴∠ABE=∠CDF,

∴AB∥CD,

∵AB=CD,

∴四边形ABCD是平行四边形,

∴AO=CO.

点评:此题考查了全等三角形的判定与性质与平行四边形的判定与性质.此题难度不大,解题的关键是要注意数形结合思想的应用.

4.(2011?铜仁地区)已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.

考点:平行四边形的判定与性质;三角形中位线定理。

专题:证明题。

分析:由DE、DF是△ABC的中位线,根据三角形中位线的性质,即可求得四边形AEDF是平行四边形,又∠BAC=90°,则可证得平行四边形AEDF是矩形,根据矩形的对角线相等即可得EF=AD.

解答:证明:∵DE,DF是△ABC的中位线,

∴DE∥AB,DF∥AC,

∴四边形AEDF是平行四边形,

又∵∠BAC=90°,

∴平行四边形AEDF是矩形,

∴EF=AD.

点评:此题考查了三角形中位线的性质,平行四边形的判定与矩形的判定与性质.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用.

5.(2011?泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.

考点:平行四边形的判定与性质。

专题:探究型。

分析:根据CE∥AB,DE交AC于点O,且OA=OC,求证△ADO≌△ECO,然后求证四边形ADCE是平行四边形,即可得出结论.

解答:解:猜想线段CD与线段AE的大小关系和位置关系是:平行且相等.

证明:∵CE∥AB,

∴∠DAO=∠ECO,

∵OA=OC,

∴△ADO≌△ECO,

∴AD=CE,

∴四边形ADCE是平行四边形,

∴CD AE.

点评:此题主要考查了平行四边形的判定与性质等知识点的理解和掌握,解答此题的关键是求证△ADO≌△ECO,然后可得证四边形ADCE是平行四边形,即可得出结论.

6.(2010?恩施州)如图,已知,?ABCD中,AE=CF,M、N分别是DE、BF的中点.

求证:四边形MFNE是平行四边形.

考点:平行四边形的判定与性质;全等三角形的判定与性质。

专题:证明题。

分析:平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为M、N分别是DE、BF的中点,根据条件在图形中的位置,可选择利用“一组对边平行且相等的四边形为平行四边形”来解决.

解答:证明:由平行四边形可知,AD=CB,∠DAE=∠FCB,

又∵AE=CF,∴△DAE≌△BCF,

∴DE=BF,∠AED=∠CFB

又∵M、N分别是DE、BF的中点,∴ME=NF

又由AB∥DC,得∠AED=∠EDC

∴∠EDC=∠BFC,∴ME∥NF

∴四边形MFNE为平行四边形.

点评:平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.

7.(2009?永州)如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.

求证:四边形AECF是平行四边形.

考点:平行四边形的判定与性质。

专题:证明题。

分析:根据两条对角线相互平分的四边形是平行四边形即可证明四边形AECF是平行四边形.

解答:证明:连接AC交BD于点O,

∵四边形ABCD为平行四边形,

∴OA=OC,OB=OD.

∵BE=DF,∴OE=OF.

∴四边形AECF为平行四边形.

点评:平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.

8.(2009?来宾)在?ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF 是平行四边形.

考点:平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质。

专题:证明题。

分析:由题意先证∠DAE=∠BCF=60°,再由SAS证△DCF≌△BAE,继而题目得证.

解答:证明:∵四边形ABCD是平行四边形,

∴CD=AB,AD=CB,∠DAB=∠BCD.

又∵△ADE和△CBF都是等边三角形,

∴DE=BF,AE=CF.

∠DAE=∠BCF=60°.

∵∠DCF=∠BCD﹣∠BCF,

∠BAE=∠DAB﹣∠DAE,

∴∠DCF=∠BAE.

∴△DCF≌△BAE(SAS).

∴DF=BE.

∴四边形BEDF是平行四边形.

点评:本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.

9.(2006?黄冈)如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.

考点:平行四边形的判定与性质。

专题:证明题。

分析:可根据一组对边平行且相等的四边形是平行四边形证明四边形DBCE是平行四边形,即可证明BC=DE.

解答:证明:∵E是AC的中点,

∴EC=AC,

又∵DB=AC,

∴DB=EC.

又∵DB∥EC,

∴四边形DBCE是平行四边形.

∴BC=DE.

点评:本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.

10.(2006?巴中)已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?

考点:平行四边形的判定与性质;梯形。

专题:动点型。

分析:若四边形PDCQ或四边形APQB是平行四边形,那么QD=CQ或AP=BQ,根据这个结论列出方程就可以求出时间.解答:解:设P,Q同时出发t秒后四边形PDCQ或四边形APQB是平行四边形,根据已知得到AP=t,PD=24﹣t,CQ=2t,BQ=30﹣2t.

(1)若四边形PDCQ是平行四边形,则PD=CQ,∴24﹣t=2t∴t=8∴8秒后四边形PDCQ是平行四边形;

(2)若四边形APQB是平行四边形,则AP=BQ,∴t=30﹣2t∴t=10∴10秒后四边形APQB是平行四边形

点评:此题主要考查了平行四边形的性质与判定,不过用运动的观点结合梯形的知识出题学生不是很适应.

11.(2002?三明)如图:已知D、E、F分别是△ABC各边的中点,

求证:AE与DF互相平分.

考点:平行四边形的判定与性质;三角形中位线定理。

专题:证明题。

分析:要证AE与DF互相平分,根据平行四边形的判定,就必须先四边形ADEF为平行四边形.

解答:证明:∵D、E、F分别是△ABC各边的中点,根据中位线定理知:

DE∥AC,DE=AF,

EF∥AB,EF=AD,

∴四边形ADEF为平行四边形.

故AE与DF互相平分.

点评:本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.三角形的中位线的性质定理,为证明线段相等和平行提供了依据.

12.已知:如图,在?ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.

考点:平行四边形的判定与性质。

专题:证明题。

分析:因为?ABCD,OB=OD,又AODE是平行四边形,AE=OD,所以AE=OB,又AE∥OD,根据平行四边形的判定,可推出四边形ABOE是平行四边形.同理,也可推出四边形DCOE是平行四边形.

解答:证明:∵?ABCD中,对角线AC交BD于点O,

∴OB=OD,

又∵四边形AODE是平行四边形,

∴AE∥OD且AE=OD,

∴AE∥OB且AE=OB,

∴四边形ABOE是平行四边形,

同理可证,四边形DCOE也是平行四边形.

点评:此题要求掌握平行四边形的判定定理:有一组对边平行且相等的四边形是平行四边形.

13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.

求证:EF和GH互相平分.

考点:平行四边形的判定与性质。

专题:证明题。

分析:要证明EF和GH互相平分,只需构造一个平行四边形,运用平行四边形的性质:平行四边形的对角线互相平分即可证明.

解答:证明:连接EG、GF、FH、HE,点E、F、G、H分别是AB、CD、AC、BD的中点.

在△ABC中,EG=BC;在△DBC中,HF=BC,

∴EG=HF.

同理EH=GF.

∴四边形EGFH为平行四边形.

∴EF与GH互相平分.

点评:本题考查的是综合运用平行四边形的性质和判定定理.熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.

14.如图:?ABCD中,MN∥AC,试说明MQ=NP.

考点:平行四边形的判定与性质。

专题:证明题。

分析:先证AMQC为平行四边形,得AC=MQ,再证APNC为平行四边形,得AC=NP,进而求解.

解答:证明:∵四边形ABCD是平行四边形,

∴AM∥QC,AP∥NC.

又∵MN∥AC,

∴四边形AMQC为平行四边形,四边形APNC为平行四边形.

∴AC=MQ AC=NP.

∴MQ=NP.

点评:本题考查的知识点为:两组对边分别平行的四边形是平行四边形.

15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.

考点:平行四边形的判定与性质;全等三角形的判定与性质。

专题:证明题。

分析:要证四边形EHFG是平行四边形,需证OG=OH,OE=OF,可分别由四边形ABCD是平行四边形和△OEB≌△OFD 得出.

解答:证明:如答图所示,

∵点O为平行四边形ABCD对角线AC,BD的交点,

∴OA=OC,OB=OD.

∵G,H分别为OA,OC的中点,

∴OG=OA,OH=OC,

∴OG=OH.

又∵AB∥CD,

∴∠1=∠2.

在△OEB和△OFD中,

∠1=∠2,OB=OD,∠3=∠4,

∴△OEB≌△OFD,

∴OE=OF.

∴四边形EHFG为平行四边形.

点评:此题主要考查平行四边形的判定:对角线互相平分的四边形是平行四边形.

16.如图,已知在?ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.

(1)求证:四边形GEHF是平行四边形;

(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)

考点:平行四边形的判定与性质;全等三角形的判定与性质。

专题:证明题;探究型。

分析:(1)先由平行四边形的性质,得AB=CD,AB∥CD,根据两直线平行内错角相等得∠GBE=∠HDF.再由SAS可证△GBE≌△HDF,利用全等的性质,证明∠GEF=∠HFE,从而得GE∥HF,又GE=HF,运用一组对边平行且相等的四边形是平行四边形得证.

(2)仍成立.可仿照(1)的证明方法进行证明.

解答:(1)证明:∵四边形ABCD是平行四边形,

∴AB=CD,AB∥CD,∴∠GBE=∠HDF.

又∵AG=CH,∴BG=DH.

又∵BE=DF,∴△GBE≌△HDF.

∴GE=HF,∠GEB=∠HFD,∴∠GEF=∠HFE,

∴GE∥HF,∴四边形GEHF是平行四边形.

(2)解:仍成立.(证法同上)

点评:本题考查的知识点为:一组对边平行且相等的四边形是平行四边形.

17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.

(1)求证:AF=CE;

(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.

考点:平行四边形的判定与性质;正方形的判定。

专题:证明题。

分析:(1)由AF∥EC,根据平行线的性质得到∠DFA=∠DEC,∠DAF=∠DCE,而DA=DC,易证得△DAF≌△DCE,得到结论;

(2)由AF∥EC,AF=CE,根据平行四边形的判定得到四边形AFCE是平行四边形,再根据对角线相等即AC=EF,可判断平行四边形AFCE是矩形,则∠FCE=∠CFA=90°,通过

∠ACB=135°,可得到∠FCA=135°﹣90°=45°,则易判断矩形AFCE是正方形.

解答:(1)证明:∵AF∥EC,

∴∠DFA=∠DEC,∠DAF=∠DCE,

∵D是AC的中点,

∴DA=DC,

∴△DAF≌△DCE,

∴AF=CE;

(2)解:四边形AFCE是正方形.理由如下:

∵AF∥EC,AF=CE,

∴四边形AFCE是平行四边形,

又∵AC=E F,

∴平行四边形AFCE是矩形,

∴∠FCE=∠CFA=90°,

而∠ACB=135°,

∴∠FCA=135°﹣90°=45°,

∴∠FAC=45°,

∴FC=FA,

∴矩形AFCE是正方形.

点评:本题考查了平行四边形的判定与性质:一组对边平行且相等的四边形是平行四边形.也考查了矩形、正方形的判定方法.

18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2

(1)求证:D是EC中点;

(2)求FC的长.

考点:平行四边形的判定与性质。

分析:(1)根据平行四边形的对边平行可以得到AB∥CD,又AE∥BD,可以证明四边形ABDE是平行四边形,所以AB=DE,故D是EC的中点;

(2)连接EF,则△EFC是直角三角形,根据直角三角形斜边上的中线等于斜边的一半可以得到△CDF是等腰三角形,再利用∠ABC=60°推得∠DCF=60°,所以△CDF是等边三角形,FC=DF,FC的长度即可求出.

解答:(1)证明:在平行四边形ABCD中,

AB∥CD,且AB=CD,

又∵AE∥BD,

∴四边形ABDE是平行四边形,

∴AB=DE,

∴CD=DE,

即D是EC的中点;

(2)解:连接EF,∵EF⊥BF,

∴△EFC是直角三角形,

又∵D是EC的中点,

∴DF=CD=DE=2,

在平行四边形ABCD中,AB∥CD,

∵∠ABC=60°,

∴∠ECF=∠ABC=60°,

∴△CDF是等边三角形,

∴FC=DF=2.

故答案为:2.

点评:本题主要考查了平行四边形的性质与判定,直角三角形斜边上的中线等于斜边的一半以及等边三角形的判定,熟练掌握性质定理并灵活运用是解题的关键,(2)中连接EF构造出直角三角形比较重要.

19.(2010?厦门)如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.

(1)求证:四边形EFCD是平行四边形;

(2)若BF=EF,求证:AE=AD.

考点:平行四边形的判定;全等三角形的判定与性质;等边三角形的性质。

专题:证明题。

分析:(1)由△ABC是等边三角形得到∠B=60°,而∠EFB=60°,由此可以证明EF∥DC,而DC=EF,然后即可证明四边形EFCD是平行四边形;

(2)如图,连接BE,由BF=EF,∠EFB=60°可以推出△EFB是等边三角形,然后得到EB=EF,∠EBF=60°,而DC=EF,由此得到EB=DC,又

△ABC是等边三角形,所以得到∠ACB=60°,AB=AC,然后即可证明△AEB≌△ADC,利用全等三角形的性质就证明AE=AD.

解答:证明:(1)∵△ABC是等边三角形,

∴∠ABC=60°,

∵∠EFB=60°,

∴∠ABC=∠EFB,

∴EF∥DC(内错角相等,两直线平行),

∵DC=EF,

∴四边形EFCD是平行四边形;

(2)连接BE

∵BF=EF,∠EFB=60°,

∴△EFB是等边三角形,

∴EB=EF,∠EBF=60°

∵DC=EF,

∴EB=DC,

∵△ABC是等边三角形,

∴∠ACB=60°,AB=AC,

∴∠EBF=∠ACB,

∴△AEB≌△ADC,

∴AE=AD.

点评:此题把等边三角形和平行四边形结合在一起,首先利用等边三角形的性质证明平行四边形,然后利用等边三角形的性质证明全等三角形,最后利用全等三角形的性质解决问题.

20.(2010?滨州)如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.

(1)请判断四边形EFGH的形状?并说明为什么;

(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?

考点:平行四边形的判定;三角形中位线定理;正方形的性质。

专题:证明题。

分析:(1)连接AC,利用中位线定理即可证明四边形EFGH是平行四边形;

(2)由于四边形EFGH为正方形,那么它的邻边互相垂直且相等,根据中位线定理可以推出四边形ABCD的对角线应该互相垂直且相等.

解答:解:(1)如图,四边形EFGH是平行四边形.

连接AC,

∵E、F分别是AB、BC的中点,

∴EF∥AC,EF=AC

同理HG∥AC,

∴EF∥HG,EF=HG

∴EFGH是平行四边形;

(2)四边形ABCD的对角线垂直且相等.

∵假若四边形EFGH为正方形,

∴它的每一组邻边互相垂直且相等,

∴根据中位线定理得到四边形ABCD的对角线应该互相垂直且相等.

点评:此题主要考查了三角形的中位线定理,及平行四边形的判定,正方形的性质等知识.

21.(2008?佛山)如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.

(1)当AB≠AC时,证明:四边形ADFE为平行四边形;

(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.

考点:平行四边形的判定;全等三角形的判定与性质;等边三角形的性质。

专题:证明题。

分析:(1)要证明ADEF是平行四边形,可通过证明EF=AD,DF=AE来实现,AD=AC,AE=AB,那么只要证明△ABC≌△DFC 以及△FEB≌△CAB即可.AD=DC,CF=CB,又因为∠FCB=∠ACD=60°,那么都减去一个∠ACE后可得出∠BCA=∠FCD,那么就构成了SAS,△ABC≌△DFC,就能求出AE=DF,同理可通过证明△FEB≌△CAB得出EF=AD.

(2)可按∠BAC得度数的不同来分情况讨论,如果∠BAC=60°,∠EAD+∠BAC+∠DAC=180°,因此,A与F重合A、D、F、E四点所构成的图形为一条线段.

当∠BAC≠60°时,由(1)AE=AB=AC=AD,因此A、D、F、E四点所构成的图形是菱形.

解答:(1)证明:∵△ABE、△BCF为等边三角形,

∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°.

∴∠CBA=∠FBE.

∴△ABC≌△EBF.

∴EF=AC.

又∵△ADC为等边三角形,

∴CD=AD=AC.

∴EF=AD.

同理可得AE=DF.

∴四边形AEFD是平行四边形.

(2)解:构成的图形有两类,一类是菱形,一类是线段.

当图形为菱形时,∠BAC≠60°(或A与F不重合、△ABC不为正三角形)

当图形为线段时,∠BAC=60°(或A与F重合、△ABC为正三角形).

点评:本题的关键是通过三角形的全等来得出线段的相等,要先确定所要证得线段所在的三角形,然后看证明三角形全等的条件是否充足,缺少条件的要根据已知先求出了.

22.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED 是否为平行四边形?如果是,请证明之,如果不是,请说明理由.

考点:平行四边形的判定;全等三角形的判定与性质;等边三角形的性质。

专题:探究型。

分析:由等边三角形的性质易得△BED≌△BCA,△CBA≌△CEF,从而得到DE=FC=AF,AD=BC=EF,再由两组对边相等的四边形是平行四边形得到四边形AFED是平行四边形.

解答:解:四边形AFED是平行四边形.

证明如下:

在△BED与△BCA中,BE=BC,BD=BA(均为同一等边三角形的边)

∠DBE=∠ABC=60°﹣∠EBA

∴△BED≌△BCA(SAS)

∴DE=AC

又∵AC=AF∴DE=AF

在△CBA与△CEF中,CB=CE,CA=CF

∠ACB=∠FCE=60°+∠ACE

∴△CBA≌△CEF(SAS)

∴BA=EF

又∵BA=DA,∴DA=EF

故四边形AFED为平行四边形(两组对边分别相等的四边形是平行四边形).

点评:本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.

23.(2007?黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB 交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.

请直接应用上述信息解决下列问题:

当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证

明.

考点:平行四边形的性质。

专题:探究型。

分析:在图2中,因为四边形PEAF为平行四边形,所以PE=AF,又三角形FDC为等腰三角形,所以FD=PF+PD=FC,即PE+PD+PF=AC=AB,在图3中,PE=AF可证,FD=PF﹣PD=CF,即PF﹣PD+PE=AC=AB.

解答:解:图2结论:PD+PE+PF=AB.

证明:过点P作MN∥BC分别交AB,AC于M,N两点,

由题意得PE+PF=AM.

∵四边形BDPM是平行四边形,∴MB=PD.

∴PD+PE+PF=MB+AM=AB,

即PD+PE+PF=AB.

图3结论:PE+PF﹣PD=AB.

点评:此题主要考查了平行四边形的性质,难易程度适中,读懂信息,把握规律是解题的关键.

24.(2006?大连)如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.

探究:

(1)请猜想与线段DE有关的三个结论;

(2)请你利用图2,图3选择不同位置的点P按上述方法操作;

(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;

如果你认为你写的结论是错误的,请用图2或图3加以说明;

(注意:错误的结论,只要你用反例给予说明也得分)

(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).

考点:平行四边形的性质;全等三角形的判定与性质。

专题:探究型。

分析:连接BE,根据边角边可证三角形PAM和三角形EBM全等,可得EB和PA既平行又相等,而PA和CD既平行且相等,所以DE和BC平行相等,又BC⊥AC,所以DE也和AC垂直.以下几种情况虽然图象有所变化,但是证明方法一致.

解答:解:(1)DE∥BC,DE=BC,DE⊥AC.

(2)如图4,如图5.

(3)方法一:

如图6,

连接BE,

∵PM=ME,AM=MB,∠PMA=∠EMB,

∴△PMA≌△EMB.

∵PA=BE,∠MPA=∠MEB,

∴PA∥BE.

∵平行四边形PADC,

∴PA∥DC,PA=DC.

∴BE∥DC,BE=DC,

∴四边形DEBC是平行四边形.

∴DE∥BC,DE=BC.

∵∠ACB=90°,

∴BC⊥AC,

∴DE⊥AC.

方法二:

如图7,连接BE,PB,AE,

∵PM=ME,AM=MB,

∴四边形PAEB是平行四边形.

∴PA∥BE,PA=BE,

余下部分同方法一:

方法三:

如图8,连接PD,交AC于N,连接MN,

∵平行四边形PADC,

∴AN=NC,PN=ND.

∵AM=BM,AN=NC,

∴MN∥BC,MN=BC.

又∵PN=ND,PM=ME,

∴MN∥DE,MN=DE.

∴DE∥BC,DE=BC.

∵∠ACB=90°,

∴BC⊥AC.

∴DE⊥AC.

(4)如图9,DE∥BC,DE=BC.

点评:此题主要考查了平行四边形的性质和判定,以及全等的应用,难易程度适中.

25.(2005?贵阳)在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;

(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有无数组;

(2)请在图中的三个平行四边形中画出满足小强分割方法的直线;

(3)由上述实验操作过程,你发现所画的两条直线有什么规律?

考点:平行四边形的性质。

专题:作图题。

分析:注意由于平行四边形是中心对称图形,故只要过它的对称中心画直线即可.

解答:解:(1)无数;

(2)作图的时候要首先找到对角线的交点,只要过对角线的交点,任画一条直线即可.如图有:AE=BE=DF=CF,AM=CN.(3)这两条直线过平行四边形的对称中心(或对角线的交点).

点评:平行四边形是中心对称图形,平行四边形的两条对角线交于一点,这个点是平行四边形的中心,也是两条对角线的中点,经过中心的任意一条直线可将平行四边形分成完全重合的两个图形.

26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.

(1)求CD的长;

(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;

(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.

考点:平行四边形的性质;一元二次方程的应用;直角梯形。

专题:动点型。

分析:(1)过点A作AM⊥CD于M,根据勾股定理,可以求出DM=6所以DC=16.

(2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图示,由题可得:BP=10﹣3t,DQ=2t,所以可以列出方程10﹣3t=2t,解得t=2,此时,BP=DQ=4,CQ=12,在△CBQ中,根据勾股定理,求出BQ即可.

(3)此题要分三种情况进行讨论:即①当点P在线段AB上,②当点P在线段BC上,③当点P在线段CD上,根据三种情况点的位置,可以确定t的值.

解答:解:(1)过点A作AM⊥CD于M,

根据勾股定理,AD=10,AM=BC=8,

∴DM==6,

∴CD=16;

(2)当四边形PBQD为平行四边形时,

点P在AB上,点Q在DC上,如图,

由题知:BP=10﹣3t,DQ=2t

∴10﹣3t=2t,解得t=2

此时,BP=DQ=4,CQ=12

∴四边形PBQD的周长=2(BP+BQ)=;

(3)①当点P在线段AB上时,即时,如图

∴.

②当点P在线段BC上时,即时,如图

BP=3t﹣10,CQ=16﹣2t

化简得:3t2﹣34t+100=0,△=﹣44<0,所以方程无实数解.

③当点P在线段CD上时,

若点P在Q的右侧,即6≤t≤,

则有PQ=34﹣5t

<6,舍去

若点P在Q的左侧,

即,

则有PQ=5t﹣34,,

t=.

综合得,满足条件的t存在,其值分别为,t2=.

平行四边形性质和判定习题(答案详细)

平行四边形性质和判定习题 1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F. (1)求证:BE=DF; (2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由). 2.如图所示,?AECF的对角线相交于点O,DB经过点O,分别与AE, CF交于B,D. 求证:四边形ABCD是平行四边形. 3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足 分别为E,F. (1)求证:△ABE≌△CDF; (2)若AC与BD交于点O,求证:AO=CO. 4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD. 5.如图,已知D是△ABC的边AB上一点,CE∥AB, DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系, 并加以证明. 6.如图,已知,?ABCD中,AE=CF,M、N分别是DE、BF的中点. 求证:四边形MFNE是平行四边形.

7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA. 求证:四边形AECF是平行四边形. 8.在?ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形. 9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE. 10.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形? 11.如图:已知D、E、F分别是△ABC各边的中点, 求证:AE与DF互相平分. 12.已知:如图,在?ABCD中,对角线AC交BD于点O,四边形AODE是平行四 边形.求证:四边形ABOE、四边形DCOE都是平行四边形.

平行四边形典型例题精编版

平行四边形典型例题 1 如图,□ABCD的对角线AC、BD 相交于点O,则图中全等三角形有() A .2 对 B .3对 C .4 对 D .5对 17如图,□ABCD中,∠ B、∠ C的平分线交于点O ,BO 和CD 的延长线交于求证:BO=OE. 例3】如图,在ABCD中,AE⊥ BC于E ,AF⊥DC 于F ,∠ ADC=60°,BE=2,CF=1, 求△ DEC 的面积. 解】在中,,、 在Rt △ABE 中,, 在△ 中,

例 4】已知:如图, D 是等腰△ ABC 的底边 BC 上一点, DE//AC , DF//AB 求证: DE+DF=A .B , ,从而可以利用平行四边形的定义和性质,等腰 三角 形的判定和性质来证. 解】∵ , ∴四边形 是平行四边形. ∴. ∵ ,∴ . ∵ ,∴ 说明:证明一条线段等于另外两条线段的和常采用的方法是: 分为两段,证明这两段分别等于另两条线段. 于 ,求证: 分析】 分析】由于 把三条线段中较长的线段 例 5】如图, 已知: 中, 相交于 点, 于 ,

解】因为四边形是平行四边形,所以,又因为、交于点, 所以. 又因为, 所以 从而例6】已知:如图,AB//DC ,AC、BD交于O,且 AC=BD。 求证:OD=OC. 证明:过B 作交DC延长线于E,则 于是△≌△ ∵ ,, E

∵, ∴∴ 说明:本题条件中有“夹在两条平行线之间的相等且相交的线 段 时用不上,为此通过作平行线,由“夹在两条平行线间的平行线B BE ,得到等腰△ BDE ,使问题得解. 例 7】如图, □ABCD 的对角线 AC 的垂直平分线与边 AD 、BC 分别交于 E 、F , 例 8】如图所示, □ABCD 中,各内角的平分线分别相交于点 E 、 F 、 G 、 H , 证明:四边形 EFGH 是矩形。 例 9】如图所示,已知矩形 ABCD 的对角线 AC 、BD 交于点 O ,过顶点 C ,作 BD 的垂线与∠ BAD 的平分线相交于点 E ,交 BD 于 G ,证明: AC=CE 。 求证:四边形 AFCE 是菱形. 解:略。 置交错而 A 由 AC 平移到 E

平行四边形性质及判定练习题

A B E C F D O B D C E D C O F B A 平行四边形性质及判定练习题 一、耐心填一填! 1、ABCD 中,∠B -∠A =40°,则∠D =__。 2、ABCD 的周长是44cm ,AB 比AD 大2cm ,则AB =__cm ,AD =__cm 。 3、平行四边形的两个相邻内角的平分线相交所成的角的度数是__。 4、平行四边形的两条邻边的比为2∶1,周长为60cm ,则这个四边形较短的边长为__。 5、如图所示,在ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F , ∠BAD =120°,BE =2,FD =3,则∠EAF =___,ABCD 的周长为__。 6.若平行四边形的两邻边的长分别为16和20,两长边间的距离为8, 则两短边间的距离为_____________. 7、ABCD ,AB=6cm,BC=8cm ,∠B=70°,则AD=________,CD=______, ∠D=__________,∠A=_________,∠C=__________. 8、平行四边形周长为50cm ,两邻边之差为5cm,各边长为 。 9.如图,平行四边形ABCD 的周长为30cm,它的对角线AC 和BD 相交于O,且△ AOB 的周长比△BOC 的周长大5cm,AB= 、BC= 。 10.平行四边形ABCD 的对角线AC 和BD 相交于O,则其中全等的三角形有___ 对。 二、精心选一选! 11、下面各条件中,能判定四边形是平行四边形的是 ( ) A 、对角线互相垂直 B 、对角线互相平分 C 、一组对角相等 D 、一组对边相等 12、已知下列四个命题:①一组对边平行且相等的四边形;②两组对角分别相等的四边形;③对角线相等的四边形;④对角线互相平分的四边形。其中能判定平行四边形的命题的个数为 ( ) A 、1个 B 、2个 C 、3个 D 、4个 13、平行四边形的两条对角线及一边的长可依次取 ( ) A 、6、6、6 B 、6、4、3 C 、6、4、6 D 、3、4、5 14、以不共线三点为三个顶点作平行四边形,一共可作平行四边形的个数是 ( ) A 、2个 B 、3个 C 、4个 D 、5个 15、四边形ABCD 的四个角∠A ∶∠B ∶∠C ∶∠D 满足下列哪一条件时,四边形ABCD 是平行四边形?( ) A 、1∶2∶2∶1 B 、2∶1∶1∶1 C 、1∶2∶3∶4 D 、2∶1∶2∶1 16、如图所示,在ABCD 中,EF 过对角线的交点,若AB =4,BC =7,OE =3,则四边形EFDC 的周长是( ) A 、14 B 、11 C 、10 D 、17 17、四边形ABCD 中,AD ∥BC ,要判定四边形ABCD 是平行四边形, 还应满足( ) A 、∠A +∠C =180° B 、∠B +∠D =180° C 、∠A +∠B =180° D 、∠A +∠D =180° 18、根据下列条件,得不到平行四边形的是( ) A 、 AB =CD ,AD =BC B 、AB ∥CD ,AB =CD C 、AB =CD ,AD ∥BC D 、AB ∥CD ,AD ∥BC 19、若ABCD 的周长为40cm ,ΔABC 的周长为27cm ,则AC 的长是( ) A 、13cm B 、3cm C 、7cm D 、11.5cm

(完整版)平行四边形的性质和判定练习题

初2017级寒假培训(八)A 层----平行四边形的性质与判定 班级: 姓名: 1.定义:两组对边互相平行的四边形叫做平行四边形,平行四边形ABCD 记作:□ 几何语言:, 2.性质:平行四边形的对边平行且相等,对角相等,邻角互补,对角线互相平分; 几何语言:∵ 四边形ABCD 是平行四边形 ∴AD ∥ BC, _________ (对边平行);AD=BC ,__________(对边相等); ,_________(对角相等);…(邻角互补); , (对角线互相平分)。 平行四边形的判定: 判定1.两组对边分别平行的四边形是平行四边形 判定2.两组对边分别相等的四边形是平行四边形 判定3.两组对角分别相等的四边形是平行四边形 判定4.对角线互相平分的四边形是平行四边形 判定5.一组对边平行且相等的四边形是平行四边形; 几何语言 判定1., 判定2., 判定3., 判定4. 判定5., 夯实基础: 1.如图,将□的一边BC 延长至E ,若∠A =110°,则∠1=________. E 2.如图,在□中,,则= °. 3.在平行四边形ABCD 中,cm AB 6=,cm BC 8=,则平行四边形ABCD 的周长 为 cm . 4.如图,在□中,已知, 平分交边于点,ABCD BC AD CD AB //,//Θ是平行四边形四边形ABCD ∴BCD BAC ∠=∠ο180=∠+∠ABC BAC OC OA =BC AD CD AB //,//Θ是平行四边形四边形ABCD ∴BC AD DC AB ==,是平行四边形四边形ABCD ∴BCD BAD ADC ABC ∠=∠∠=∠,Θ是平行四边形四边形ABCD ∴,,DO BO CO AO ==Θ是平行四边形四边形ABCD ∴CD AB CD AB =,//Θ是平行四边形四边形ABCD ∴ABCD ABCD ο120=∠A D ∠ABCD ,6,8CM AB CM AD ==DE ADC ∠BC E A B C D O A B C D 4 E A B C D 2 1 A B C D

(1)平行四边形性质和判定复习课教学设计

课题:18.1平行四边形(第6课时) ——平行四边形的性质与判定(复习课) 十堰市郧阳区城关一中王平利 学情分析:该班约有三分之一的学生成绩优良,基础扎实;三分之一的学生成绩一般,有些基础比较欠缺,需要通过复习来巩固;还有三分之一的学生成绩不稳定,基础不扎实,约有四分之一的学生成绩介于合格与不合格之间。本节是节复习课,在之前,学生已经学习了平行四边形的性质与判定定理,只是在应用方面还不灵活;学生有一定的分析问题和逻辑推理的能力,有一定的语言表达和概括的能力,有一定的自主学习和合作探究的能力。 教学目标: 1、知识技能:熟练掌握平行四边形的定义、性质、判定定理及面积公式,并运用它们进行有关的论证和计算。 2、过程与方法:通过归纳、整理平行四边形的性质及判定,感受数学思考过程的条理性,发展学生的收集、整理、小结、概括的能力。 3、情感态度:在整理知识点的过程中,发展学生的独立思考习惯,提高学生的动手操作能力。 教学重点:熟练运用平行四边形的性质与判定解答。 教学难点:平行四边形的性质与判定的综合运用。 教学方法:自主学习合作探究 教学过程: 一、巩固复习:

(一)知识回顾: 1、平行四边形的定义:两组对边分别平行的四边形是平行四边形。 边:对边平行且相等 角:对角相等,邻角互补 2、平行四边形的性质 对角线:互相平分 对称性:中心对称图形 3、平行四边形的判定: ??? ? ?? ???对角线互相平分两组对角分别相等两组对边分别相等两组对边分别平行一组对边平行且相等的四边形是平行四边形. 4、三角形中位性定理:三角形中位线平行于三角形的第三边,并且等于第三边的一半. 5、两平行线间的距离性质:两平行线间的距离处处相等. (二)巩固练习: 1、平行四边形具有而一般四边形不具有的特征是( ) A 、不稳定性 B 、对角线互相平分 C 、内角的和为360度D 、外角和为360度 2、 已知一个平行四边形两邻边的长分别为10和6,那么它的周长为( ). A. 16 B. 60 C.32 D. 30 3、平行四边形ABCD 中, ∠A:∠B:∠C:∠D 的值可以是( ). A. 4:3:3:4 B. 7:5:5:7 C. 4:3:2:1 D. 7:5:7:5

平行四边形 经典例题

平行四边形 一、 基础知识平行四边形 二、1、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三遍的一半。 2、由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。 三、例题 例1、如图1,平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F. 求证:∠BAE =∠DCF. 例2、如图2,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F. 求证:BE = CF. 例3、已知:如图3,在梯形ABCD 中,AD ∥BC ,AB = DC ,点E 、F 分别在AB 、CD 上,且BE = 2EA , CF = 2FD. 求证:∠BEC =∠CFB. (图1) B O A B C D E F (图2)

例4、如图6,E 、F 分别是 ABCD 的AD 、BC 边上的点,且AE = CF. (1 △ ABE ≌△CDF ; (2)若 、N 分别是BE 、DF 的中点,连结MF 、EN ,试判断四边形MFNE 是怎样的四 边形,并证明你的结论. 例5、如图7 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F.,求证:四边形AFCE 是菱形. 例6、如图8,四边形ABCD 是平行四边形,O 是它的中心,E 、F 是对角线AC 上的点. (1)如果 ,则△DEC ≌△BFA (请你填上一个能使结论成立的一个条件); (2)证明你的结论. 例7、如图9,已知在梯形ABCD 中,AD ∥BC ,AB = DC ,对角线AC 和BD 相交于点O ,E 是BC 边上一个动点(点E 不与B 、C 两点重合),EF ∥BD 交AC 于点F ,EG ∥AC 交BD 于点C. (1)求证:四边形EFOG 的周长等于2OB ; (2)请你将上述题目的条件“梯形ABCD 中,AD ∥BC ,AB = DC”改为另一种四边形,其他条件不变,使得结论,“四边形EFOG 的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明. 例8、有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形的面积两等分),试设计两种方案(平分方案画在备用图13(1)、(2)上),并给予合理的解释. A D B C E F (图6) M N 备用图(1) 备用图(2) B C B

特殊平行四边形性质和判定归纳表

平行四边形、矩形、菱形、正方形性质和判定归纳如表:类 别 性质判定对称性 平行四边形①对边平行 ②对边相等 ③对角相等 ④对角线互相平分 (⑤邻角互补) ①两组对边分别平行的四边形 ②两组对边分别相等的四边形 ③一组对边平行且相等的四边形 ④两组对角分别相等的四边形 ⑤对角线互相平分的四边形 中 心 对 称 矩形①具有平行四边形的 一切性质 ②四个角都是直角 ③对角线相等 ①有一个角是直角的平行四边形 ②有三个角是直角的四边形 ③对角线相等的平行四边形 中轴 心对 对称 称 菱形①具有平行四边形的 一切性质 ②四条边都相等 ③对角线互相垂直 (平分每组对角) ①有一组邻边相等的平行四边形 ②四条边都相等的四边形 ③对角线互相垂直的平行四边形 (④对角线垂直且平分的四边形) 中轴 心对 对称 称 正方形①具有平行四边形、矩 形、菱形的一切性质 (②对角线与边的夹角 为450) ①有一个角是直角且有一组邻边 相等的平行四边形 ②有一组邻边相等的矩形 ③有一个角是直角的菱形 (④对角线垂直且相等的平行四 边形) 中轴 心对 对称 称 四种特殊四边形的性质 边角对角线对称性 平行 四边形 对边平行 且相等 对角相等互相平分中心对称 矩形对边平行 且相等 四个角 都是直角 互相平分 且相等 轴对称 中心对称 菱形对边平行 四条边相等 对角相等互相垂直平分(且 每条对角线平分一组对角) 轴对称 中心对称 正方形对边平行 四条边相等 四个角 都是直角 互相垂直平分且相等,(每 条对角线平分一组对角) 轴对称 中心对称 四种特殊四边形常用的判定方法: 平行 四边形 ①两组对边分别平行的四边形 ②两组对边分别相等的四边形 ③一组对边平行且相等的四边形 ④两组对角分别相等的四边形 ⑤对角线互相平分的四边形 矩形 ①有一个角是直角的平行四边形 ②有三个角是直角的四边形 ③对角线相等的平行四边形 菱形 ①有一组邻边相等的平行四边形 ②四条边都相等的四边形 ③对角线互相垂直的平行四边形 ④对角线垂直且平分的四边形 正方形 ①有一个角是直角一组邻边相等的平行四边形 ②一组邻边相等的矩形 ③一个角是直角的菱形 ④对角线垂直且相等的平行四边形

(完整版)平行四边形经典练习题

挑战自我: 1、 (2010年眉山市).如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ ABC 的度数为( ) A .90° B .60° C .45° D .30° 2、(2010福建龙岩中考)下列图形中,单独选用一种图形不能进行平面镶嵌的图形是( ) A. 正三角形 B. 正方形 C. 正五边形 D. 正六边形 3.(2010年北京顺义)若一个正多边形的一个内角是120°,则这个正多边形的边数是( ) A .9 B .8 C .6 D .4 4、(2010年福建福州中考)如图4,在□ABCD 中,对角线AC 、BD 相交于点O ,若AC=14,BD=8,AB=10,则△OAB 的周长为 。 5、(2010年宁德市)如图,在□ABCD 中,AE =EB ,AF =2,则FC 等于_____. 6题 6、 (2010年滨州)如图,平行四边形ABCD 中, ∠ABC=60°,E 、F 分别在CD 、BC 的延长线上,AE ∥BD,EF ⊥BC,DF=2,则EF 的长为 7、 (2010年福建晋江)如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形是平行四边形,并予以证明.(写出一种即可)关系:①∥,②,③,④. 已知:在四边形中, , ;求证:四边形是平行四边形. 8、(2010年宁波市)如图1,有一张菱形纸片ABCD ,8=AC ,6=BD 。 (1)请沿着AC 剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四 边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD 剪开, F E D C B A ABCD AD BC CD AB =C A ∠=∠?=∠+∠180C B ABCD ABCD D A B C A B C D 第5题图 F A E B C D

平行四边形典型例题

平行四边形典型例题 【例1】如图,□ABCD的对角线AC、BD相交于点O,则图中全等三角形有() A.2对 B.3对 C.4对 D.5对 【分析】由平行四边形的对边平行、对角线互相平分,可得全等三角形有:△ABD和△CDE, △ADC和△CBA ,△AOD 和△BOC 、△AOB 和△COD . 【答案】C 【例2】如图,□ABCD中,∠B、∠C的平分线交于点O ,BO 和CD 的延长线交于E ,求证:BO=OE . 【分析】证线段相等,可证线段所在三角形全等.可证△COE ≌△COB .已知OC 为公共边,∠OCE=∠OCB,又易证∠E=∠EBC.问题得证. 【证明】在□ABCD中,∵AB//CD, ∴, 又∵(角平分线定义). ∴, 又∵, ∴△≌△ ∴. 说明:证线段相等通常有两种方法:(1)在同一三角形中证三角形等腰;(2)不在同一三角形则证两三角形全等.本题也可根据等腰三角形“三线合一”性质证明结论.

【例3】如图,在ABCD中,AE⊥BC于E ,AF⊥DC 于F ,∠ADC=60°,BE=2,CF=1,求△DEC 的面积. 【解】在中,,、. 在Rt △ABE 中,,. ∴,. ∴. 在△中,. ∴. 故. 【例4】已知:如图,D 是等腰△ABC 的底边BC 上一点,DE//AC ,DF//AB .求证:DE+DF=AB. 【分析】由于,,从而可以利用平行四边形的定义和性质,等腰三角形的判定和性质来证. 【解】∵, ∴四边形是平行四边形. ∴. ∵,∴.

∵,∴. ∴. ∴. 说明:证明一条线段等于另外两条线段的和常采用的方法是:把三条线段中较长的线段分为两段,证明这两段分别等于另两条线段. 【例5】如图,已知:中,、相交于点,于, 于,求证:. 【分析】 【解】因为四边形是平行四边形, 所以,. 又因为、交于点, 所以. 又因为,, 所以.

平行四边形的定义及特殊四边形的性质及判定

平行四边形 一、平行四边形 1.平行四边形定义:两组对边分别平行的四边形是平行四边形。 2.平行四边形的判定定理: (1)判定定义:两组对边分别平行的四边形是平行四边形。 (2)判定定理1:一组对边平行且相等的四边形是平行四边形。 (3)判定定理2:两组对边分别相等的四边形是平行四边形。 (4)判定定理3:两组对角分别相等的四边形是平行四边形。 (5)判定定理4:对角线互相平分的四边形是平行四边形。 3.平行四边形的性质: (1)平行四边形的邻角互补,对角相等。 (2)平行四边形的对边平行且相等。 (3)夹在两条平行线间的平行线段相等。 (4)平行四边形的对角线互相平分。 (5)平行四边形是中心对称图形。 4.平行四边形的面积: 面积=底边长×高= ah(a是平行四边形任何一边长,h必须是a边与其对边的距离。) 二、矩形 1.矩形的定义:有一个角是直角的平行四边形是是矩形。 2.矩形的判定定理: (1)判定定义:有一个角是直角的平行四边形是是矩形。 (2)判定定理1:有三个角是直角的四边形是矩形。 (3)判定定理2:对角线相等的平行四边形是矩形。 3.矩形的性质: (1)具有平行四边形的一切性质。 (2)矩形的四个角都是直角。 (3)矩形的对角线相等。 (4)矩形既是轴对称图形又是中心对称图形。 4.矩形的面积: 矩形的面积=长×宽 三、菱形 1.菱形的定义:有一组邻边相等的平行四边形是菱形。 2.菱形的判定定理: (1)判定定义:有一组邻边相等的平行四边形是菱形。 (2)判定定理(1):四边都相等的四边形是菱形。 (3)判定定理(2):对角线互相垂直的平行四边形是菱形。 3.菱形的性质: (1)具有平行四边形的一切性质。 (2)菱形的四条边都相等。 (3)菱形的对角线互相垂直,并且每一条对角线平分一组对角。 (4)菱形既是轴对称图形又是中心对称图形。

平行四边形知识点与经典例题

第十八章平行四边形 18.1.1 平行四边形的性质 第一课时平行四边形的边、角特征 知识点梳理 1、有两组对边分别平行的四边形叫做平行四边形,平行四边形ABCD记作□ABCD。 2、平行四边形的对边相等,对角相等,邻角互补。 3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条直线之间的距离。知识点训练 1.(3分)如图,两对边平行的纸条,随意交叉叠放在一起,转动其中一,重合的部分构成一个四边形,这个四边形是________. 2.(3分)如图,在□ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( ) A.6个B.7个C.8个D.9个 3.(3分)在□ABCD中,AB=6 cm,BC=8 cm,则□ABCD的周长为cm. 4.(3分)用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,则较长的边的长度为cm. 5.(4分)在□ABCD中,若∠A∶∠B=1∶5,则∠D=;若∠A+∠C=140°,则∠D=. 6.(4分)(2014·)如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是. 7.(4分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为( ) A.53°B.37°C.47°D.123°

8.(8分)(2013·)如图所示,已知在平行四边形ABCD中,BE=DF. 求证:AE=CF. 9.(4分)如图,点E,F分别是□ABCD中AD,AB边上的任意一点,若△EBC的面积为10 cm2,则△DCF的面积为。 10.(4分)如图,梯形ABCD中,AD∥BC,记△ABO的面积为S1,△COD的面积为S2,则S1,S2的大小关系是( ) A.S1>S2 B.S1=S2 C.S1<S2 D.无法比较 11.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可能是( ) A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.2∶1∶2∶1 12.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC;②MN=AM,下列说确的是( ) A.①②都对B.①②都错C.①对②错D.①错② 13.如图,在□ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF =60°,则□ABCD的周长为__.

平行四边形的性质及判定(提升版)

第11讲 平行四边形的性质及判定 小测试 总分10分 得分___________ 1.(4分)分式方程 12x x +-= 1 32 x +-的解为x =___________.3 2.(6分)若221x x x +-=1 4 ,则242331x x x -+=___________.1 【教学目标】 1.掌握平行四边形的性质定理和判定定理; 2.能熟练利用平行四边形的性质定理和判定定理进行证明和计算. 【教学重难点】 能熟练利用平行四边形的性质定理和判定定理进行证明和计算,证明线段平行、相等是常考点. 知识点1:平行四边形 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 知识点2:平行四边形的性质 1.平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分. 2.若一条直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线平分平行四边形的面积. 3.平行四边形是中心对称图形. 4.平行四边形的面积: ①如图1,S □ABCD =BC ·AE =CD ·AF . ②同底(等底)同高(等高)的平行四边形面积相等.如图2,□ABCD 与□EBCF 有公共边BC ,则S □ABCD =S □EBCF .特别地,当点P 是平行四边形任意一条边所在直线上的一点时,点P 与这条边的对边的两个顶点所构成的三角形的面积是平行四边形的面积的一半,如图3. 知识点3:平行四边形的判定 1.两组对边分别平行的四边形是平行四边形. 2.两组对边分别相等的四边形是平行四边形. 3.一组对边平行且相等的四边形是平行四边形. 4.对角线互相平分的四边形是平行四边形. 注意:两组对角分别相等的四边形不能直接作为平行四边形的判定依据,在证明题或计算题中不能直接使用,必须转化成两组对边分别平行的四边形是平行四边形(利用四边形的内角和是360°,一半则为180°,同旁内角互补,得到两组对边分别平行). 在平行四边形中熟悉下列基本图形、基本结论: A D B C E F A D B C E F P A D B C 图1 图2 图3

平行四边形知识点及典型例题

一、知识点讲解: 1.平行四边形的性质: 四边形ABCD 是平行四边形?????? ????. 54321)邻角互补()对角线互相平分;()两组对角分别相等; ()两组对边分别相等;()两组对边分别平行;( 2.平行四边形的判定: . 3. 矩形的性质: 因为四边形ABCD 是矩形??? ? ??.3; 2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( (4)是轴对称图形,它有两条对称轴. 4矩形的判定: (1)有一个角是直角的平行四边形; (2)有三个角是直角的四边形; (3)对角线相等的平行四边形; (4)对角线相等且互相平分的四边形. ?四边形ABCD 是矩形. 两对角线相交成60°时得等边三角形。 5. 菱形的性质: 因为ABCD 是菱形??? ? ??.321角)对角线垂直且平分对()四个边都相等; (有通性;)具有平行四边形的所( 6. 菱形的判定: ?? ? ?? +边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321?四边形ABCD 是菱形. 菱形中有一个角等于60°时,较短对角线等于边长; 菱形中,若较短对角线等于边长,则有等边三角形; 菱形中,两对角线把菱形分成4个全等的直角三角形,每个直角三角形的斜边是菱形的边,两直角边分别是两对角线的一半。 菱形的面积等于两对角线长积的一半。 A B D O C A B D O C A D B C A D B C O C D B A O C D B A O

C D A B A B C D O 7.正方形的性质: 四边形ABCD 是正方形??? ? ??.321分对角)对角线相等垂直且平(角都是直角; )四个边都相等,四个(有通性;)具有平行四边形的所( 8. 正方形的判定: ???? ? ? ? ?? ++++++对角线互相垂直矩形)(一组邻边等 矩形)(对角线相等)菱形(一个直角)菱形(一个直角一组邻边等)平行四边形(54321?四边形ABCD 是正方形. 9. 1.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三 遍的一半。 2.由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。 二、例题 例1:如图1,平行四边形ABCD 中,AE⊥BD,CF⊥BD,垂足分别为E 、F. 求证:∠BAE =∠DCF. 例2如图2,矩形ABCD 中,AC 与BD 交于O 点,BE⊥AC 于E ,CF⊥BD 于F. 求证:BE = CF. 例3.已知:如图,在△ABC 中,中线BE ,CD 交于点O ,F ,G 分别是OB ,OC 的中点.求证:四边形DFGE 是平行四边形. 例4如图7 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F. 求证:四边形AFCE 是菱形. (图1) O A B C D E F (图2) B

《平行四边形》的性质与判定 专题练习题 含答案

人教版数学八年级下册第十八章平行四边形平行四边形的性质与判定专题练习题1.在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各 点中不能作为平行四边形顶点坐标的是() A.(-3,1) B.(4,1) C.(-2,1) D.(2,-1) 2.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有?ADCE中,DE最小的值是() A.2 B.3 C.4 D.5 3.如图,E是?ABCD内任意一点,若平行四边形的面积是6,则阴影部分的面积为____. 4.如图,?ABCD与?DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为_______. 5.如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE. (1)求证:△ABC≌△EAD; (2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数. 6.如图,在?ABCD中,E是BC的中点,AE=9,BD=12,AD=10. (1)求证:AE⊥BD; (2)求?ABCD的面积.

7 如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E. (1)求证:BE=CD; (2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求?ABCD的面积 8. 如图,已知AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF. 求证:四边形BECF是平行四边形. 9. 如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′的位置,则四边形ACE′E的形状是_____________. 10. 如图,已知点E,C在线段BF上,BE=CE=CF,AB∥DE,∠ACB=∠F. (1)求证:△ABC≌△DEF;

初三数学-平行四边形经典例题讲解(3套)

初三数学 经典例题(附带详细答案) 1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥, 求证:AF CE =. 【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =, ACB CAD ∴∠=∠. 又BE DF ∥, BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF = 2.如图,四边形ABCD 中,AB ∥CD ,∠B=∠D ,, 求四边形ABCD 的周长. 【答案】 解法一: ∵ ∴ 又∵ ∴ ∴∥即得是平行四边形 ∴ ∴四边形的周长 解法二: 3 ,6==AB BC AB CD ∥?=∠+∠180C B B D ∠=∠?=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=A D C B D C A B E F

连接 ∵ ∴ 又∵ ∴≌ ∴ ∴四边形的周长 解法三: 连接 ∵ ∴ 又∵ ∴ ∴∥即是平行四边形 ∴ ∴四边形的周长 3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍, 求∠A ,∠B ,∠C 的大小. 【关键词】多边形的内角和 【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠. 根据四边形内角和定理得,360602)20(=++++x x x . 解得,70=x . AC AB CD ∥DCA BAC ∠=∠B D AC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=?+?=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=A D C B A D C B

平行四边形的定义,性质及判定方法

一、平行四边形知识结构及要点小结 平行四边形定义:有两组对边分别平行的四边开形是平行四边形。性质:1、平行四边形的两组对边分别平行。 2、平行四边形的两组对边分别相等 3、平行四边形的两组对角分别相等 4、平行四边形的两条对角线互相平分。 判定方法:1、两组对边分别平行的四边形是平行四边形。 2、两组对边分别相等的四边形是平行四边形。 3、一组对边平行且相等的四边形是平行四边形。 4、两条对角线互相平分的四边形是平行四边形。 5、两组对角分别相等的四边形是平行四边形。 三角形中位线定义:连接三角形两边中点的线段叫三角形的中位线。 定理;三角形的中位线平行于三角形的第三边,且等于第三边的一半。 二、解题方法及技巧小结: 证明线段相等或角相等的问题用过去所学的全等知识也可完成,但相对比而言,应用平行四边形的性质求证较为简单。另外平行四边形对角线是很重要的基本图形,应用它的性质解题可开辟新的途径。

特殊的平行四边形知识结构及要点小结 矩形:定义:有一个角是直角的平行四边形叫做矩形。 性质:1、具有平行四边形的所有性质。 2、矩形有四个角都是直角。 3、矩形有对角线相等。 4、矩形是轴对称图形,有两条对称轴。 判定方法:1、定义 2、对角线相等的平行四边形是矩形。 3、有三个角是直角的四边形是矩形。 菱形:定义:有一组邻边相等的平行四边形叫菱形。 性质;1、具有平行四边形所有性质。 2、菱形有四条边都相等。 3、菱形的两条对角线互相垂直,并且每一条对角线平分一组对角 4、菱形是轴对称图形。 判定方法:1、定义 2、对角线互相垂直的平行四边形 3、四边相等的四边形 正方形:定义;一组邻边相等的矩形 性质:具有平行四边形、矩形、菱形的所有性质 判定:1、定义 2、有一个内角是直角的菱形 3、对角线相等的菱形 4、对角线互相垂直的矩形 解题方法及技巧小结 菱形、矩形、正方形都是特殊的平行四边形。它们的性质既有区别又有联系,它们的判定方法虽然不同,但有许多相似之处,因此要用类比的思想,将学到的知识总结出相关规律。

平行四边形经典题型(培优提高)

中心对称与平行四边形的判定 知识归纳 1.中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与 原图形重合,那么就说这个图形是中心对称图形,这个点就是它的对称中心. 分析:一个图形;围绕一点旋转1800;重合. 2.思考:中心对称与中心对称图形有什么区别和联系? 1)区别: 中心对称是指两个全等图形之间的位置关系,成中心对称的两个图形中,其中一个图形上所有点关于对称中心的对称点都在另一个图形上,反之,另一个图形上所有点关于对称中心的对称点都在这;而中心对称图形是指一个图形本身成中心对称,中心对称图形上所有点关于对称中心的对称点都在这个图形本身上. 2)联系: 如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形;一个中心对称图形也可以看成是关于中心对称的两个图形. 3.中心对称图性质 1)中心对称图形的对称点所连线段都经过对称中心,而且被对称中心所平分. 2)中心对称图形的两个部分是全等的. 注:常见的中心对称图形有:矩形,菱形,正方形,平行四边形,圆,边数为偶数的正多边形,某些规则图形等. 正偶边形是中心对称图形 正奇边形不是中心对称图形如:正三角形不是中心对称图形、等腰梯形不是中心对称图形 4.平行四边形的性质: ①平行四边形两组对边相等。 ②平行四边形两组对角相等。 ③平行四边形对角线互分平分。 5.平行四边形判定: 定理1、一组对边平行且相等的四边形是平行四边形 定理2、两组对边分别相等的四边形是平行四边形。 定理3、对角线互相平分的四边形是平行四边形。 定理4、两组对角分别相等的四边形是平行四边形。 6.三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。 7.逆定理1:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是 三角形的中位线。 逆定理2:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

平行四边形经典题型(培优提高)

1.平行四边形的性质: ①平行四边形两组对边相等。 ②平行四边形两组对角相等。 ③平行四边形对角线互分平分。 2.平行四边形判定: 定理1、一组对边平行且相等的四边形是平行四边形 定理2、两组对边分别相等的四边形是平行四边形。 定理3、对角线互相平分的四边形是平行四边形。 定理4、两组对角分别相等的四边形是平行四边形。 3.三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。 4.逆定理1:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是 三角形的中位线。 逆定理2:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

第四节:中心对称图形 课堂练习 1.下列图形中,既是中心对称图形,又是轴对称图形的是() A.正三角形B.平行四边形C.等腰直角三角形D.正六边形 2.下列图形中,不是中心对称图形的是() 3.下列图形中,既是轴对称图形又是中心对称图形的是(). 4.下三图是由三个相同的小正方形拼成的图形,请你再添加一个同样大小的小正方形, 使所得的新图形分别为下列A,B,C题要求的图形,请画出示意图. (1)是中心对称图形,但不是轴对称图形; (2)是轴对称图形,但不是中心对称图形; (3)既是中心对称图形,又是轴对称图形. 第五节:平行四边形的判定 例题讲解 例1:判断下列说法的正误,如果错误请画出反例图 ①一组对边平行,另一组对边相等的四边形是平行四边形。( ) ②一组对边相等,另一组对边平行的四边形是平行四边形. ( ) ③一组对边平行,一组对角相等的四边形是平行四边形.( ) ④一组对边平行且相等的四边形是平行四边形.( ) ⑤两组邻角互补的四边形是平行四边形。( )

最新平行四边形性质与判定经典例题练习

第十九章 四边形 19.1.1 平行四边形的性质 第一课时 练一练: 1.已知:平行四边形的周长为28cm ,相邻两边的差为4cm ,则相邻两边长为 、 。 2.如图,在ABCD 中,对角线AC 、BD 相交于点O ,图中全等三角形共有________对. 2题4题 3.ABCD 中,若∠A ∶∠B =1∶3,那么∠A =_____,∠B =______,∠C =______,∠D =_____. 4.如图,ABCD 的对角线AC 和BD 相较于点O ,如果AC=10,BD=12,AB=m ,那么m 的取值范围是 。 ● 精讲精练 例:如图,E F ,是ABCD 的对角线AC 上的点,CE AF 请你猜想:BE 与DF 有怎样的位置..关系和数量..关系?并对你的猜想加以证明. 变式:1、已知ABCD 的对角线交于O ,过O 作直线交AB 、CD 的反向延长线于E 、F ,求证:OE =OF . 2、(07日照)如图,在周长为20cm 的□ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为 cm. 2题 3题4题 三、用中学习 1.平行四边形的周长等于56 cm ,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______. 2、在□ABCD 中,∠A +∠C =270°,则∠B =______,∠C =______. 3.如图,□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1.3,则四边形BCEF 的周长为( ) A.8.3 B.9.6 C.12.6 D.13.6 4、如图,在□ABCD 中,AB =AC ,若□ABCD 的周长为38 cm ,△ABC 的周长比□ABCD 的周长少10 cm ,求□ABCD 的一组邻边的长. 第二课时 练一练: 1、如图,在□ABCD 中,AB=10cm ,AB 边上的高DH=4cm ,BC=6cm,则BC 边上的高DF 的长为 。 A B C D E F A B C O E

平行四边形典型例题

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 平行四边形典型例题 1.已知如图12-1-19,所示□ABCD的对角线AC、BD相交于点O,OE 上AD于E,OF⊥BC于F. 求证:四边形AECF是平行四边形 错证:在△AOE和△COF中 ∵OE⊥AD,OF⊥BC ∴∠AEO=∠CFO=90° ∵四边形ABCD为平行四边形 ∴OA=OC,AD∥BC ∴∠EAC=∠ACF ∴△AOE≌△COF(AAS)∴OF=OE ∴四边形AECF是平行四边形 错误分析:上面证明由OF=OE,OA=OC不能说明EF与AC互相平分,因为原题设中没有说明E、O、F三点共线,因此先证E、O、F三点共线. 正确证明:在△AOE和△COF中 ∵OE⊥AD OF⊥BC ∴∠AEO=∠CFO=90° ∵四边形ABCD为平行四边形

∴OA=OC,AD∥BC ∴∠EAC=∠ACF ∴△AOE≌△COF(AAS)∴OF=OE 又∵AD∥BC,OE⊥AD,OF⊥BC ∴E、O、F三点共线 ∴四边形AECF是平行四边形 2.如图12-1-22所示,现有一块等腰直角三角形的铁板,通过切割焊接成一个含有45°角的平行四边形,请你设计一种最简单的方案,并证明你的方案确实得到的是一个符合条件的平行四边形. 分析:运用三角形全等,平行四边形的识别方法来解答,在证明时不要忽略证明F,E,D共线. 解:取AC、BC的中点E、D连结ED,则沿ED切割下来,如图使点E不变,点C 与点A重合,再焊接上去最简单. 证明:在Rt△ABC中∵AC=BC ∴∠B=45° 又∵E、D分别为AC、BC的中点 ∴EC=DC ∴∠CED=∠CDE=45° ∴∠AEF=∠CED=45°∴∠AEF+∠AED=∠CED+∠AED=180° ∴F、E、D在一条直线上∵∠EAF=∠C=90°∴AF∥CD 又∵AF=CD=DB ∴四边形AFDB是平行四边形,且∠B=45° 3.如图12-1-23,在□ABCD的对角线上取两点E、F,且BF=DE,请至少用两种不同的方法证明四边形AECF是平行四边形,并指出哪种方法最简便. 分析:可证两组对边分别相等,也可证对角线互相平分.

相关文档
最新文档