光电池的应用1

光电池的应用1
光电池的应用1

光电池的应用

1、光电池的定义:光电池是一种在光的照射下产生电动势的半导体元件。

2、光生伏特效应:假设光线照射在太阳能电池上并且光在界面层被接纳,具有足够能量的光子可以在P型硅和N型硅中将电子从共价键中激起,致使发作电子-空穴对。界面层临近的电子和空穴在复合之前,将经由空间电荷的电场结果被相互分别。电子向带正电的N区和空穴向带负电的P区运动。经由界面层的电荷分别,将在P区和N区之间发作一个向外的可测试的电压。此时可在硅片的两边加上电极并接入电压表。对晶体硅太阳能电池来说,开路电压的典型数值为0.5~0.6V。经由光照在界面层发作的电子-空穴对越多,电流越大。界面层接纳的光能越多,界面层即电池面积越大,在太阳能电池中组成的电流也越大。

太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。

3、光电池的重要特性:

光谱特性:光电池对不同波长的光的灵敏度是不同的。光谱响应峰值所对应的入射光波长是不同的,硅光电池波长在0.8μm附近,硒光电池在0.5μm附近。硅光电池的光谱响应波长范围为0.4~1.2μm,而硒光电池只能为0.38~0.75μm。可见,硅光电池可以在很宽的波长范围内得到应用。

光照特性:光电池在不同光照度下,其光电流和光生电动势是不同的,它们之间的关系就是光照特性。短路电流在很大范围内与光照强度呈线性关系,开路电压(即负载电阻RL 无限大时)与光照度的关系是非线性的,并且当照度在2000lx 时就趋于饱和了。因此用光电池作为测量元件时,应把它当作电流源的形式来使用,不宜用作电压源。

频率特性:如图所示,硅光电池有较好的频率响应。

温度特性:光电池的温度特性是描述光电池的开路电压和短路电流随温度变化的情况。由于它关系到应用光电池的仪器或设备的温度漂移,影响到测量精度或控制精度等重要指标,因此温度特性是光电池的重要特性之一。开路电压随温度升高而下降的速度较快,而短路电流随温度升高而缓慢增加。由于温度对光电池的工作有很大影响,因此把它作为测量元件使用时,最好能保证温度恒定或采取温度补偿措施。

4、种类:光电池的种类很多,常用有硒光电池、硅光电池和硫化铊、硫化银光电池等。主要用于仪表,自动化遥测和遥控方面。有的光电池可以直接把太阳能转变为电能,这种光电池又叫太阳能电池。

5、应用

光电池的应用设计论文

第一部分摘要引言 一、摘要 光电传感器作为“为机器安装眼睛与大脑工程”的重要环节,目前已深入到国民经济各个部门,成为跨行业应用的器件。本文根据传感器原理不同,从工作原理、结构及基本特性参数介绍了几种光电传感器,并以光电池为例介绍了和分析了两种实用电路,最后介绍了光电池电路的拓展功能以及光电传感器的应用前景。 关键词:光电传感器光电池光控换向 二、引言 目前,光电传感器已经深入到国民经济各个部门,成为跨行业应用的器件,它被广泛应 用到工业生产的许多方面,凡是需要观察和检测的场所都有应用的可能。它的非接触性、无损害、不受电磁干扰、能远距离传送信息以及远距离操纵控制等优点是得到广泛应用的保障。它在航天、航空、石油、化工、国防、安全、旅游、交通、城市建设和农业生产等领域都得到广泛的应用。 光电传感器使人类有效地扩展了自身的视觉能力,使视觉的长波限延伸到亚毫米波(THz波),短波限延伸到紫外线、X射线、Y射线,乃至高能粒子,响应速度达到纳秒级,能够到人们无法达到的场所,将那里发生的瞬间变化过程与长时间历史经历过程记录下来,供人们使用。

第二部分设计目的 课程设计目的 传感器技术课程设计的目的是使学生能够将《传感器技术》课程的内容与实际应用有机的联系起来,形成测量控制系统的概念,掌握智能检测(或仪表)系统设计的基本思想和方法。培养学生综合运用基础及专业知识的能力,提高解决实际工程技术问题的能力;加强查阅相关图书资料、产品手册和各种工具书的能力;提高书写技术报告和编制技术资料的能力。 第三部设计过程 一、光电池简介 1、概述 光电池是一种用途很广的光敏器件,其优点是体积小、重量轻、寿命长、性能稳定、光照灵敏度较高、光谱响应频带较宽且本身不耗能,是小型化、微功耗仪器中常见的换能器件。当光电池受到光照时不需要外加其他形式的能量即可产生电流输出,电流大小反映了光照强度大小。 2、光电池原理与结构 光电池是利用光生伏特效应吧光能直接转变成电能的光电器件。由于它能够把太阳能直接转变为电能,因此又称为太阳电池,其实质就是一个电压源。光电池的种类有硒光电池、氧化亚铜光电池、砷化镓光电池、硅光电池(本次设计所使用到的光电池传感器)、硫化铊光电池等。目前应用最广、最有发展前途的是硅光电池和硒光电池。硅光电池价格便宜,转化效率高,寿命长,适合于接受红外光,硒光电池的光电转换效率低。寿命短,适合接受可见光。 2.1 相关元件;感光元件,LED指示灯,电容,电阻,二极管等 3、硅光电池的基本结构 按硅光电池衬底材料不同科分为2DR型和2CR型。如图a所示为2DR型硅光电池,它是以P型硅材料为衬底(即在本征型硅材料中渗入三价元素或镓等)然后再衬底上扩散而形成N型层并将其作为受光面。 硅光电池的受光面的输出电极多做成如图b所示为硅光电池的外形,图所示的梳齿状或“E”字型电极,其目的是减小硅光电池的内阻。

可控硅工作原理

可控硅工作原理 一种以硅单晶为基本材料的P1N1P2N2四层三端器件,创制于1957年,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称可控硅T。又由于可控硅最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR。 在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称死硅)更为可贵的可控性。它只有导通和关断两种状态。 可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。 可控硅的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。 可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通。 可控硅从外形上分类主要有:螺栓形、平板形和平底形。 1、可控硅元件的结构 不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。见图1。它有三个PN结(J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件。 2、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1、可控硅结构示意图和符号图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1

硅光电池特性及其应用

硅光电池的特性及其应用 一、实验目的 1、初步了解硅光电池机理 2、测量硅光电池开路电动势、短路电流、内阻和光强之间关系 3、在恒定光照下测量光电流、输出功率与负载之间关系 二、实验原理 在P 型半导体上扩散一薄层施主杂质而形成的p-n 结(如右图),由于光照,在A 、B 电极之间出现一定的电动势。在有外电路时,只要光照不停止,就会源源不断地输出电流,这种现象称为光伏效应。 实验表明:当硅光电池外接负载电阻L R ,其输出电压和电流均随L R 变化而变化。只有当L R 取某一定值时输出功率才能达到最大值m P ,即所谓最佳匹配阻值LB L R R ,而LB R 则取决于硅光电池的内阻Ri= SC OC I V ,因此OC V 、SC I 和i R 都是太阳能电池的重要参数。 FF 是表征硅光电池性能优劣的指标,称为填充因子。 FF 越大,硅光电池的转换效率越高。 FF= VocIsc Pm (1) 图b 是硅光电池的等效电路,在一定负载电阻L R 范围内硅光电池可以近似地视为一个电流源PS I 与内阻i R 并联,和一个很小的电极电阻S R 串联的组合。 三、实验内容 图a 开路电动势、短路电流 与光强关系曲线 图b 太阳能电池等效电路

1、测量开路电动势OC V 与光强D I 的关系,将数据记录表1,并绘制并绘制D I ~OC V 曲线。(将功能开关切换到OC V ) 2、短路电流SC I 的测量 将功能开关切换到SC I ,调节DC 0-1V 电源S U 输出,使微安表读数0I 为10.00-18.00μA (建议取10.00μA )。 在某一光强D I 下,改变可调电阻R ,使流过检流计(G )的电流G I 为零。此时AB 两点之间和AC 两点之间的电压应相等,即AB V =AC V 。因而I R=00r I ,即短路电流 SC I =I = R r I 0 0 (r 0为微安计内阻,为10K Ω) 测量不同光强下,短路电流SC I 与光强D I 的关系,将数据记入表2,并绘制SC I ~D I 曲线。 测量开路电压OC V 线路图 测量短路电流SC I 线路图

硅光电池特性研究

硅光电池特性研究

————————————————————————————————作者:————————————————————————————————日期:

硅光电池特性研究 【实验目的】 1.掌握PN结形成原理及其工作原理; 2.了解LED发光二极管的驱动电流和输出功率的关系; 3.掌握硅光电池的工作原理及其工作特性。 【实验原理】 1.半导体PN结原理 目前半导体光电探测器在数码摄像、光通信、太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理、光电效应理论和光伏电池产生机理。 零偏 -- - - - - - + + + + - + + + - + P型半导体 - - + + N型半导体 + - + W E R 空间电荷区 内电场E 反偏正偏 图17-1. 半导体PN结在零偏、反偏、正偏下的耗尽区 图17-1是半导体PN结在零偏、反偏、正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空穴多电子少,而N型材料电子多空穴少,结果P型材料中的空穴向N型材料这边扩散,N型材料中的电子向P型材料这边扩散,扩散的结果使得结合区两侧的P型区出现负电荷,N型区带正电荷,形成一个势垒,由此而产生的内电场将组织扩散运动的继续进行,当两者达到平衡时,在PN结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。当PN结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,使势垒削弱,使载流子扩散运动继续形成电流,这就是PN结的单向导电性,电流方向是从P指向N。 2.LED工作原理 P N + - - - + - - 内电场 + + - + + - E + - E W - - + - 空 间 电 荷 区 + - R + ++ I R

采用硅光电池实现光照度计电路设计分析

采用硅光电池实现光照度计电路设计和分析 作者姓名:# # # 专业名称:应用物理学 指导教师:# # # 讲师

摘要 本文通过理论分析与数值比对来确定光照强弱与光电池输出光电信号的关系,并且通过这种关系设计了相应的光电检测电路,更直观展现光伏技术在实际生活中的应用。 随着光伏技术的日渐成熟以及应用的扩展,对光照的研究也日新月异。所以对如何更加准确的测定光照参数也提出了更高的要求。针对不同的要求,如何快速设计出对应的光电探测器,又有了新的课题。本文在此背景下,进行了光照度计电路的设计与分析。 本论文共分四部分:第一部分为光电池特性介绍及实验特性参数,第二部分为电路方案设计和电路实现,第三部分为利用Protel 99SE进行电路设计,第四部分为电路实物制作与调试。 关键词:光电池转换电路光电效应伏安特性

Abstract A comparsion between analysis theory and numerical ratio, which can determine the relationship between the intensity of illumination and optical signal of photocell output in this paper. And we design a corresponding circuit of photoelectric detection by the relationship showing the application of photoelectric technology in our daily life. With the development and widespread of photoelectric technology, fracture treatment has been changing quickly. So there have more high requirements about how to determine the parameter of the light more exactly. As for different requirements, it is a new project to design the corresponding electrophptonic detector. Under this background, this paper discuss design and analysis of the circuit of light meter. There are four parts in this paper:In the first part, it introduce the character of photoelectric cell and characteristic parameter of experiment. The second part is about designing scheme of circuit and realizing the circuit, The third part is using Protel 99SE to design circuit, The fourth part is to manufacture and adjust the circuit. Keywords: Potoelectric cell, Conversion circuit,Photoelectric effect, Volt-Ampere characteristic

可控硅元件的工作原理及基本特性

可控硅元件的工作原理及基本特性 1、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1 可控硅等效图解图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1 状态条件说明 从关断到导通1、阳极电位高于是阴极电位 2、控制极有足够的正向电压和电流 两者缺一不可 维持导通1、阳极电位高于阴极电位 2、阳极电流大于维持电流 两者缺一不可 从导通到关断1、阳极电位低于阴极电位 2、阳极电流小于维持电流 任一条件即可 2 可控硅的基本伏安特性见图2 图2 可控硅基本伏安特性 (1)反向特性 当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。

太阳能电池材料的发展及应用

太阳能电池材料的发展及应用 材料研1203 Z石南起新材料(或称先进材料)是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。新材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。 随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。新材料按组分为金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材料性能分为结构材料和功能材料。21世纪科技发展的主要方向之一是新材料的研制和应用。新材料的研究,是人类对物质性质认识和应用向更深层次的进军。 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。 功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。 功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。在全球新材料研究领域中,功能材料约占85%。我国高技术 (863)计划、国家重大基础研究[973]计划、国家自然科学基金项目中均安排了许多功能材料技术项目(约占新材料领域70%比例),并取得了大量研究成果。

硅光电池特性测试实验报告

硅光电池特性测试实验报告 系别:电子信息工程系 班级:光电08305班 组长:祝李 组员:贺义贵、何江武、占志武 实验时间:2010年4月2日 指导老师:王凌波 2010.4.6

目录 一、实验目的 二、实验内容 三、实验仪器 四、实验原理 五、注意事项 六、实验步骤 七、实验数据及分析 八、总结

一、实验目的 1、学习掌握硅光电池的工作原理 2、学习掌握硅光电池的基本特性 3、掌握硅光电池基本特性测试方法 4、了解硅光电池的基本应用 二、实验内容 1、硅光电池短路电路测试实验 2、硅光电池开路电压测试实验 3、硅光电池光电特性测试实验 4、硅光电池伏安特性测试实验 5、硅光电池负载特性测试实验 6、硅光电池时间响应测试实验 7、硅光电池光谱特性测试实验 设计实验1:硅光电池光控开关电路设计实验 设计实验2:简易光照度计设计实验 三、实验仪器 1、硅光电池综合实验仪 1个 2、光通路组件 1只 3、光照度计 1台 4、2#迭插头对(红色,50cm) 10根 5、2#迭插头对(黑色,50cm) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台 四、实验原理 1、硅光电池的基本结构 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。 零偏反偏正偏 图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区 图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合

光电池的应用与发展

光电池的应用与发展 摘要: 光电池是利用光伏效应制成的检测光辐射的器件,主要是利用价带电子在光的照射下产生电动势。光电池也叫太阳能电池,直接把太阳光转变成电。因此光电池的特点是能够把地球从太阳辐射中吸收的大量光能转化换成电能。 光电池的种类很多,常用有硒光电池、硅光电池和硫化铊、硫化银光电池等。主要用于仪表,自动化遥测和遥控方面。有的光电池可以直接把太阳能转变为电能,这种光电池又叫太阳能电池。太阳能电池作为能源广泛应用在人造地卫星、灯塔、无人气象站等处。 随着可持续发展战略在世界范围内的实施,新能源的开发与利用显得尤为重要。在有关光电池的技术走进了我们的生活,因此这对于光电池的应用与发展方向进行的研究具有较为广泛的意义。 关键字:光电池;光伏效应;价带电子

目录 1.光电池简介 (3) 1.1光电池的定义 (3) 1.2光电池的种类 (3) 2.光电池的原理 (3) 3.光电池发展历史 (4) 4.光电池的应用与前景 (5) 4.1光电池的应用 (5) 4.1.1光电池的运用范围 (6) 4.1.2光电池家庭化的应用 (6) ①太阳能电话 (6) ②太阳能冰箱 (6) ③太阳能空调器 (7) ④太阳能电视机 (7) 4.1.3光电池的市场与应用 (7) 4.2光电池的前景 (8) 总结 (8) 参考文献 (9)

1.光电池简介 1.1光电池的定义 光电池(photovoltaic cell)是利用光伏效应(光电效应的衍生)制成的检测光辐射的器件,是一种在光的照射下产生电动势的半导体元件。可见光电池也是一种光电传感器。 光电池广泛用于把太阳能直接转换成电能,亦称太阳能电池。 1.2光电池的种类 光电池的种类很多,有硒光电池、硅光电池和硫化铊、硫化镉、砷化镓光电池等。其中硅光电池由于其转换效率高、寿命长、价格便宜而应用最为广泛。 2.光电池的原理 光电池是一种特殊的半导体二极管,能将可见光转化为直流电。有的光电池还可以将红外光和紫外光转化为直流电。 最早的光电池是用掺杂的氧化硅来制作的,掺杂的目的是为了影响电子或空穴的行为。 光伏发电是利用半导体pn结(pn junction)的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池(solar cell)。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件(module),再配合上功率控制器等部件就形成了光

硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。 关键词:硅基太阳能电池转换效率 1引言 二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。 目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类) 太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

光电池的工作原理

光伏招聘网https://www.360docs.net/doc/7b5873167.html,中国光伏、太阳能行业权威招聘网站!!! 光电池的工作原理 光电池的工作原理是基于“光生伏特效应”。它实质上是一个大面积的PN结,当光照射到PN结的一个面,例如P型面时,若光子能量大于半导体材料的禁带宽度,那么P型区每吸收一个光子就产生一对自由电子和空穴,电子-空穴对从表面向内迅速扩散,在结电场的作用下,最后建立一个与光照强度有关的电动势。 光电池基本特性有以下几种: (1)光谱特性光电池对不同波长的光的灵敏度是不同的。光谱响应峰值所对应的入射光波长是不同的,硅光电池波长在0.8μm附近,硒光电池在0.5μm附近。硅光电池的光谱响应波长范围为0.4~1.2μm,而硒光电池只能为0.38~0.75μm。可见,硅光电池可以在很宽的波长范围内得到应用。 (2)光照特性:光电池在不同光照度下,其光电流和光生电动势是不同的,它们之间的关系就是光照特性。短路电流在很大范围内与光照强度呈线性关系,开路电压(即负载电阻RL无限大时)与光照度的关系是非线性的,并且当照度在2000lx时就趋于饱和了。因此用光电池作为测量元件时,应把它当作电流源的形式来使用,不宜用作电压源。 (3)温度特性光电池的温度特性是描述光电池的开路电压和短路电流随温度变化的情况。由于它关系到应用光电池的仪器或设备的温度漂移,影响到测量精度或控制精度等重要指标,因此温度特性是光电池的重要特性之一。开路电压随温度升高而下降的速度较快,而短路电流随温度升高而缓慢增加。由于温度对光电池的工作有很大影响,因此把它作为测量元件使用时,最好能保证温度恒定或采取温度补偿措施。 光伏招聘网http:// https://www.360docs.net/doc/7b5873167.html, 1

双向可控硅的工作原理(全)

双向可控硅的工作原理 双向可控硅的工作原理双向可控硅的工作原理1.可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以 双向可控硅的工作原理 双向可控硅的工作原理1.可控硅是P1N1P2N2四层三端结构元件,共有三个PN 结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流 ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流 ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化2,触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。 TRIAC的特性 什么是双向可控硅:IAC(TRI-ELECTRODE AC SWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。 TRIAC为三端元件,其三端分别为T1 (第二端子或第二阳极),T 2(第一端子或第一阳极)和G(控制极)亦为一闸极控制开关,与SCR 最大的不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。因为它是双向元件,所以不管T1 ,T2的电压极性如何,若闸极有信号加入时,则T1 ,T2间呈导通状态;反之,加闸极触发信号,则T1 ,T2间有极高的阻抗。

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图 双向可控硅的工作原理1.可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2i b2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化2,触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IG T。在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA 段左移,IGT越大,特性左移越快。 TRIAC的特性 什么是双向可控硅:IAC(TRI-ELECTRODE AC SWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。TRIA C为三端元件,其三端分别为T1(第二端子或第二阳极),T 2(第一端子或第一阳极)和G(控制极)亦为一闸极控制开关,与SCR最大的不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。因为它是双向元件,所以不管T1 ,T2的电压极性如何,若闸极有信号加入时,则T1 ,T2间呈导通状态;反之,加闸极触发信号,则T1 ,T2间有极高的阻抗。 (a)符号(b)构造 图1 TRIAC 二.TRIAC的触发特性: 由于TRIAC为控制极控制的双向可控硅,控制极电压VG极性与阳极间之电压VT1T2四种组合分别如下: (1). VT1T2为正, VG为正。 (2). VT1T2为正,VG为负。 (3). VT1T2为负, VG为正。 (4). VT1T2为负, VG为负。

太阳能电池的应用

引言 1954年Bell实验室研发出第一个单晶硅太阳能电池,效率为6%。自此开启了太阳能电池的新纪元。硅系太阳能电池已从单晶,多晶硅发展到非晶硅,从块状发展到薄膜,实现第一代到第二代的的转换。 20世纪后期,各种化合物薄膜电池兴起,呈现欣欣向荣的局面。碲化镉,砷化镓,铜铟镓硒如雨后春笋般地登上舞台。 有机物薄膜电池也不甘寂寞,在沉寂了数年之后也焕发出勃勃生气。21世纪注定是太阳能利用的新世纪。那么,在诸多太阳能电池中,究竟哪些会脱颖而出,或者说占主导地位呢? 一.太阳能电池的工作原理 太阳能电池发电原理:太阳能电池是一对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现以晶体为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。当光线照射太阳能电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的实质是:光子能量转换成电能的过程。

晶体硅太阳能电池的制作过程:“硅”是我们这个星球上储藏最丰量的材料之一。自从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维。20世纪末,我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。 二.各种太阳能电池的优劣 1.单晶硅太阳能电池 单晶硅太阳能电池是最早实现商业化的一种太阳能电池,商业光电转换效率为16%~20% 。原料硅来源丰富,它的结构和生产工艺已定型, 产品已广泛用于空间和地面。但用作太阳能电池的不是普通的硅,而是 99.9999%的高纯硅。硅的提纯工艺复杂, 电耗很大, 在太阳能电池生产总成本中己超过了1/2。另外,目前冶炼的时候多用煤炭作为燃料,且用改良西门子法提纯硅时会产生大量的硅氯化合物,如果处理不当,将会造成很大的污染,这种情形在中国尤其严重。 2.多晶硅太阳能电池 多晶硅太阳能电池使用的多晶硅材料, 多半是含有大量单晶颗粒的集合体, 或用废次单晶硅料和冶金级硅材料熔化浇铸而成。因此成本相对单晶硅来说要小,污染也降低了,但随之而来效率也降低了,商业转换效率大概在12%~13% 。 3.无机薄膜太阳能电池

光电池工作原理及组成_基本参数

光电池工作原理及组成_基本参数 随着科技日新月异地发展,光电池在人们的生产生活中产生了越来越重要的作用。光电池是利用光生伏特效应把光直接转变成电能的器件。由于它可把太阳能直接变电能也称为太阳能电池 太阳能电池是利用半导体光伏效应制成的光电转换器件,它既可以作为电源,又可以作为光电检测器件。作为电源使用的光电池,主要是直接把太阳的辐射能转换为电能,称为太阳电池。太阳电池不需要燃料,没有运动部件,也不排放气体,具有重量轻,工作性能稳定,光电转换效率高,使用寿命长,不产生污染等优点,在航天技术、气象观测、工农业生产乃至人们的日常生活等方面都得到了广泛的应用。 作为光电检测器件使用的光电池,具有反应速度快,工作时不需要外加偏压等特点,用于近红外探测器、光电藕合器以及光电开关等。光电池的制作材料有许多种,例如硅、硒、锗、硫化镉、砷化镓等,其中最常用的是硅光电池。它有较大面积的PN结,当光照射在PN结上时,在结的两端出现电动势是发电式有源元件。太阳能电池的利用和特性的研究是21世纪的热门课题,许多国家正投入大量人力物力对太阳能电池进行研究硅光电池是根据光伏效应制成的太阳能电池,应用范围较广。 光电池也是光敏器件中一个种类,不仅能将光信号转变为电信号,还能将光能转换为电能储存起来。 光电池由PN结构成,也好像一个半导体二极管,但这个PN结的工作面积比一般二极管要大得多,目的是使光电池能接受更多光照。光电池通常只有一面接受光的照射,称为光电池的受光面。不接受光线照射的一面称为背光面。光电池工作时能将光能转化成电能形成电压,电压的正极多为受光面。 光电池是在光线照射下,直接将光量转变为电动势的光学元件,它的工作原理是光生伏特效应。简称光伏效应。(光生伏特效应是光照使不均匀半导体或均匀半导体中光生电子和空穴,并在空间分开而产生电位差的现象。即将光能转化成电能)在有光线作用时PN结就相当于一个电压源。

可控硅的工作原理(带图)

可控硅的工作原理(带图)

可控硅的工作原理(带图) 一.可控硅是可控硅整流器的简称。它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。图3-29是它的结构、外形和图形符号。 可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN结处于反向,具有类似二极管的反向特性。当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。可控硅一旦导通,控制极便失去其控制作用。就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。 图3-30是可控硅的伏安特性曲线。 图中曲线I为正向阻断特性。无控制极信号时,可控硅正向导通电压为正向转折电压(U B0);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。当控制极电流大到一定程度时,就不再出现正向阻断状态了。 曲线Ⅱ为导通工作特性。可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。 曲线Ⅲ为反向阻断特性。当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。 可控硅的重要特点是:只要控制极中通以几毫安至几十毫安的电流就可以触发器件导通,器件中就可以通过较大的电流。利用这种特性可用于整流、开关、变频、交直流变换、电机调速、调温、调光及其它自动控制电路中。

可控硅的工作原理带图

可控硅的工作原理(带图) 一.可控硅是可控硅整流器的简称。它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。图3-29是它的结构、外形和图形符号。 可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN结处于反向,具有类似二极管的反向特性。当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。可控硅一旦导通,控制极便失去其控制作用。就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。 图3-30是可控硅的伏安特性曲线。 图中曲线I为正向阻断特性。无控制极信号时,可控硅正向导通电压为正向转折电压(U B0);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。当控制极电流大到一定程度时,就不再出现正向阻断状态了。 曲线Ⅱ为导通工作特性。可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。 曲线Ⅲ为反向阻断特性。当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。 可控硅的重要特点是:只要控制极中通以几毫安至几十毫安的电流就可以触发器件导通,器件中就可以通过较大的电流。利用这种特性可用于整流、开关、变频、交直流变换、电机调速、调温、调光及其它自动控制电路中。 二、可控硅的主要技术参数

有机太阳能电池的原理和应用

有机太阳能电池的原理和应用 一、结构和基本原理 目前的有机太阳能电池可以分为三类。 1.1 肖特基型有机太阳能电池 第一个有机光电转化器件是由Kearns 和Calvin在1958 年制备的,其主要材料为镁酞菁(MgPc)染料,染料层夹在两个功函数不同的电极之间。在这种有机半导体器件中,电子在光照下被从HOMO 能级激发到LUMO能级,产生一对电子和空穴。电子被低功函数的电极提取,空穴则被来自高功函数电极的电子填充,由此在光照下形成光电流。理论上,有机半导体膜与两个不同功函数的电极接触时,会形成不同的肖特基势垒。这是光致电荷能定向传递的基础。因而此种结构的电池通常被称为“肖特基型有机太阳能电池”。在这个器件上,他们观测到了200 mV的开路电压,光电转化效率很低。此后二十多年间,有机太阳能电池领域内创新不多,所有报道的器件之结构都类似于1958 年版,只不过是在两个功函数不同的电极之间换用各种有机半导体材料。由于肖特基型有机太阳能电池是单纯由一种纯有机化合物夹在两层金属电极之间制成的,因此效率比较低,现在已经被淘汰。 1.2 双层膜异质结型有机太阳能电池 在肖特基型有机太阳能电池的基础上,1986 年,行业内出现了一个里程碑式的突破。 实现这个突破的是柯达公司的邓青云博士。这个时代的有机太阳能电池所采用的有机材料主要还是具有高可见光吸收效率的有机染料。邓青云的器件之核心结构是由四羧基苝的一种衍生物(又称作PV)和铜酞菁(CuPc)组成的双层膜。这种太阳能电池又叫做p-n 异质结型有机太阳能电池。在双层膜结构中,p-型半导体材料(电子给体(Donor),以下简记为D)和n-型半导体材料(电子受体(Acceptor),以下简记为A)先后成膜附着在正负极上(下图)。D 层或者 A 层受到光的激发生成激子,激子扩散到 D 层和 A 层界面处发生点电荷分离生成载流子,然后电子经A层传输到电极,空穴经D层传输到对应的电极。1992 年,土耳其人Sariciftci 在美国发现,激发态的电子能极快地从有机半导体分子注 入到C60 分子中,而反向的过程却要慢得多。也就是说,在有机半导体材料与C60 的界面上,激子可以以很高的速率实现电荷分离,而且分离之后的电荷不容易在界面上复合。这是由于C60的表面是一个很大的共轭结构,电子在由60个碳原子轨道组成的分子轨道上离域,可以对外来的电子起到稳定作用。因此C60 是一种良好的电子受体材料。1993 年,Sariciftci在此发现的基础上制成PPV/C60 双层膜异质结太阳能电池。PPV通常叫作“聚对苯乙烯撑”,是一种导电聚合物,也是一种典型的P 型有机半导体材料。此后,以C60 为电子受体的双层膜异质结型太阳能电池层出不穷。 1.3 混合异质结型有机太阳能电池 随后,研究人员在此类太阳能电池的基础上又提出了一个重要的概念:混合异质结(Bulk Heterojunction)。混合异质结概念主要针对光电转化过程中激子分离和载流子传输这两方面的限制。双层膜太阳能电池中,虽然两层膜的界面有较大的面积,但激子仍只能在界面区域分离,离界面较远处产生的激子往往还没移动到界面上就复合了。而且有机材料的载流子迁移率通常很低,在界面上分离出来的载流子在向电极运动的过程中大量损失。这两点限制了双层膜电池的光电转化效率。 而所谓“混合异质结”,就是将给体材料和受体材料混合起来,通过共蒸或者旋涂的方法制成一种混合薄膜。其给体和受体在混合膜里形成一个个单一组成的区域,在任何位置产生的激子都可以通过很短的路径到达给体与受体的界面(即结面),电荷分离的效率得到了提高。同时,在界面上形成的正负载流子亦可通过较短的途径到达电极,从而弥补载流子迁移率的不足。2008 年3 月,大阪大学和大阪市立研究所宣布,成功开发出了单元转换效率高

硅光电池讲义

硅光电池伏-安特性的研究 硅光电池(也常称为太阳能电池)是一个大面积的光电二极管,它被设计用于把入射到它表面的光能转化为电能,因此,可用作光电探测器和光电池,被广泛用于太空和野外便携式仪器等的能源。它具有寿命长、使用方便、无噪音、无污染等优点。经过人们40多年的努力,太阳能电池的研究、开发与产业化已取得巨大进步。目前,太阳能电池已成为空间卫星的基本电源和地面无电、少电地区及某些特殊领域(通信设备、气象台站、航标灯等)的重要电源。有专家预言,在21世纪中叶,太阳能光伏发电将占世界总发电量的15% ~ 20%,成为人类的基础能源之一,在世界能源构成中占有一定的地位。因而了解太阳能电池的工作原理和基本性能非常重要。 【实验目的】 1. 了解硅光电池的工作原理。 2. 测定硅光电池的伏-安特性 【实验仪器】 THKGD-1型硅光电池特性实验仪 【实验原理】 硅光电池内部结构如图1所示,主要由两部分组成:n 型硅基片层和p 型硅受光层。根据pn 当光照在p 型硅表面,且光子能量大于材料的禁带宽度时,在pn 结内产生电子-空穴对。n 区电子密度增加,p 区空穴密度增加,那么这些光生电子和空穴积累在pn 结附近,使p 区获得附加正电荷,n 区获得附加负电荷,这样在pn 结上产生一个光生电动势,如果连接灵敏电流计形成闭合电路,则在回路中产 生光电流,光电流的大小与入射光强有关。 硅光电池的工作原理是基于光伏效应。当半导体pn 结处于零偏或反偏时,在它们的结合面耗尽区存在一内电场,当有光照时,入射光子将把处于价带中的束缚电子激发到导带,激发出的电子空穴对在内电场作用下分别漂移到n 型区和p 型区,当在pn 结两端加负载时就有一光生电流流过负载。流过pn 结两端的电流可下式确定 上式中I s 为饱和电流,V 为pn 结两端的电压,T 为绝对温度,I p 为产生的光电流。从式中可以看到,当硅光电池处于零偏时,V =0,流过pn 结的电流I=I p ;当硅光电池处于反偏时(在本实验中取V =-5V ),流过PN 结的电流I =I p -I s 。 图2是硅光电信号接收端的工作原理框图,光电池把接收到的光信号转变为与之成正比的电流信号,再经I/V 转换器把光电流信号转换成与之成正比的电压信号。比较光电池零偏和反偏时 图1 硅光电池结构示意图 )1(p kT eV s I e I I +-=

相关文档
最新文档