红外触摸屏的应用

红外触摸屏的应用
红外触摸屏的应用

红外触摸屏的应用

红外触摸屏工作原理是在紧贴屏幕前密布X、Y方向上的红外线矩阵,通过不停的扫描是否有红外线被物体阻挡检测并定位用户的触摸。如下图所示,这种触摸屏是在显示器的前面安装一个外框,外框里设计有电路板,从而在屏幕四边排布红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。每扫描完一圈,如果所有的红外对管通达,表示一切正常并未有触摸。当有触摸时,手指或其它物就会挡住经过该坐标位置的横竖红外线,X或Y轴触摸屏扫描时发现并确信有一条红外线受阻后,表示可能有触摸,同时立刻换到另一轴坐标再扫描,如果再发现另外一轴也有一条红外线受阻,表示发现触摸,并将两个发现阻隔的红外对管位置报告给主机,经过计算判断出触摸点在屏幕的位置。多点触摸是全部扫描完一轴坐标后再另描扫另一轴坐标,实现多点位置的判断,并把多点触摸数据送至主机进行处理。

红外触摸屏产品分外挂式和内置式两种。外挂式的安装方法非常简单,是所有触摸屏中安装最方便的,只要用胶或双面胶将框架固定在显示器前面即可。而红外对管主要有直插跟贴片式,如下图所示:

红外线触摸屏技术特点

红外触摸屏的优点是可用手指、笔或任何可阻挡光线的物体来触摸,而精度

的大小取决于所用红外对管的数量,单位数量越多代表精度越高。

红外触摸屏缺点是在球面显示器上使用时感觉不好,这是因为赖以工作的红外光栅矩阵显然要求保证在同一平面上,因此,真正感应触摸的工作平面距离弧形的显示器屏幕有较大的间隔,尤其在边角,但是这个缺点在平面显示器上不存在,比如液晶显示器。

可以说在平面显示器上使用,红外触摸屏具有相当的优势。红外线探测技术利用同一波长的红外发射管、红外接收管(简称红外对管)就能得到简单的红外线探测方法:

只要有物体阻挡住红外对管之间的连线,接收信号就急剧下降,因此红外线可以探测物体的阻挡,在防盗系统、自动感应系统、计数器等系统上广泛应用红外线若是短距离应用,根据接收信号的衰减程度还可探知阻挡程度,这就是所谓的模拟方式,模拟方式在接收端采用密集的接收管阵列,还可用于造影成像;为防止干扰,红外探测还可采用脉冲方式,即红外发射管发射一个固定频率的信号,而接收方只对这一频率进行检测,脉冲方式抗干扰能力非常强。脉冲方式如果在工作频率上调制信号,还可用于数字通信,这就是大名鼎鼎的红外线通讯,家用电器的遥控、电脑的红外通信、甚至是当今最快的光纤通信,都缘于此。红外通信对人体没有影响,兼又发射距离短没有空间污染,当今备受亲睐。本章立意触摸屏,不神游其它,但是从这一家族兴旺,也可以看出红外触摸屏前途远大。

红外线触摸屏技术难点

环境光因素,红外接收管有最小灵敏度和最大光照度之间的工作范围,但是触摸屏产品却不能限制使用范围,从黑暗的歌厅包房到海南岛高强度阳光下的户外使用,作为产品,它必须适应周围的反射、折射、干扰,红外发射管有一个发射角,接收管有较大范围的接收角,如果周围反射到一定程度,你会发现手指放在什么地方也阻挡不住信号。

要解决这些问题,选择模拟方式最大的好处是可以分析提高触摸屏的分辨率,但是抗干扰能力比不上脉冲方式;选择脉冲方式虽然抗干扰能力强,但是存在脉冲方式在接收方需要一个响应过程时间的问题,而触摸屏却要求极快的速

度,因此要在自适应电路、单片机软件、模具设计、透光材料选择等几个方面要有技术突破。

红外触摸屏靠多对红外发射和接收对管来工作,红外对管性能和寿命都比较可靠,任何阻挡光线的物体都可用来作触摸物,不过红外触摸屏使用传感器数目将近100对,并且共用外围电路,这就要求传感器不仅本身性能好,还要求将近100对的红外二极管“光-电阻特性”和“结电容”都保持一致。实际应用中,万一有哪一对出现故障,可以在上电自检过程中发现并在此后加以忽略,靠邻近的红外线代替,由于每一对红外线只“监管”约6mm左右的窄带,而手指通常在15mm左右粗细,用户是察觉不到的。但如果生产过程没有对红外发射管进行老化测试,没有很好的质量管理体系,将近100对的传感器,很快就不是一对两对“掉队”的问题了,总体寿命也就难以保证。因此,购买红外屏的用户应该了解厂家有没有严格的质量检测办法或是否通过ISO9000认证。

红外屏赖以工作的是红外线矩阵,矩阵上多点的x、y坐标能组合出平方倍多的触摸点,见下图,A、B两点和C、D两点对红外屏来说是相同的效果,无法分辨,怎么处理呢?目前市场上的红外屏对多点触摸常见的处理不管连续否,要么不判断,要么判为左上角,即下图中不管是A、B还是C、D都判为C 点。真正技术过得硬的红外屏应该是对坐标连续的多点触摸判断取中点,即判断为大物体(比如粗手指)的触摸,而对不连续的多点触摸不予判断,所以说它技术过硬是这种算法对产品的品质要求更严,不允许出现各种各样的故障情况。

红外触摸屏的原理简述

红外触摸屏的原理简述 红外触摸屏技术是在屏幕四周安装红外发射管和红外接收管,形成红外光矩阵,然后分别在 横、竖两个方向上不断的扫描并探测,当触摸物阻挡红外光时进行位置判断的坐标定位技术。一般是在显示器的前而安装一个电路板框架,在电路板上四边安装对应红外发射管和红外接收管,如下图所示,白色的是红外发射管,黑色的是红外接收管,通过电路驱动红外发射管发出红外光,位置相对的接收管接收红外光信号。用户在触摸屏幕时,手指就会挡住经过该位置的横竖方向的外线,光信号的改变引起光电探测电路输出的电信号发生变化,通过对电信号处理可以对触摸点在屏幕的位置进行定位。任何对红外光不透明的触摸物体都可阻断红外线实现触摸定位。本文由红外线供应网提供 红外触摸屏的原理是在屏幕四边放置红外发射管和红外接收管,微处理器控制驱动电路依次 接通红外发射管并检查相应的红外接收管,以形成横坚交叉的红外光阵列,得到定位的信息。 本论文中以Philips公司的ARM7芯片LPC2132为微处理器,通过对移位锁存器74HC595的 控制对红外发射管的逐个扫描,同时微处理器通过12C总线寻址每个相应的红外接收管,得到相应的光强值。微处理器根据接收到的被遮挡前后的光强信号得到触摸的位置信息,并通过串口将该信息传送给主机。控制方式如下图所示:

红外鮭麦屛控制戸理微处理器电路: 微处理器在红外触摸屏硬件系统中起着核心的作用: 1、完成对红外发射电路的驱动; 2、完成对红外接收电路的驱动; 3、完成对是否被触摸的判断以及触摸位置信息的计算; 4、将触摸位置信息通过中P1传送给主机; 5、调试整个程序的运行。 本论文中采用Philips公司的ARM7芯片LPC2132作为微处理器。该芯片是基于一个支持实时仿真和嵌入式跟踪的32/16位ARM7TDMI微控制器,并带有64kB的嵌入的高速Flash 存储器。具有EmbeddedICE-RT和嵌入式跟踪接口,可实时调试;多个串行接口,包括2个16C550工业标准DART,2个高速I2C接口SP1多个32位定时器、1个10位8路ADC, 10 位DAC , PWM通道和47个GP10以及多达9个边沿或电平触发的外部中断。 这部分电路中主要包括驱动红外发射部分,驱动红外接收部分,出口通信部分,JTAG调试

红外触摸屏原理

一、基本原理介绍 红外触摸屏的工作原理是在触摸屏的四周布满红外接收管和红外发射管,这些红外管在触摸屏表面呈一一对应的排列关系,形成一张由红外线布成的光网,当有物体(手指、带手套或任何触摸物体)进入红外光网阻挡住某处的红外线发射接收时,此点横竖两个方向的接收管收到的红外线的强弱就会发生变化,控制器通过了解红外线的接收情况的变化就能知道何处进行了触摸。如下图所示。

二、构成及工作流程 1、构成:红外触摸屏由三部分组成:控制器、发射电路、接收电路。 2、工作流程 工作时,控制器中的微处理器(ARM7或其它)控制驱动电路(移位锁存器)依次接通红外发 射管并同时通过地址线和数据线来寻址相应的红外接收管。当有触摸时,手指或其它物就会挡住经过该位置的横竖红外线,微处理器扫描检查时就会发现该受阻得红外线,判断可能有触摸,同时立刻换到另一坐标再扫描,如果再发现另外一轴也有一条红外线受阻,表示发现触摸,并将两个发现阻隔的红外对管位置报告给主机,经过计算判断出触摸点在屏幕的位置。其控制原理如图1所示。 3、发射电路 发射电路由移位锁存器(例如:TI公司的CD74AC164M)、3-TO-8多路输出选择器(例如:T I的74HC238D)、恒流驱动IC(例如美芯的MAX6966 、TI的ULN2803A等)、红外发射二极 管等组成。现以TI公司的CD74AC164M为例介绍发射电路工作流程。 CD74AC164M是一个8 Bit串行输入并行输出的位移锁存器。微处理器通过IO口控制移位锁存器的时钟以及数据输入端。扫描时微处理器通过IO端口将CD74AC164M的MR脚置为高电平,则CD74AC 164M会自动把输出脚:Q0置为高电平,然后送入时钟信号:CP ,则在时钟信号的上升期移位锁存器自

触摸屏驱动

二、前提知识 1、Linux输入子系统(Input Subsystem): 在Linux中,输入子系统是由输入子系统设备驱动层、输入子系统核心层(Input Core)和输入子系统事件处理层(Event Handler)组成。其中设备驱动层提供对硬件各寄存器的读写访问和将底层硬件对用户输入访问的响应转换为标准的输入事件,再通过核心层提交给事件处理层;而核心层对下提供了设备驱动层的编程接口,对上又提供了事件处理层的编程接口;而事件处理层就为我们用户空间的应用程序提供了统一访问设备的接口和驱动层提交来的事件处理。所以这使得我们输入设备的驱动部分不在用关心对设备文件的操作,而是要关心对各硬件寄存器的操作和提交的输入事件。下面用图形来描述一下这三者的关系吧! 另外,又找了另一幅图来说明Linux输入子系统的结构,可能更加形象容易理解。如下:

2、输入子系统设备驱动层实现原理: 在Linux中,Input设备用input_dev结构体描述,定义在input.h中。设备的驱动只需按照如下步骤就可实现了。 ①、在驱动模块加载函数中设置Input设备支持input子系统的哪些事件; ②、将Input设备注册到input子系统中; ③、在Input设备发生输入操作时(如:键盘被按下/抬起、触摸屏被触摸/抬起/移动、鼠标被移动/单击/抬起时等),提交所发生的事件及对应的键值/坐标等状态。 Linux中输入设备的事件类型有(这里只列出了常用的一些,更多请看linux/input.h中):

三、触摸屏驱动的实现步骤 1、硬件原理图分析: S3c2440芯片内部触摸屏接口与ADC接口是集成在一起的,硬件结构原理图请看: S3C2440上ADC驱动实例开发讲解中的图,其中通道7(XP或AIN7)作为触摸屏接口的X坐标输入,通道5(YP或AIN5)作为触摸屏接口的Y坐标输入。在"S3C2440上ADC驱动实例开发讲解"中,AD转换的模拟信号是由开发板上的一个电位器产生并通过通道1(AIN0)输入的,而这里的模拟信号则是由点触触摸屏所产生的X坐标和Y坐标两个模拟信号,并分别通过通道7和通道5输入。S3c2440提供的触摸屏接口有4种处理模式,分别是:正常转换模式、单独的X/Y位置转换模式、自动X/Y位置转换模式和等待中断模式,对于在每种模式下工作的要求,请详细查看数据手册的描述。本驱动实例将采用自动X/Y位置转换模式和等待中断模式。 注意:在每步中,为了让代码逻辑更加有条理和容易理解,就没有考虑代码的顺序,比如函数要先定义后调用。如果要编译此代码,请严格按照C语言的规范来调整代码的顺序。 2、建立触摸屏驱动程序my2440_ts.c,首先实现加载和卸载部分,在驱动加载部分,我们主要做的事情是:启用ADC所需要的时钟、映射IO口、初始化寄存器、申请中断、初始化输入设备、将输入设备注册到输入子系统。代码如下:

串口红外触摸屏说明书

串口红外触摸屏说明书 1.注意事项 安装触摸屏时要注意不要使触摸屏变形,触摸屏变形会使触摸屏不能正常工作。 如果您的触摸屏工作不正常,特别是从内部发出不正常的气味时要立即拔下插头,并与厂家联系。 不要频繁带电插拔插头。 在安装触摸屏前,要把触摸屏的背面和显示器的屏幕擦拭干净,否则会影响触摸屏的使用效果。 2. 触摸屏组件 红外触摸屏(图1) 串口连接线(图2)

3. 安装和接线 串口线连接方法如图4: (1). DB9孔头接到主机的COM口。 (2). USB口插头接到主机的USB接口。 (3). RJ45母头通过网线和触摸屏的RJ45母头连接。 (4). 网线两头的水晶头线序做成一致,推荐线序为:黄白、黄、蓝白、蓝、绿白、绿、棕白、棕。 图(4)

4. 安装驱动程序及串口设置 (1)双击可执行文件“HH touchscreen”,进入驱动程序安装界面,按照提示安装驱动; (2)触摸屏串口设置:装了串口驱动后,在“开始”――>“所有程序”――>“HH touchscreen”目录下会有“HHPortCfg.exe”一项,点击“HHPortCfg.exe”打开串口触摸屏管理器(如图5); 图(5) 点击[Install] 按钮安装触摸屏串口(如图6);选中触摸屏所连接的串口,然后点击“OK”进行安装。 图(6)

5. 红外触摸屏的校准 双击桌面上的快捷方式,或者在“开始”——>“所有程序”——>“HH touchscreen”里点击“HH touchscreen.exe”打开触摸屏的控制面板程序(如图7)。 图(7) 点击[Calibrate]按钮进行校准,校准完成后该触摸屏信息的“Calibrated”列会显示为“Yes”校准的操作步骤:在触摸屏信息列表框中选择要校准的触摸屏,点击“Calibrate”按钮,这时就进入校准界面,本程序采用四点校准法,只需依次点击显示出来的靶心中央即可,因为在校准时是采用“抬笔模式”,所以如果触摸物体没有点中靶心可以把触摸物体移至靶心中央再抬起。如果在校准时不想校准该触摸屏可以按键盘上的“Esc”键退出本次校准操作,当校准完四个点后会在界面中显示三个按钮,分别是:“ReCalibrate”、“OK”、“Cancel”,如果想重新校准就按“ReCalibrate”按钮,按“OK”按钮保存校准信息并退出,按“Cancel”按钮退出但不保存校准信息。 5. 模式设置(Modes) 在触摸屏的控制面板程序窗口中“Modes”页面分成7个部分(如图8):第1部分是触摸方式选择、第2部分是功能选项、第3部分是双击及延迟触摸测试、第4部分是延迟触摸设

触摸屏解决方案

触摸屏查询系统解决方案 随着社会服务业竞争的加剧,改善服务方式,提高服务质量已被摆在更加重要的位置。而使用高新技术来提高用户满意度,则是各行各业用来提高社会效益和经济效益的有效方法。随着多媒体技术的不断发展,一种方便,简单的人机交互设备---多媒体触摸查询一体机开始走进人们的生活,你只要手指轻轻触摸屏幕,就会进入一个集图文,声音于一体的信息世界,它象一位忠实,耐心的朋友等待着您的咨询,它的运用不仅给计算机行家带来便利,更主要是使普通大众也能轻松自如的操作,享受高科技带来的便捷舒适。 触摸屏作为一种最新的电脑输入设备,它是目前最简单、方便、自然的一种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要是公共信息的查询;如政府、电信、邮政、税务、银行、铁路、电力等部门的业务查询;城市街头的信息查询;此外应用于政府办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。将来,触摸屏还会走入家庭。 随着使用电脑作为信息来源的与日俱增,触摸屏以其易于使用、坚固耐用、反应速度快、节省空间等优点,使得众多用户越来越多的人感到使用触摸屏的确具有相当大的优越性。触摸屏对于各种应用领域的电脑已经是必不可少的设备。它极大的简化了计算机的使用,即使是对计算机一无所知的人,也照样能够信手拈来,使计算机展现出更大的魅力。解决了公共场所普通计算机所无法解决的问题。 随着城市向信息化方向发展和电脑网络在国民生活中的渗透,信息查询都已用触摸屏实现--显示内容可触摸的形式出现。 一、触摸屏硬件解决方案: 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。 电阻式触摸屏: 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面紧

各类型触摸屏故障及维修方法

?关键词:触摸屏故障触摸屏 ?摘要:触摸屏是经常使用的电子产品,难免会出现问题,相信很多人在使用触摸屏时,都遇到触摸屏因出现故障而不能使用的情况。那么触摸 屏这些常见的故障该如何维修呢?本文就按触摸屏类型介绍一些常见故障的解决与维护方法: 触摸屏是经常使用的电子产品,难免会出现问题,相信很多人在使用触摸屏时,都遇到触摸屏因出现故障而不能使用的情况。那么触摸屏这些常见的故障该如何维修呢?本文就按触摸屏类型介绍一些常见故障的解决与维护方法: 一、表面声波触摸屏 ⑴故障一:触摸偏差 现象1:手指所触摸的位置与鼠标箭头没有重合。 原因1:安装完驱动程序后,在进行校正位置时,没有垂直触摸靶心正中位置。 解决1:重新校正位置。 现象2:部分区域触摸准确,部分区域触摸有偏差。 原因2:表面声波触摸屏四周边上的声波反射条纹上面积累了大量的尘土或水垢,影响了声波信号的传递所造成的。 解决2:清洁触摸屏,特别注意要将触摸屏四边的声波反射条纹清洁干净,清洁时应将触摸屏控制卡的电源断开。 ⑵故障二:触摸无反应 现象:触摸屏幕时鼠标箭头无任何动作,没有发生位置改变。 原因:造成此现象产生的原因很多,下面逐个说明: ①表面声波触摸屏四周边上的声波反射条纹上面所积累的尘土或水垢非常严重,导致触摸屏无法工作; ②触摸屏发生故障; ③触摸屏控制卡发生故障; ④触摸屏信号线发生故障; ⑤计算机主机的串口发生故障;

⑥计算机的操作系统发生故障; ⑦触摸屏驱动程序安装错误。 解决方法: ①观察触摸屏信号指示灯,该灯在正常情况下为有规律的闪烁,大约为每秒钟闪烁一次,当触摸屏幕时,信号灯为常亮,停止触摸后,信号灯恢复闪烁。 ②如果信号灯在没有触摸时,仍然处于常亮状态,首先检查触摸屏是否需要清洁;其次检查硬件所连接的串口号与软件所设置的串口号是否相符,以及计算机主机的串口是否正常工作。 ③运行驱动盘中的COMDUMP命令,该命令为DOS下命令,运行时在COMDUMP后面加上空格及串口的代号1或2,并触摸屏幕,看是否有数据滚出。有数据滚出则硬件连接正常,请检查软件的设置是否正确,是否与其他硬件设备发生冲突。如没有数据滚出则硬件出现故障,具体故障点待定。 ④运行驱动盘中的SAWDUMP命令,该命令为DOS下命令,运行程序时,该程序将寻问控制卡的类型、连接的端口号、传输速率,然后程序将从控制卡中读取相关数据。请注意查看屏幕左下角的X轴的AGC和Y轴的AGC 数值,任一轴的数值为255时,则该轴的换能器出现故障,需进行维修。 ⑤安装完驱动程序后进行第一次校正时,注意观察系统报错的详细内容。“没有找到控制卡”、“触摸屏没有连接”等,根据提示检查相应的部件。如:触摸屏信号线是否与控制卡连接牢固,键盘取电线是否全部与主机连接等。 ⑥如仍无法排除,请专业人员维修。 二、五线电阻触摸屏 ⑴故障一:触摸偏差 现象1:手指所触摸的位置与鼠标箭头没有重合。 原因1:①安装完驱动程序后,在进行校正位置时,没有垂直触摸靶心正中位置; ②触摸屏上的信号线接触不良或断路。 解决1:重新校正位置;查找断点,重新连接,或更换触摸屏。 现象2:不触摸时,鼠标箭头始终停留在某一位置;触摸时,鼠标箭头在触摸点与原停留点的中点处。

触摸屏的主要类型优点和缺点

触摸屏的主要类型优点和缺点 触摸屏的主要类型: 从技术原理来区别触摸屏,可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏 。其中矢量压力传感技术触摸屏已退出历史舞台;红外线技术触摸屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容技术触摸屏设计构思合理,但其图像失真问题很难得到根本解决;电阻技术触摸屏的定位准确,但其价格颇高,且怕刮易损;表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不容易被损坏,适于各种场合,缺点是屏幕表面如果有水滴和尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质把触摸屏分为四种,它们分别为电阻式、红外线式、电容感应式以及表面声波式, 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1、电阻式触摸屏(电阻式触摸屏工作原理图) 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有: A、ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。 B、镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。

四大触摸屏技术工作原理及特点分析

四大触摸屏技术工作原理及特点分析 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 触摸屏的主要类型 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1.电阻式触摸屏 电阻式触摸屏的工作原理 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X 和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:(1)ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。

电容式触摸屏设计要求规范精典

电容式触摸屏设计规 【导读】:本文简单介绍了电容屏方面的相关知识,正文主要分为电子设计和结构设计两个部分。电子设计部分包含了原理介绍、电路设计等方面,结构设计部分包好了外形结构设计、原料用材、供应商工艺等方面 【名词解释】 1. V.A区:装机后可看到的区域,不能出现不透明的线路及色差明显的区域等。 2. A.A区:可操作的区域,保证机械性能和电器性能的区域。 3. ITO:Indium Tin Oxide氧化铟锡。涂镀在Film或Glass上的导电材料。 4. ITO FILM:有导电功能的透明PET胶片。 5. ITO GALSS:导电玻璃。 6. OCA:Optically Clear Adhesive光学透明胶。 7. FPC:可挠性印刷电路板。 8. Cover Glass(lens):表面装饰用的盖板玻璃。 9. Sensor:装饰玻璃下面有触摸功能的部件。(Flim Sensor OR Glass Sensor) 【电子设计】 一、电容式触摸屏简介 电容式触摸屏即Capacitive Touch Panel(Capacitive Touch Screen),简称CTP。根据其驱动原理不同可分为自电容式CTP和互电容式CTP,根据应用领域不同

可分为单点触摸CTP和多点触摸CTP。 1、实现原理 电容式触摸屏的采用多层ITO膜,形成矩阵式分布,以X、Y交叉分布作为电容矩阵,当手指触碰屏幕时,通过对X、Y轴的扫描,检测到触碰位置的电容变化,进而计算出手指触碰点位置。电容矩阵如下图1所示。 图1 电容分布矩阵 电容变化检测原理示意简介如下所示: 名词解释: ε0:真空介电常数。 ε1 、ε2:不同介质相对真空状态下的介电常数。 S1、d1、S2、d2分别为形成电容的面积及间距。

红外触摸屏一体机原理

很多朋友都关心一个问题,也许也是你关系的一天问题,红外触摸屏一体机会不会不利于人的健康安全,特别是会不会伤害眼睛。 手机和电脑一般都是使用电阻或电容触摸屏,电阻只是类似用东西挤压,让内部两层ITO导通,产生阻值波动等信号判断位置; “英文全译”《Mobile phone and computer generally use resistive or capacitive touch screen, resistance is similar with extrusion,make the internal two ITO conduction, the resistance fluctuation signal of the;》 电容就需要手吸收一部分很微弱的电压,产生容值变动,重新判定信号位置,不同的厂商芯片处理的方式不一样; 红外触摸屏为外置框,周围有红外发射接收装置在显示器前组成红外网,通过检测遮挡实现触摸。 生活当中碰到了多种多样的触摸屏,KTV或则自助终端的大部分都用红外屏幕,所以说红外触摸屏一体机你是可以放心使用的。 触派的红外屏触摸技术先进,把客户的身体健康利益放在第一位,经过不断的测试成功、安全后才会投放到市场,这么多年来,触派的红外触摸屏一体机已经得到了许许多多的客户认可。 “英文全译”《Infrared touch screen to send touch technology advanced, the customer's health interests in the first place, through continuous testing, security will be put on the market, so many years, infrared touch sent one touch screen machine has received many customer approval.》 为了确保你的健康安全,触派建议你多多关注触派的触摸一体机,选用放心,质量好,安全的红外屏触摸一体机。 红外屏功能详细介绍: 高度的稳定性不会因时间、环境的变化产生漂移高度的适应性不受电流、电压和静电干扰,适宜某些恶劣的环境条件高透光性无中间介质,高透光性,最高可达100%使用寿命长高度耐久,不怕刮伤; 触摸密度可达,4096*4096,触控寿命极长使用特性好触摸无需力度,对触摸体无特殊要求,无论触摸物是否是硬物、触摸物是否导电,都不影响正常使用。 Touch the density, 4096*4096, touch very long service life characteristics and touch without strength, no special requirements on touch body, no matter whether is hard, touch touch is conductive, does not affect the normal use. 红外线触摸屏原理: 一般是在显示器屏幕的前面安装一个外框,外框里有电路板,在X、Y方向有排布均匀的红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。当有触摸时,手指或其它物体就会挡住经过该点的横竖红外线,由控制器判断出触摸点在屏幕的位置。

电容式触摸屏设计规范精典

电容式触摸屏设计规范【导读】:本文简单介绍了电容屏方面的相关知识,正文主要分为电子设 计和结构设计两个部分。电子设计部分包含了原理介绍、电路设计等方面,结构设计部分包好了外形结构设计、原料用材、供应商工艺等方面 【名词解释】 1. V.A区:装机后可看到的区域,不能出现不透明的线路及色差明显的区域等。 2. A.A区:可操作的区域,保证机械性能和电器性能的区域。 3. ITO:Indium Tin Oxide氧化铟锡。涂镀在Film或Glass上的导电材料。 4. ITO FILM:有导电功能的透明PET胶片。 5. ITO GALSS:导电玻璃。 6. OCA:Optically Clear Adhesive光学透明胶。 7. FPC:可挠性印刷电路板。 8. Cover Glass(lens):表面装饰用的盖板玻璃。 9. Sensor:装饰玻璃下面有触摸功能的部件。(Flim Sensor OR Glass Sensor) 【电子设计】 一、电容式触摸屏简介 电容式触摸屏即Capacitive Touch Panel(Capacitive Touch Screen),,根据应CTP和互电容式CTP。根据其驱动原理不同可分为自电容式CTP简称. 用领域不同可分为单点触摸CTP和多点触摸CTP。 1、实现原理 电容式触摸屏的采用多层ITO膜,形成矩阵式分布,以X、Y交叉分布作为电容矩阵,当手指触碰屏幕时,通过对X、Y轴的扫描,检测到触碰位置的电容变化,进而计算出手指触碰点位置。电容矩阵如下图1所示。 1 电容分布矩阵图 电容变化检测原理示意简介如下所示:名词解释::真空介电常数。ε0 ε2:不同介质相对真空状态下的介电常数。ε1 、d2S2d1S1、、、分别为形成电容的面积及间距。

红外屏多点触摸一体机参数

红外屏多点触摸一体机参数一:具体配置参数 序号安全性设备必须具备国家3C认证、投标要求提供: 1、产品通过国家3C质量认证,投标时提供3C质量认证复印件。 1 显示模块尺寸:55”(16:9)LED屏(横式) 最大分辨率:1920x1080; 亮度:360°亮度以上 对比度:1600:1;(透射) 响应时间:6.3ms; 输入/接口方式: VGA、HDMI 观看视角(水平/垂直):178°/178°; 2 触摸模块屏幕种类:红外多点触摸屏(10真多点) 清晰度:高清 驱动电压:3.3V/5.0V DC; 耐久性:承受单点触摸超过60,000,000次以上 定位精度:测试笔附件+3mm 表面硬度:7H; 透光率:>85%; 分辨率:4096*4096 操作压力:< 10g; 数据刷新频率:60Hz; 玻璃厚度:3mm 真正多点触摸:最多支持10个点同时输出; 玻璃种类:化学强化玻璃; 不怕刮伤,具有防爆功能 3 整体机箱外形:钢制金属立式金属机柜(颜色:机身为黑色哑光,机柜局部为哑光白);带壁挂支架 材质:坚硬厚实,不易变形; 表层处理:防锈、防腐、耐磨,不易沾污损坏,亚光漆; 内部结构:模块定位,布线规范整齐;

外部结构:各部件模块与机柜结合紧密,布局合理,工艺精细。装有立体音 响、机柜材料为1.5mm锌板、1.5mm冷钢板,内置音响,外接网络接口、USB 接口等。 散热技术要求:显示器部件散热问题充分考虑显示器部件、主机散热问题, 提供散热解决方案,无噪音,要求提供散热专利设计证书。 安全性要求:充分考虑到设备使用环境的特殊性,在安全性及防尘、防盗方 面处理的解决方案. 其他要求:要求提供可扩展性方案 4 主机部分嵌入式工控主板(I5/4G/256GSSD/S/N) 5 应用软件定制开发,无缝接入原有多媒体应用展示系统,出具接入证明。 6 设备管理 系统 自助管理系统:控制终端设备重启、关机、系统时间同步;初始化、自检各 类主机外设,支持服务端管理软件操控。 7 质保期所有部件都需进行三年质保,并出具原厂家承诺的质保函 8 施工材料 费55寸红外屏多点触摸一体机布网线、电源线及相并工程材料费用、布管线施工费,搬运费用,含现有软件安装调试费用

linux 触摸屏驱动程序设计

物理与电子工程学院 《嵌入式系统设计》 课程小论文 课题题目linux 触摸屏驱动程序设计系别物理与电子工程学院 年级08级 专业电子科学与技术 学号050208110 学生姓名储旭 日期2011-12-21

目录 第 1 章嵌入式 linux 触摸屏驱动程序设计........................................................................ - 2 - 1.1 课题设计的目的.......................................................................................................... - 2 - 1.2 课题设计要求.............................................................................................................. - 2 - 第二章课题设计平台构建与流程............................................................................................ - 2 - 2.1 嵌入式系统开发平台构建.......................................................................................... - 2 - 2.1.1 cygwin 开发环境............................................................................................ - 2 - 2.1.2 Linux 开发环境.............................................................................................. - 5 - 2.1.3 Embest IDE 开发环境.................................................................................... - 5 - 2.2 触摸屏设计流程.......................................................................................................... - 5 - 2.3 课题设计硬件结构与工作原理.................................................................................. - 6 - 2.3.1 硬件结构概述.................................................................................................. - 6 - 2.3.2 触摸屏工作原理.............................................................................................. - 8 - 第三章 Bootloader 移植与下载.............................................................................................. - 9 - 3.1 Vivi 源代码的安装.................................................................................................... - 9 - 3.2 Vivi 源代码分析...................................................................................................... - 10 - 3.3 Vivi 源代码的编译与下载...................................................................................... - 11 - 第四章 Linux 内核移植与下载.............................................................................................. - 12 - 4.1 Linux 内核源代码的安装........................................................................................ - 12 - 4.2 Linux 内核源代码分析与移植................................................................................ - 14 - 4.3 Linux 内核编译与下载............................................................................................ - 14 - 第五章触摸屏功能模块程序设计与交叉编译...................................................................... - 16 - 5.1 功能模块驱动程序设计............................................................................................ - 16 - 5.2 触摸屏功能模块交叉编译........................................................................................ - 20 - 第六章根文件系统建立与文件系统下载.............................................................................. - 20 - 6.1 Cramfs 根文件系统分析.......................................................................................... - 20 - 6.2 文件系统映像文件生成............................................................................................ - 21 - 6.3 功能模块运行与调试................................................................................................ - 22 - 第七章课题设计总结与体会.................................................................................................. - 26 - 参考文献:................................................................................................................................ - 27 -

PROFACE触摸屏-配方功能制作方法

PROFACE 触摸屏触摸屏------配方功能配方功能配方功能 配方功能可以允许将多个不同的数据(也就是配方)从触摸屏批量写入PLC 的连续地址中,也可以在触摸屏上编辑后再写入PLC 中去。 现以下面的例子为例,介绍一下配方功能的设置方法。 注: ① 按“读取数据”时,②-配方数据表格内显示项目名,同时“完成指示”灯点亮。 ② 配方数据显示表格-显示配方的项目名称。 ③ “SRAM->PLC ”按钮将配方组合数据从触摸屏写入到PLC ,“PLC->SRAM”按钮PLC 中的配方组合数据写入到触摸屏中。 ④ 上下移动白色方框,选定配方数据表格中显示的项目。 ⑤ 配方组合数据的内容显示。 1、配方设置配方设置

★ 在工程管理器中选择“画面/设置”→“配方数据”→“配方设置”。 ★ 设定配方设置中的内容 注: ① 选择使用配方功能(使用配方功能时,此项必选) ② 写入设置:将配方数据从触摸屏的内存或CF 卡写入SRAM(将配方数据写入到PLC 前必须先写入SRAM) 控制字地址控制字地址::该字地址的0位为1 时,执行传输动作

写结束位地址写结束位地址::写入完成后该位为1 ③ PLC 和SRAM 直接传输设置 该功能是由PLC 控制的配方数据自动传输方式,此时必须选中“PLC 控制传输”项。 控制字地址控制字地址::当PLC 中该字地址的0位为1时,配方数据从SRAM 传到PLC。 传输结束位地址:配方数据传输完成后,此位置1。 2、配方列表设置配方列表设置 ★ 在工程管理器中选择“画面/设置”→“配方数据”→“配方列表”。 ★ 在弹出的“配方数据列表”中,选择配方数据是存于内存还上CF 卡,再点击“添加”。

电容式触摸屏设计规范-A

电容式触摸屏设计规范

1 目的 规范电容式触摸屏(投射式)的设计,提高设计人员的设计水平及效率,确保触摸屏模块整体的合理性及可靠性。 2 适用范围 第五事业部TP厂技术部电容式触摸屏设计人员。 3 工程图设计 3.1 工程图纸为TP模块的成品管控,以及出货依据,包含以下内容: 3.1.1 正面视图: 该视图包含TP外形、view area、active area、FPC图形及相关尺寸.若TP需作表面处理,则必须对LOGO的位置、尺寸、材质、颜色、以及工艺进行标注。 需标注尺寸及公差如下: 3.1.2 侧视图: 该视图表示出TP的层状结构, TP各层的厚度、材质、FPC厚度(含IC等元件)必须标注。 需要标注尺寸及公差如下:

3.1.3 反面视图: 这一图层包含背胶、保护膜、泡棉及导光膜的外形尺寸,以及FPC背面的IC及元件区尺寸。 需要标注尺寸及公差如下: 3.1.4 FPC出线图:一般情况FPC的表示可以在正面视图中完成,主要反应FPC与主板的连接方式。如果FPC连接方式为ZIF ,则必须标注以下尺寸。 如果TP与主板的连接方式为B2B,则必须标注连接器的位置尺寸及公差。走线图,出线对照表: 走线图表示TP内部走线,如下图所示: 出线表为TP内部与外界的连接接口,电容的一般分I2C、SPI、USB,如下图所示: I2C接口

USB接口 3.2 文字说明 该部分对TP的常规非常规性能作重点表述,主要包括以下内容: 3.2.1 结构特性:包括lens材质,ITO膜的厂家及型号,IC型号3.2.2 光学特性:包括透光率,雾度,色度等 3.2.3 电气特性:工作电流,反应时间等 3.2.3 机械特性:输入方式,表面硬度等 3.2.4 环境特性:工作温度,储存温度,符合BHS-001标准等 以上特性如超出行业规格范围,需逐一标注,并让客户确认。 3.3 图档管理 图档管理这块需按以下原则进行相应维护: 3.3.1 按照命名规则填写图框,并签名。 3.3.2 如有更改需有更改记录及版本升级,并需客户确认。

配方

串焊机配方程序 因客户经常反应我们的配方使用不顺畅,故利用这次空挡时间,自己编写了一套配方程序,下面为大家讲解了一下配方使用方法以及编写逻辑,如有不正确或者有更好的方法还请指教! 谢谢!

整体逻辑及功能介绍 之前的配方是触摸屏自带的标准配方模块,所以有很多功能无法实现,比如:“复制配方”“新建配方”等,还有客户使用时难理解配方各种按钮含义及功能故照成配方使用不方便等一系列问题。 本次配方是利用PLC程序编辑,包含各种功能,且按钮含义明确操作简单,配方最终是保存在PLC内存里面(本次是利用E1区) 程序主要利用指针功能以及触摸屏上的配方号来实现配方的保存和下载数据以及显示!

触摸屏配方显示 PLC第一次上电时触摸屏上显示的是1#配方,当需要查看其余配方时可以通过“上一组配方”和“下一组配方”两个按钮来控制配方号,程序通过配方号以及指针功能来显示所对应的配方内容。

对应的配方地址为E1_400+配方号*100,触摸屏上显示的地址为E1_5000到E1_5100,配方号地址为E1_6000,PLC中转地址E1_2000-E1_2100 触摸屏新输入的数据进行保存时序: E1_5000—E1_5100E1_400+配方号*100 保存的地址依据配方号码发生变化触摸屏当前参数的输入地址 E1_2000—E1_2100 下载至PLC 需要的中转地址 PLC 中实际使用的地址

PLC 实际使用地址D4056 E0_48 D36 D4058 D970 PLC中转地址E1_2010 E1_2012 E1_2014 E1_2016 E1_2018 触摸屏地址E1_5010 E1_5012 E1_5014 E1_5016 E1_5018 E0_4058 D32 D4004 D4028 D4006 E1_2020E1_2022E1_2024E1_2026E1_2028 D4030 D4008 D4032 D4010 D4034 E1_2030E1_2032E1_2034E1_2036E1_2038 E0_4004 E0_4028 E0_4006 E0_4030 D7432 E1_2040E1_2042E1_2044E1_2046E1_2048 D8162 D6410 D6412 D3612 D7434 E1_2050E1_2052E1_2054E1_2056E1_2058 D7436 D7440 D7442 D8164 D6462 E1_2060E1_2062E1_2064E1_2066E1_2068 D6184 D3118 D3148 D3238 D3242 E1_2070E1_2072E1_2074E1_2076E1_2078 D10022 D10023 D10024 D10025 E1_2080E1_2081E1_2082E1_2083

相关文档
最新文档