单片机执行指令的过程

单片机执行指令的过程

单片机执行指令的过程

单片机执行程序的过程,实际上就是执行我们所编制程序的过程。即逐条指令的过程。计算机每执行一条指令都可分为三个阶段进行。即取指令-----分析指令-----执行指令。

?

?取指令的任务是:根据程序计数器PC中的值从程序存储器读出现行指令,送到指令寄存器。

?

?分析指令阶段的任务是:将指令寄存器中的指令操作码取出后进行译码,分析其指令性质。如指令要求操作数,则寻找操作数地址。

?

?计算机执行程序的过程实际上就是逐条指令地重复上述操作过程,直至遇到停机指令可循环等待指令。

?

?一般计算机进行工作时,首先要通过外部设备把程序和数据通过输入接口电路和数据总线送入到存储器,然后逐条取出执行。但单片机中的程序一般事先我们都已通过写入器固化在片内或片外程序存储器中。因而一开机即可执行指令。

?

?下面我们将举个实例来说明指令的执行过程:

?

?开机时,程序计算器PC变为0000H。然后单片机在时序电路作用下自动进入执行程序过程。执行过程实际上就是取出指令(取

PLC编程语言操作指令使用步骤详解

PLC编程语言/操作指令/使用步骤详解 [导读]控制系统流程图是一种较新的编程方法。它是用像控制系统流程图一样的功能图表达一个控制过程,目前国际电工协会(IEC)正在实施发展这种新式的编程标准。 一、PLC编程语言 1.梯形图编程语言 梯形图沿袭了继电器控制电路的形式,它是在电器控制系统中常用的继电器、接触器逻辑控制基础上简化了符号演变来的,形象、直观、实用。 梯形图的设计应注意以下三点: (一)梯形图按从左到右、从上到下的顺序排列。每一逻辑行起始于左母线,然后是触点的串、并联接,最后是线圈与右母线相联。 (二)梯形图中每个梯级流过的不是物理电流,而是“概念电流”,从左流向右,其两端没有电源。这个“概念电流”只是形象地描述用户程序执行中应满足线圈接通的条件。 (三)输入继电器用于接收外部输入信号,而不能由PLC内部其它继电器的触点来驱动。因此,梯形图中只出现输入继电器的触点,而不出现其线圈。输出继电器输出程序执行结果给外部输出设备,当梯形图中的输出继电器线圈得电时,就有信号输出,但不是直接驱动输出设备,而要通过输出接口的继电器、晶体管或晶闸管才能实现。输出继电器的触点可供内部编程使用。 2.语句表编程语言

指令语句表示一种与计算机汇编语言相类似的助记符编程方式,但比汇编语言易懂易学。一条指令语句是由步序、指令语和作用器件编号三部分组成。 3.控制系统流程图编程图 控制系统流程图是一种较新的编程方法。它是用像控制系统流程图一样的功能图表达一个控制过程,目前国际电工协会(IEC)正在实施发展这种新式的编程标准。 二、基本指令简介 基本指令如表所示 取指令 LD I、Q、M、SM、T、C、V、S、L 常开接点逻辑运算起始 取反指令 LDN I、Q、M、SM、T、C、V、S、L 常闭接点逻辑运算起始 线圈驱动指令

MCS-51指令详解

MCS-51指令详解 说明:为了使MCS-51单片机初学者快速入门,迅速掌握单片机指令含意、操作码、操作数及;对应地址,汇编语言怎样编写等,现按指令操作码按顺序编写,可对照本公司编写的<>一书第145页指令手册查看,更详细资料请阅第四章 MCS-51指令系统" 及第124页指令系统摘要。并在仿真器上装入;JJM.HEX文件,并对有关单元置数,用单步(F8)验证其正确性及其运行结果。 ORG 0000H NOP ;空操作指令 AJMP L0003 ;绝对转移指令 L0003: LJMP L0006 ;长调用指令

L0006: RR A ;累加器A内容右移(先置A为88H) INC A ; 累加器A 内容加1 INC 01H ;直接地址(字节01H)内容加1 INC @R0 ; R0的内容(为地址) 的内容即间接RAM加1 ;(设R0=02H,02H=03H,单步执行后02H=04H) INC @R1 ; R1的内容(为地址) 的内容即间接RAM加1 ;(设R1=02H,02H=03H,单步执行后02H=04H) INC R0 ; R0的内容加1 (设R0为00H,单步执行后查R0内容为多少) INC R1 ; R1的内容加1(设R1为01H,单步执行后查R1内容为多少)

INC R2 ; R2的内容加1 (设R2为02H,单步执行后查R2内容为多少) INC R3 ; R3的内容加1(设R3为03H,单步执行后查R3内容为多少) INC R4 ; R4的内容加1(设R4为04H,单步执行后查R4内容为多少) INC R5 ; R5的内容加1(设R5为05H,单步执行后查R5内容为多少) INC R6 ; R6的内容加1(设R6为06H,单步执行后查R6内容为多少) INC R7 ; R7的内容加1(设R7为07H,单步执行后查R7内容为多少) JBC 20H,L0017; 如果位(如20H,即24H的0位)为1,则转移并清0该位L0017: ACALL S0019 ;绝对调用 S0019: LCALL S001C ;长调用

51单片机汇编指令速查表

51单片机汇编指令速查表 指令格式功能简述字节数周期 一、数据传送类指令 MOV A, Rn 寄存器送累加器 1 1 MOV Rn,A 累加器送寄存器 1 1 MOV A ,@Ri 内部RAM单元送累加器 1 1 MOV @Ri ,A 累加器送内部RAM单元 1 1 MOV A ,#data 立即数送累加器 2 1 MOV A ,direct 直接寻址单元送累加器 2 1 MOV direct ,A 累加器送直接寻址单元 2 1 MOV Rn,#data 立即数送寄存器 2 1 MOV direct ,#data 立即数送直接寻址单元 3 2 MOV @Ri ,#data 立即数送内部RAM单元 2 1 MOV direct ,Rn 寄存器送直接寻址单元 2 2 MOV Rn ,direct 直接寻址单元送寄存器 2 2 MOV direct ,@Ri 内部RAM单元送直接寻址单元 2 2 MOV @Ri ,direct 直接寻址单元送内部RAM单元 2 2 MOV direct2,direct1 直接寻址单元送直接寻址单元 3 2 MOV DPTR ,#data16 16位立即数送数据指针 3 2 MOVX A ,@Ri 外部RAM单元送累加器(8位地址) 1 2 MOVX @Ri ,A 累加器送外部RAM单元(8位地址) 1 2 MOVX A ,@DPTR 外部RAM单元送累加器(16位地址) 1 2 MOVX @DPTR ,A 累加器送外部RAM单元(16位地址) 1 2 MOVC A ,@A+DPTR 查表数据送累加器(DPTR为基址) 1 2 MOVC A ,@A+PC 查表数据送累加器(PC为基址) 1 2 XCH A ,Rn 累加器与寄存器交换 1 1 XCH A ,@Ri 累加器与内部RAM单元交换 1 1 XCHD A ,direct 累加器与直接寻址单元交换 2 1 XCHD A ,@Ri 累加器与内部RAM单元低4位交换 1 1 SWAP A 累加器高4位与低4位交换 1 1 POP direct 栈顶弹出指令直接寻址单元 2 2 PUSH direct 直接寻址单元压入栈顶 2 2 二、算术运算类指令 ADD A, Rn 累加器加寄存器 1 1

计算机程序的执行过程

一。计算机程序的执行过程 程序就是指令的集合 为使计算机按预定要求工作,首先要编制程序。程序是一个特定的指令序列,它告诉计算机要做哪些事,按什么步骤去做。指令是一组二进制信息的代码,用来表示计算机所能完成的基本操作。 1.程序 程序是为求解某个特定问题而设计的指令序列。程序中的每条指令规定机器完成一组基本操作。如果把计算机完成一次任务的过程比作乐队的一次演奏,那么控制器就好比是一位指挥,计算机的其它功能部件就好比是各种乐器与演员,而程序就好像是乐谱。计算机的工作过程就是执行程序的过程,或者说,控制器是根据程序的规定对计算机实施控制的。例如,对于算式 计算机的解题步骤可作如下安排: 步骤1:取a ; 步骤2:取b ; 步骤3:判断; . 若b≥0,执行步骤4 .若b<0,执行步骤6 步骤4:执行a+b; 步骤5:转步骤7; 步骤6:执行a-b; 步骤7:结束。 计算机的工作过程可归结为:取指令→分析指令→执行指令→再取下一条指令,直到程序结束的反复循环过程。通常把其中的一次循环称为计算机的一个指令周期。总之,我们可把程序对计算机的控制归结为每个指令周期中指令对计算机的控制。 2.指令 程序是由指令组成的。指令是机器所能识别的一组编制成特定格式的代码串,它要求机器在一个规定的时间段(指令周期)内,完成一组特定的操作。指令的基本格式可归结为操作码OP和操作数地址AD两部分,具体内容是: ⑴指出计算机应完成的一组操作内容,如传送(MOV)、加法(ADD)、减法(SUB)、输出、停机(HLT)、条件转移(JZ)等。这部分称为指令的操作码部分。 ⑵两个操作数的地址和存放结果的地址及寻址方式。 ⑶为保证程序执行的连续性,在执行当前指令时,还需指出下一条指令的地址。由于指令在存储器中一般是顺序存放的,所以只要设置一个指令指针(IP),每执行一条指令,IP自动加1,便自动指出下一条指令的地址,而不必在指令中专门指出下一条指令的地址。只有在转移指令中才指出下一条指令的地址。此时,IP的内容将随转移指令所指示的内容改变。 3.指令的执行 指令规定的内容是通过控制器执行的,或者说控制器是按照一条指令的内容指挥操作的。 ⑴控制器的功能

51单片机汇编指令集(附记忆方法)

51单片机汇编指令集 一、数据传送类指令(7种助记符) MOV(英文为Move):对内部数据寄存器RAM和特殊功能寄存器SFR的数据进行传送; MOVC(Move Code)读取程序存储器数据表格的数据传送; MOVX (Move External RAM) 对外部RAM的数据传送; XCH (Exchange) 字节交换; XCHD (Exchange low-order Digit) 低半字节交换; PUSH (Push onto Stack) 入栈; POP (Pop from Stack) 出栈; 二、算术运算类指令(8种助记符) ADD(Addition) 加法; ADDC(Add with Carry) 带进位加法; SUBB(Subtract with Borrow) 带借位减法; DA(Decimal Adjust) 十进制调整; INC(Increment) 加1; DEC(Decrement) 减1; MUL(Multiplication、Multiply) 乘法; DIV(Division、Divide) 除法; 三、逻辑运算类指令(10种助记符) ANL(AND Logic) 逻辑与; ORL(OR Logic) 逻辑或; XRL(Exclusive-OR Logic) 逻辑异或; CLR(Clear) 清零; CPL(Complement) 取反; RL(Rotate left) 循环左移; RLC(Rotate Left throught the Carry flag) 带进位循环左移; RR(Rotate Right) 循环右移; RRC (Rotate Right throught the Carry flag) 带进位循环右移; SWAP (Swap) 低4位与高4位交换; 四、控制转移类指令(17种助记符) ACALL(Absolute subroutine Call)子程序绝对调用; LCALL(Long subroutine Call)子程序长调用; RET(Return from subroutine)子程序返回; RETI(Return from Interruption)中断返回; SJMP(Short Jump)短转移; AJMP(Absolute Jump)绝对转移; LJMP(Long Jump)长转移; CJNE (Compare Jump if Not Equal)比较不相等则转移;

计算机系统结构作业答案第三章(张晨曦)

3.1 -3.3为术语解释等解答题。 3.4 设一条指令的执行过程分为取指令,分析指令和执行指令3个阶段,每个阶段所需时间分别为ΔT, ΔT, 2ΔT,分别求出下列各种情况下,连续执行N条指令所需的时间。 (1) 顺序执行方式 (2) 只有“取指令”与“执行指令”重叠 (3) “取指令”,“分析指令”与“执行指令”重叠 解: (1) 4NΔT (2) (3N+1) ΔT (3) 2(N+1) ΔT 3.6 解决流水线瓶颈问题有哪两种常用方法? 解: (1) 细分瓶颈段 将瓶颈段细分为若干个子瓶颈段 (2) 重复设置瓶颈段 重复设置瓶颈段,使之并行工作,以此错开处理任务 3.9 列举下面循环中的所有相关,包括输出相关,反相关,真数据相关。 for(i = 2; i < 100; i=i+1) { a[i] = b[i] + a[i]; -----(1) c[i+1] = a[i] + d[i]; -----(2) a[i-1] = 2*b[i]; -----(3) b[i+1] = 2*b[i]; -----(4) } 解: 输出相关:第k次循环时(1)与第k+1轮时(3) 反相关:第k次循环时(1)和(2)与第k-1轮时(3) 真数据相关:每次循环(1)与(2),第k次循环(4)与k+1次循环(1),(3),(4) 3.12 有一指令流水线如下所示 50ns 50ns 100ns 200ns (1)求连续如入10条指令的情况下,该流水线的实际吞吐率和效率 (2)该流水线的“瓶颈”在哪一段?请采用两种不同的措施消除此“瓶颈”。对于你所给出 的两种新的流水线连续输入10条指令时,其实际吞吐率和效率各是多少? 解:(1)(m表示流水线级数,n 表示任务数)

51单片机各引脚及端口详解

51单片机各引脚及端口详解 51单片机引脚功能: MCS-51是标准的40引脚双列直插式集成电路芯片,引脚分布请参照----单片机引脚图: l P0.0~P0.7 P0口8位双向口线(在引脚的39~32号端子)。 l P1.0~P1.7 P1口8位双向口线(在引脚的1~8号端子)。 l P2.0~P2.7 P2口8位双向口线(在引脚的21~28号端子)。 l P3.0~P3.7 P2口8位双向口线(在引脚的10~17号端子)。 这4个I/O口具有不完全相同的功能,大家可得学好了,其它书本里虽然有,但写的太深,对于初学者来说很难理解的,我这里都是按我自已的表达方式来写的,相信你也能够理解的。 P0口有三个功能: 1、外部扩展存储器时,当做数据总线(如图1中的D0~D7为数据总线接口) 2、外部扩展存储器时,当作地址总线(如图1中的A0~A7为地址总线接口)

3、不扩展时,可做一般的I/O使用,但部无上拉电阻,作为输入或输出时应在外部接上拉电阻。 P1口只做I/O口使用:其部有上拉电阻。 P2口有两个功能: 1、扩展外部存储器时,当作地址总线使用 2、做一般I/O口使用,其部有上拉电阻; P3口有两个功能: 除了作为I/O使用外(其部有上拉电阻),还有一些特殊功能,由特殊寄存器来设置,具体功能请参考我们后面的引脚说明。 有部EPROM的单片机芯片(例如8751),为写入程序需提供专门的编程脉冲和编程电源,这些信号也是由信号引脚的形式提供的, 即:编程脉冲:30脚(ALE/PROG) 编程电压(25V):31脚(EA/Vpp) 接触过工业设备的兄弟可能会看到有些印刷线路板上会有一个电池,这个电池是干什么用的呢?这就是单片机的备用电源,当外接电源下降到下限值时,备用电源就会经第二功能的方 式由第9脚(即RST/VPD)引入,以保护部RAM中的信息不会丢失。 在介绍这四个I/O口时提到了一个“上拉电阻”那么上拉电阻又是一个什么东东呢?他起什么作用呢?都说了是电阻那当然就是一个电阻啦,当作为输入时,上拉电阻将其电位拉高,若输 入为低电平则可提供电流源;所以如果P0口如果作为输入时,处在高阻抗状态,只有外接一个上拉电阻才能有效。 ALE 地址锁存控制信号:在系统扩展时,ALE用于控制把P0口的输出低8位地址送锁存器锁存起来,以实现低位地址和数据的隔离。参见图2(8051扩展2KB EEPROM电路,在图中ALE与4LS373锁存器的G相连接,当CPU对外部进行存取时,用以锁住地址的低位地址, 即P0口输出。 由于ALE是以晶振六分之一的固定频率输出的正脉冲,当系统中未使用外部存储器时,ALE 脚也会有六分之一的固定频率输出,因此可作为外部时钟或外部定时脉冲使用。

51单片机教程:单片机逻辑与或异或指令详解

51单片机教程:单片机逻辑与或异或指令详解 ANL A,Rn ;A 与Rn 中的值按位’与’,结果送入A 中 ANL A,direct;A 与direct 中的值按位’与’,结果送入A 中 ANL A,@Ri;A 与间址寻址单元@Ri 中的值按位’与’,结果送入A 中 ANL A,#data;A 与立即数data 按位’与’,结果送入A 中 ANL direct,A;direct 中值与A 中的值按位’与’,结果送入direct 中 ANL direct,#data;direct 中的值与立即数data 按位’与’,结果送入direct 中。这几条指令的关键是知道什么是逻辑与。这里的逻辑与是指按位与 例:71H 和56H 相与则将两数写成二进制形式: (71H)01110001 (56H)00100110 结果00100000 即20H,从上面的式子可以看出,两个参与运算的值只要其中有一个位上是0,则这位的结果就是0,两个同是1,结果才是1。 理解了逻辑与的运算规则,结果自然就出来了。看每条指令后面的注释 下面再举一些例子来看。 MOV A,#45H;(A)=45H MOV R1,#25H;(R1)=25H MOV 25H,#79H;(25H)=79H ANL A,@R1;45H 与79H 按位与,结果送入A 中为41H (A)=41H ANL 25H,#15H;25H 中的值(79H)与15H 相与结果为(25H)=11H)ANL 25H,A;25H 中的值(11H)与A 中的值(41H)相与,结果为(25H)=11H 在知道了逻辑与指令的功能后,逻辑或和逻辑异或的功能就很简单了。逻辑或是按位或,即有1 为1,全0 为0。例:

单片机的组成结构及指令执行过程

单片机的组成结构及指令执行过程单片机结构 单片机结构 常用的单片机以MCS-51系列单片机为例,它的组成框图如图1-2所示。 微处理器由运算器和控制器两个部分组成,还有包括相关的寄存器。 1.运算器 运算器由运算部件——算术逻辑单元(Arithmetic & Logical Unit,简称ALU)、累加器和寄存器等几部分组成。ALU的作用是把传来的数据进行算术或逻辑运算,输入来源为两个8位数据,分别来自累加器和数据寄存器。ALU能完成对这两个数据进行加、减、与、或、比较大小等操作,最后将结果存入累加器。例如,两个数6和7相加,在相加之前,操作数6放在累加器中,7放在数据寄存器中,当执行加法指令时,ALU即把两个数相加并把结果13存入累加器,取代累加器原来的内容6。 运算器有两个功能: (1) 执行各种算术运算。 (2) 执行各种逻辑运算,并进行逻辑测试,如零值测试或两个值的比较。 运算器所执行全部操作都是由控制器发出的控制信号来指挥的,并且,一个算术操作产生一个运算结果,一个逻辑操作产生一个判决。 2.控制器 控制器由程序计数器、指令寄存器、指令译码器、时序发生器和操作控制器等组成,是发布命令的“决策机构”,即协调和指挥整个微机系统的操作。其主要功能有: (1) 从内存中取出一条指令,并指出下一条指令在内存中的位置。 (2) 对指令进行译码和测试,并产生相应的操作控制信号,以便于执行规定的动作。 (3) 指挥并控制CPU、内存和输入输出设备之间数据流动的方向。 微处理器内通过内部总线把ALU、计数器、寄存器和控制部分互联,并通过外部总线与外部的存储器、输入输出接口电路联接。外部总线又称为系统总线,分为数据总线DB、地址

51单片机常用汇编语言助记符英文全称

51单片机常用汇编语言助记符英文全称 (1)数据传送类指令(7种助记符) MOV(英文为Move):对内部数据寄存器RAM和特殊功能寄存器SFR的数据进行传送;MOVC(Move Code)读取程序存储器数据表格的数据传送; MOVX (Move External RAM) 对外部RAM的数据传送; XCH (Exchange) 字节交换; XCHD (Exchange low-order Digit) 低半字节交换; PUSH (Push onto Stack) 入栈; POP (Pop from Stack) 出栈; (2)算术运算类指令(8种助记符) ADD(Addition) 加法; ADDC(Add with Carry) 带进位加法; SUBB(Subtract with Borrow) 带借位减法; DA(Decimal Adjust) 十进制调整; INC(Increment) 加1;DEC(Decrement) 减1; MUL(Multiplication、Multiply) 乘法; DIV(Division、Divide) 除法; (3)逻辑运算类指令(10种助记符) ANL(AND Logic) 逻辑与; XRL(Exclusive-OR Logic) 逻辑异或; CLR(Clear) 清零;CPL(Complement) 取反; RL(Rotate left) 循环左移; RLC(Rotate Left throught the Carry flag) 带进位循环左移; RR(Rotate Right) 循环右移; RRC (Rotate Right throught the Carry flag) 带进位循环右移; SWAP (Swap) 低4位与高4位交换; (4)控制转移类指令(17种助记符) ACALL(Absolute subroutine Call)子程序绝对调用;

51单片机的P0口工作原理详细讲解

51单片机的P0口工作原理详细讲解 一、P0端口的结构及工作原理P0端口8位中的一位结构图见下图: 由上图可见,P0端口由锁存器、输入缓冲器、切换开关、一个与非门、一个与门及场效应管驱动电路构成。再看图的右边,标号为P0.X引脚的图标,也就是说P0.X引脚可以是P0.0到 P0.7的任何一位,即在P0口有8个与上图相同的电路组成。下面,我们先就组成P0口的每个单元部份跟大家介绍一下:先看输入缓冲器:在P0口中,有两个三态的缓冲器,在学数字电路时,我们已知道,三态门有三个状态,即在其的输出端可以是高电平、低电平,同时还有一种就是高阻状态(或称为禁止状态),大家看上图,上面一个是读锁存器的缓冲器,也就是说,要读取D锁存器输出端Q的数据,那就得使读锁存器的这个缓冲器的三态控制端(上图中标号为‘读锁存器’端)有效。下面一个是读引脚的缓冲器,要读取P0.X引脚上的数据,也要使标号为‘读引脚’的这个三态缓冲器的控制端有效,引脚上的数据才会传输到我们单片机的部数据总线上。D锁存器:构成一个锁存器,通常要用一个时序电路,时序的单元电路在学数字电路时我们已知道,一个触发器可以保存一位的二进制数(即具有保持功能),在51单片机的32根I/O口线中都是用一个D触发器来构成锁存器的。大家看上图中的D 锁存器,D端是数据输入端,CP是控制端(也就是时序控制信号输入端),Q是输出端,Q非是反向输出端。对于D触发器来讲,当D输入端有一个输入信号,如果这时控制端CP没有信号(也就是时序脉冲没有到来),这时输入端D的数据是无法传输到输出端Q及反向输出端Q非的。如果时序控制端CP的时序脉冲一旦到了,这时D端输入的数据就会传输到Q及Q非端。数据传送过来后,当CP时序控制端的时序信号消失了,这时,输出端还会保持着上次输入端D的数据(即把上次的数据锁存起来了)。如果下一个时序控制脉冲信号来了,这时D端的数据才再次传送到Q端,从而改变Q端的状态。多路开关:在51单片机中,当部的存储器够用(也就是不需要外扩展存储器时,这里讲的存储器包括数据存储器及程序存储器)时,P0口可以作为通用的输入输出端口(即I/O)使用,对于8031(部没有ROM)的单片机或者编写的程序超过了单片机部的存储器容量,需要外扩存储器时,P0口就作为‘地址/数据’总线使用。那么这个多路选择开关就是用于选择是做为普通I/O口使用还是作为‘数据/地址’总线使用的选择开关了。大家看上图,当多路开关与下面接通时,P0口是作为普通的I/O口使用的,当多路开关是与上面接通时,P0口是作为‘地址/数据’总线使用的。输出驱动部份:从上图中我们已看出,P0口的输出是由两个MOS管组成的推拉式结构,也就是说,这两个MOS管一次只能导通一个,当V1导通时,V2就截止,当V2导通时,V1截止。 前面我们已将P0口的各单元部件进行了一个详细的讲解,下面我们就来研究一下P0口做为I/O口及地址/数据总线使用时的具体工作过程。1、作为I/O端口使用时的工作原理P0口作为I/O端口使用时,多路开关的控制信号为0(低电平),看上图中的线线部份,多路开关的控制信号同时与与门的一个输入端是相接的,我们知道与门的逻辑特点是“全1出1,

(完整版)51单片机汇编指令(全)

指令中常用符号说明 Rn当前寄存器区的8个工作寄存器R0~R7(n=0~7) Ri当前寄存器区可作为地址寄存器的2个工作寄存器R0和R1(i=0,1) Direct8位内部数据寄存器单元的地址及特殊功能寄存器的地址 #data表示8位常数(立即数) #data16表示16位常数 Add16表示16位地址 Addr11表示11位地址 Rel8位代符号的地址偏移量 Bit表示位地址 @间接寻址寄存器或基址寄存器的前缀 ( )表示括号中单元的内容 (( ))表示间接寻址的内容 指令系统 数据传送指令(8个助记符) 助记符中英文注释 MOV Move 移动 MOV A , Rn;Rn→A,寄存器Rn的内容送到累加器A MOV A , Direct;(direct)→A,直接地址的内容送A MOV A ,@ Ri;(Ri)→A,RI间址的内容送A MOV A , #data;data→A,立即数送A MOV Rn , A;A→Rn,累加器A的内容送寄存器Rn MOV Rn ,direct;(direct)→Rn,直接地址中的内容送Rn MOV Rn , #data;data→Rn,立即数送Rn MOV direct , A;A→(direct),累加器A中的内容送直接地址中 MOV direct , Rn;(Rn)→direct,寄存器的内容送到直接地址 MOV direct , direct;(direct)→direct,直接地址的内容送到直接地址 MOV direct , @Ri;((Ri))→direct,间址的内容送到直接地址 MOV direct , #data;8位立即数送到直接地址中 MOV @Ri , A;(A)→@Ri,累加器的内容送到间址中 MOV @Ri , direct;direct→@Ri,直接地址中的内容送到间址中 MOV @Ri , #data; data→@Ri ,8位立即数送到间址中 MOV DPTR , #data16;data16→DPTR,16位常数送入数据指针寄存器,高8位送入DPH,低8位送入DPL中(单片机中唯一一条16位数据传送指令) (MOV类指令共16条)

第3章-MCS-51系列单片机的指令系统和汇编语言程序范文

第3章MCS一51系列单片机的指令系统 和汇编语言程序 3·1汇编指令 3·1·1请阐明机器语言、汇编语言、高级语言三者的主要区别,进一步说明为什么这三种语言缺一不可。 3·1·2请总结: (1)汇编语言程序的优缺点和适用场合。 (2)学习微机原理课程时,为什么一定要学汇编语言程序? 3·1·3MCS一51系列单片机的寻址方式有哪儿种?请列表分析各种寻址方式的访问对象与寻址范围。 3·1·4要访问片内RAM,可有哪几种寻址方式? 3·1·5要访问片外RAM,有哪几种寻址方式? 3·1·6要访问ROM,又有哪几种寻址方式? 3·1·7试按寻址方式对MCS一51系列单片机的各指令重新进行归类(一般根据源操作数寻址方式归类,程序转移类指令例外)。 3·1·8试分别针对51子系列与52子系列,说明MOV A,direct指令与MOV A,@Rj 指令的访问范围。 3·1·9传送类指令中哪几个小类是访问RAM的?哪几个小类是访问ROM的?为什么访问ROM的指令那么少?CPU访问ROM多不多?什么时候需要访问ROM? 3·1·10试绘图示明MCS一51系列单片机数据传送类指令可满足的各种传送关系。3·1·11请选用指令,分别达到下列操作: (1)将累加器内容送工作寄存器R6. (2)将累加器内容送片内RAM的7BH单元。 (3)将累加器内容送片外RAM的7BH单元。 (4)将累加器内容送片外RAM的007BH单元。 (5)将ROM007BH单元内容送累加器。 3·1·12 区分下列指令的不同功能: (l)MOV A,#24H 与MOV A.24H (2)MOV A,R0与MOV A,@R0 (3)MOV A,@R0与MOVX A,@R0 3·1·13设片内RAM 30H单元的内容为40H; 片内RAM 40H单元的内容为l0H; 片内RAM l0H单元的内容为00H; (Pl)=0CAH。 请写出下列各指令的机器码与执行下列指令后的结果(指各有关寄存器、RAM单元与端口的内容)。 MOV R0,#30H MOV A,@R0 MOV RI,A MOV B,@Rl MOV @R0,Pl MOV P3,Pl MOV l0H,#20H MOV 30H,l0H

51单片机汇编语言教程:13课单片机逻辑与或异或指令详解

51单片机汇编语言教程:第13课-单片机逻辑与或异或指令详解

结果11111001 而所有的或指令,就是将与指仿中的ANL换成ORL,而异或指令则是将ANL换成XRL。即或指令: ORL A,Rn;A和Rn中的值按位'或',结果送入A中 ORL A,direct;A和与间址寻址单元@Ri中的值按位'或',结果送入A中 ORL A,#data;A和立direct中的值按位'或',结果送入A中 ORL A,@Ri;A和即数data按位'或',结果送入A中 ORL direct,A;direct中值和A中的值按位'或',结果送入direct中 ORL direct,#data;direct中的值和立即数data按位'或',结果送入direct中。 异或指令: XRL A,Rn;A和Rn中的值按位'异或',结果送入A中 XRL A,direct;A和direct中的值按位'异或',结果送入A中 XRL A,@Ri;A和间址寻址单元@Ri中的值按位'异或',结果送入A中 XRL A,#data;A和立即数data按位'异或',结果送入A中 XRL direct,A;direct中值和A中的值按位'异或',结果送入direct中 XRL direct,#data;direct中的值和立即数data按位'异或',结果送入direct中。 练习: MOV A,#24H MOV R0,#37H ORL A,R0 XRL A,#29H MOV35H,#10H ORL35H,#29H MOV R0,#35H ANL A,@R0 四、控制转移类指令 无条件转移类指令 短转移类指令 AJMP addr11 长转移类指令

51汇编伪指令详解

51汇编伪指令 伪指令是对汇编起某种控制作用的特殊命令,其格式与通常的操作指令一样,并可加在汇编程序的任何地方,但它们并不产生机器指令。许多伪指令要求带参数,这在定义伪指令时由“表达式”域指出,任何数值与表达式匀可以作为参数。不同汇编程序允许的伪指令并不相同,以下所述的伪指令仅适用于MASM51系统,但一些基本的伪指令在大部份汇编程序中都能使用,当使用其它的汇编程序版本时,只要注意一下它们之间的区别就可以了。 MASM51中可用的伪指令有: ORG 设置程序起始地址 END 标志源代码结束 EQU 定义常数 SET 定义整型数 DATA 给字节类型符号定值 BYTE 给字节类型符号定值 WROD 给字类型符号定值 BIT 给位地址取名 ALTNAME 用自定义名取代保留字 DB 给一块连续的存储区装载字节型数据 DW 给一块连续的存储区装载字型数据 DS 预留一个连续的存储区或装入指定字节。 INCLUDE 将一个源文件插入程序中 TITLE 列表文件中加入标题行

NOLIST 汇编时不产生列表文件 NOCODE 条件汇编时,条件为假的不产生清单 一、ORG 伪指令ORG用于为在它之后的程序设置地址值,它有一个参数,其格式为: ORG 表达式 表达式可以是一个具体的数值,也可以包含变量名,如果包含变量名,则必须保证,当第一次遇到这条伪指令时,其中的变量必须已有定义(已有具体的数值),否则,无定义的值将由0替换,这将会造成错误。在列表文件中,由ORG定义的指令地址会被打印出来。 ORG指令有什么用途呢?指令被翻译成机器码后,将被存入系统的ROM中,一般情况下,机器码总是一个接一个地放在存储器中,但有一些代码,其位置有特殊要求,典型的是五个中断入口,它们必须被放在0003H,000BH,0013H,001BH和0023H的位置,否则就会出错,如果我们编程时不作特殊处理,让机器代码一个接一个地生成,不能保证这些代码正好处于这些规定的位置,执行就会出错,这时就要用到ORG伪指令了。看如下例子: 例: INT_0 EQU 1000H TIME_0 EQU 1010H INT_1 EQU 1020H TIME_1 EQU 1030H SERIAL EQU 1040H

cpu指令运行说明

cpu指令运行说明 cpu指令运行说明一计算机每执行一条指令都可分为三个阶段进行。即取指令-----分析指令-----执行指令。 取指令的任务是:根据程序计数器pc中的值从程序存储器读出现行指令,送到指令寄存器。 分析指令阶段的任务是:将指令寄存器中的指令操作码取出后进行译码,分析其指令性质。如指令要求操作数,则寻找操作数地址。 计算机执行程序的过程实际上就是逐条指令地重复上述操作过程,直至遇到停机指令可循环等待指令。 一般计算机进行工作时,首先要通过外部设备把程序和数据通过输入接口电路和数据总线送入到存储器,然后逐条取出执行。但单片机中的程序一般事先我们都已通过写入器固化在片内或片外程序存储器中。因而一开机即可执行指令。 下面我们将举个实例来说明指令的执行过程: 开机时,程序计算器pc变为0000h。然后单片机在时序电路作用下自动进入执行程序过程。执行过程实际上就是取出指令(取出存储器中事先存放的指令阶段)和执行指令(分析和执行指令)的循环过程。 例如执行指令:mov a,#0e0h,其机器码为“74h e0h”,该指令的功能是把操作数e0h送入累加器,

0000h单元中已存放74h,0001h单元中已存放e0h。当单片机开始运行时,首先是进入取指阶段,其次序是: 1 程序计数器的内容(这时是0000h)送到地址寄存器; 2 程序计数器的内容自动加1(变为0001h); 3 地址寄存器的内容(0000h)通过内部地址总线送到存储器,以存储器中地址译码电跟,使地址为0000h的单元被选中; 4 cpu使读控制线有效; 5 在读命令控制下被选中存储器单元的内容(此时应为74h)送到内部数据总线上,因为是取指阶段,所以该内容通过数据总线被送到指令寄存器。至此,取指阶段完成,进入译码分析和执行指令阶段。 由于本次进入指令寄存器中的内容是74h(操作码),以译码器译码后单片机就会知道该指令是要将一个数送到a累加器,而该数是在这个代码的下一个存储单元。所以,执行该指令还必须把数据(e0h)从存储器中取出送到cpu,即还要在存储器中取第二个字节。其过程与取指阶段很相似,只是此时pc已为0001h。指令译码器结合时序部件,产生74h操作码的微操作系列,使数字e0h 从0001h单元取出。因为指令是要求把取得的数送到a累加器,所以取出的数字经内部数据总线进入a累加器,而不是进入指令寄存器。至此,一条指令的执行完毕。单片机中pc="0002h",pc 在cpu每次向存储器取指或取数时自动加1,单片机又进入下一取指阶段。这一过程一直重复下去,直至收到暂停指令或循环等待指令暂停。cpu就是这样一条一条地执行指令,完成所有规定cpu指令运行说明二首先,cpu的内部结构可以分为控制

实验一(B) 利用DEBUG熟悉常用指令的使用

实验一利用DEBUG熟悉常用指令的使用 一、实验目的 熟悉指令系统,掌握常用指令的用法;通过实验加深对各种寻址方式的理解;能熟练使用DEBUG中的命令对指令进行反汇编,观察并了解机器代码。 二、示例 请分别用一条汇编语言指令完成如下功能:(过程略) (1)用寄存器BX和SI的基址变址寻址方式把存储器的一个字节与AL寄存器的内容相加, 并把结果送到AL中。 (2) 用位移量为0520H的直接寻址方式把存储器中的一个字与3412H相加,并把结果送回 该存储单元。 三、实验题 1、调试、验证下列指令的结果,已知(DS)=2000H,(BX)=0100H,(SI)=0002H, (BP)=0200H,(SS)=2300H,(20100)=12H,(20101)=34H, (20102)=56H, (20103)=78H, (21200)=2AH, (21201)=4CH,(21202)=B7H,(21203)=65H, (23204)=88H, 说明各指令执行完后AX寄存器的内容。要求输入指令,相应存储单元的内容要事先设置,单步T执行,观察执行结果。 (1)MOV AX,1200H (2) MOV AX,BX (3)MOV AX,[1200H] (4)MOV AX,[BX] (5)MOV AX,1100[BX] (6)MOV AX,[BX][SI] (7)MOV AX,1100[BX][SI] (8)MOV AX,[BP+SI+04] 2、上机调试、验证教材习题3.15和习题3.16。单步执行、观察运行结果并与自己的判断

进行比较。 四、实验报告 总结操作步骤及各种寻址方式,正确理解算术指令对标志位的影响,记录调试结果。

实验三 Debug的使用(2)

实验三Debug的使用(二) 一、实验要求和目的 1.熟悉Debug环境。 2.掌握常用Debug命令的基本操作。 二、软硬件环境 1.硬件环境:微机CPU 486以上,500MB以上硬盘,32M以上内存; 2.软件环境:装有MASM 5.0、DEBUG、LINK和EDIT 等应用程序。 三、实验涉及的主要知识单元 前面实验中,讲了Debug一些主要命令的用法,这里,我们再补充一些关于Debug的知识。 (1)关于D命令 从上次实验中,我们知道,D命令是查看内存单元的命令,可以用: d 段地址:偏移地址的格式查看指定的内存单元的内容,上次实验中,D命令后面的段地址和偏移地址都是直接给出的。 现在,我们知道段地址是放在段寄存器中的,在D 命令后面直接给出段地址,是Debug提供的一种直观的操作方式。D命令是由Debug执行的,Debug在执行“d 1000:0”这样的命令时,也会先将段地址1000

送入段寄存器中。 Debug是靠什么来执行D命令的?当然是一段程序。 谁来执行这段程序?当然是CPU。 CPU在访问内存单元的时候从哪里得到内存单元的段地址?从段寄存器中得到。 所以,Debug在其处理D命令的程序段中,必须有将段地址送入段寄存器的代码。 段寄存器有4个:CS、DS、SS、ES,将段地址送入哪个段寄存器呢? 首先不能是CS,因为CS:IP必须指向Debug处理D 命令的代码,也不能是SS,因为SS:SP要指向栈顶。这样只剩下了DS和ES可以选择,放在哪里呢?我们知道,访问内存的指令如“mov ax,[0]”等一般都默认段地址在ds中,所以Debug在执行如:“d 段地址:偏移地址”这种D命令时,将段地址送入ds中比较方便。 D命令也提供了一种符合CPU机理的格式:“d 段寄存器:偏移地址”,以段寄存器中的数据为段地址SA,列出从SA:偏移地址开始的内存区间中的数据。以下是4个例子: ①-r ds :1000

单片机伪指令和指令详解

ASM-51汇编伪指令 一、伪指令分类 1.符号定义 SEGMENT, EQU, SET, DATA, IDATA, XDATA, BIT, CODE 2.存储器初始化/保留 DS, DB, DW, DBIT 3.程序链接 PUBILC, EXTRN, NAME 4.汇编程序状态控制 ORG, END 5.选择段的伪指令 RSEG, CSEG, DSEG, XSEG, ISEG, BSEG, USING 二、伪指令具体说明 1.符号定义伪指令 1)SEGMENT伪指令 格式:段名SEGMENT 段类型 说明:SEGMENT 伪指令说明一个段。段就是一块程序代码或数据存储器。允许使用的段类型为: ●CODE代码空间 ●DATA 可以直接寻址的内部数据空间 ●XDATA外部数据空间 ●IDATA可以间接寻址的整个内部数据空间 ●BIT位空间 例子:(段符号用于表达式时,代表被连接段的基地址) STACK SEGMENT IDATA RSEG STACK DS 10H ;保留16字节做堆栈 MOV SP , #STACK-1 ;堆栈指针初始化

2)EQU伪指令 格式:符号名 EQU 表达式 符号名 EQU 特殊汇编符号 说明:EQU表示把一个数值或特殊汇编符号赋予规定的名字。 一个表达式赋予一个符号,必须是不带向前访问的表达式。 例子:N27 EQU 27; ACCUM EQU A ;定义ACCUM代替特殊汇编符号A(累加器) HERE EQU $; HERE为当前位置计数器的值 3)SET伪指令 格式:符号名 SET 表达式 符号名 SET 特殊汇编符号 说明:SET类似EQU,区别在于可以用另一个SET伪指令在以后对定义过的符号重新定义。 例子:COUNT SET 0 COUNT SET COUNT+1 4)BIT伪指令 格式:符号名 BIT 位地址 说明: BIT伪指令把一个地址赋予规定的符号名。该符号类型取段类型BIT. 例子: RSEG DATA_SEG; CONTROL: DS 1 ALATM BIT CONTROL.0; OPEN_BOARD BIT ALATM+1 ;下一位 RESET_BOARD BIT 60H ;下一个绝对的位 5)DATA伪指令 格式:符号名 DATA 表达式 说明:DATA伪指令把片内的数据地址赋予所规定的符号名。符号段类型为DATA. 例子:CONIN DATA SBUF;定义CONIN 到串行口缓冲器的地址

指令的执行过程

举个实例来说明指令的执行过程: 开机时,程序计算器PC变为0000H。然后单片机在时序电路作用下自动进入执行程序过程。执行过程实际上就是取出指令(取出存储器中事先存放的指令阶段)和执行指令(分析和执行指令)的循环过程。 例如执行指令:MOV A,#0E0H,其机器码为“74H E0H”,该指令的功能是把操作数E0H送入累加器,0000H单元中已存放74H,0001H单元中已存放E0 H。当单片机开始运行时,首先是进入取指阶段,其次序是: 1 程序计数器的内容(这时是0000H)送到地址寄存器; 2 程序计数器的内容自动加1(变为0001H); 3地址寄存器的内容(0000H)通过内部地址总线送到存储器,以存储器中地址译码电跟,使地址为0000H的单元被选中; 4 CPU使读控制线有效; 5 在读命令控制下被选中存储器单元的内容(此时应为74H)送到内部数据总线上,因为是取指阶段,所以该内容通过数据总线被送到指令寄存器。 至此,取指阶段完成,进入译码分析和执行指令阶段。 由于本次进入指令寄存器中的内容是74H(操作码),以译码器译码后单片机就会知道该指令是要将一个数送到A累加器,而该数是在这个代码的下一个存储单元。所以,执行该指令还必须把数据(E0H)从存储器中取出送到CPU,即还要在存储器中取第二个字节。其过程与取指阶段很相似,只是此时PC已为0001H。指令译码器结合时序部件,产生74H操作码的微操作系列,使数字E0H从0001H 单元取出。因为指令是要求把取得的数送到A累加器,所以取出的数字经内部数据总线进入A累加器,而不是进入指令寄存器。至此,一条指令的执行完毕。单片机中PC=0002H,PC在CPU每次向存储器取指或取数时自动加1,单片机又进入下一取指阶段。这一过程一直重复下去,直至收到暂停指令或循环等待指令暂停。CPU就是这样一条一条地执行指令,完成所有规定的功能

相关文档
最新文档