实验二 模拟和数字信号光纤传输系统实验

实验二 模拟和数字信号光纤传输系统实验
实验二 模拟和数字信号光纤传输系统实验

信号光纤传输技术实验.

音频信号光纤传输技术实验 预习要求 通过预习应理解以下几个问题: 1.音频信号光纤传输系统由那几个部分组成、主要器件(LED 、SPD 和光纤)的工作原理; 2.LED 调制、驱动电路工作原理 3.LED 偏置电流和调制信号的幅度应如何选择、; 4.测量SPD 光电流的I-V 变换电路的工作原理。 实验目的 1.熟悉半导体电光/光电器件基本性能及主要特性的测试方法; 2.了解音频信号光纤传输系统的结构及各主要部件的选配原则; 3.掌握半导体电光和光电器件在模拟信号光纤传输系统中的应用技术; 4.学习音频信号光纤传输系统的调试技术。 实验原理 一.系统的组成 音频信号光纤传输系统的原理图如图8-1-1所示。它主要包括由LED (光源)及其调制、驱动电路组成的光信号发送器、传输光纤和由光—电转换、I —V 变换及功放电路组成的光信号接收器三个部分。光源器件LED 的发光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近。本实验采用中心波长0.85μm的GaAs 半导体发光二极管作光源、峰值响应波长为0.8~0.9μm的硅光二极管SPD 作光电检测元件。为了避免或减少谐波失真,要求整个传输系统的频带

宽度能够覆盖被传信号的频谱范围。对于音频信号,其频谱在20Hz ~20KHz 的范围内。光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的频率特性。 二、光纤的结构及传光原理 衡量光纤信道性能好坏有两个重要指标:一是看它传输信息的距离有多远,二是看它单位时间内携带信息的容量有多大。前者决定于光纤的损耗特性,后者决定于光纤的频率特性。目前光纤的损耗容易做到每公里零点几dB 水平。光纤的损耗与工作波长有关,所以在工作波长的选用上,应尽量选用低损耗的工作波长。光纤通讯最早是用短波长0.85μm,近来发展到能用1.3~1.55μm范围的波长,在这一波长范围内光纤不仅损耗低,而且“色散”也小。 光纤的频率特性主要决定于光纤的模式性质。光纤按其模式性质通常可以分成单模光纤和多模光纤。无论单模或多模光纤,其结构均由纤芯和包层两部分组成。纤芯的折射率较包层折射率大。对于单模光纤,纤芯直径只有5~10μm,在一定条件下,只允许一种电磁场形态的光波在纤芯内传播。多模光纤的纤芯直径为50μm或62.5μm,允许多种电磁场形态的光波传播。以上两种光纤的包层直径均为125μm。按其折射率沿光纤截面的径向分布状况又分成阶跃型和渐变型两种光纤,对于阶跃型光纤,在纤芯和包层中折射率均为常图8-1-1 音频信号光纤传输系统原理图 数,但纤芯折射率n 1略大于包层折射率n 2。所以对于阶跃型多模光纤,可用几何光学的全反射理论解释它的导光原理。在渐变型光纤中,纤芯折射率随离开光纤轴线距离的增加而逐渐减小,直到在纤芯—包层界面处减到某一值后,在包层

OptiSystem仿真在光纤通信实验教学中的应用_王秋光_解析

ISSN1672-4305CN12-1352/N实验室科学 LABORATORYSCIENCE 第18卷第 1期 2015年 2月 Vol. 18No. 1Feb. 2015 OptiSystem 仿真在光纤通信实验教学中的应用 王秋光 , 张亚林 , 胡彩云 , 赵莹琦 (广州大学松田学院电气与汽车工程系 , 广东广州 511370 摘 要 :介绍了光纤通信实验教学中的光纤色散实验、激光器调制频率特性实验、掺铒光纤放大器实验、光 接收机实验与 WDM 系统实验 5个 OptiSystem 仿真实验 , 给出了每个实验项目的仿真模型及模型中的参数设置 , 简要分析了仿真实验结果。 OptiSystem 仿真实验可以反复观察练习 , 节省较高的实验费用 , 有利于学生对光纤通信课程教学中抽象的理论知识的理解 , 在光纤通信实验教学中取得了较好效果。关键 词 :OptiSystem ; 光纤通信 ; 仿真 ; 实验教学中图分类号 :TN929.11; TP391.9 文献标识码 :A doi :10.3969/j.issn.1672-4305.2015.01.008 Application of OptiSystem simulation in experiment teaching of optical fiber communication WANG Qiu -guang , ZHANG Ya -lin , HU Cai -yun , ZHAO Ying -qi (Department of Electrical &Automotive Engineering , Guangzhou University Sontian College , Guang-zhou 511370, China

数字信号处理实验一

实验一 离散时间信号分析 班级 信息131班 学号 201312030103 姓名 陈娇 日期 一、实验目的 掌握两个序列的相加、相乘、移位、反褶、卷积等基本运算。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列)}({n x 来表示,其中)(n x 代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为+∞<<∞-n 的整数,n 取其它值)(n x 没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号)(t x a 进行等间隔采样,采样间隔为T ,得到)}({nT x a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)) (n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 ∑∞ -∞==-= m n h n x m n h m x n y )(*)()()()( 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。

(2)移位:将)(m h -移位n ,得)(m n h -。当n 为正数时,右移n 位;当n 为负数时,左移n 位。 (3)相乘:将)(m n h -和)(m x 的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。 三、主要实验仪器及材料 微型计算机、Matlab6.5 教学版、TC 编程环境。 四、实验内容 (1)用Matlab 或C 语言编制两个序列的相加、相乘、移位、反褶、卷积等的程序; (2)画出两个序列运算以后的图形; (3)对结果进行分析; (4)完成实验报告。 五、实验结果 六、实验总结

数字信号处理实验七小信号放大器特性分析与仿真

实验七小信号放大器特性分析与仿真1,实验目的 使用matlab分析各种小信号放大器的结构、参数及特性,加深对各种小信号放大器的理解和认识 二、实验原理 小信号放大器是电子线路的重要组成部分之一,由于他工作在晶体管的线性区域之内,因此又称为线性放大器。使用MATLAB可仿真小信号放大器的各种参数,如电压增益,输入阻抗,输出阻抗,频率响应等等。 1、晶体三极管的等效电路 常见的晶体三极管等效电路有:低频h参数,共基极T型高频等效电路,混合π型高频等效电路,他们通常用于分析各种小信号晶体管放大器的特性。 共发射极h参数的等效电路如图(a)所示,它适用于对低频放大器进行分析。另外,还存在着一种简化的h参数等效电路,其中忽略晶体管内部的电压反馈系数。共发射极的h参数与各电压电流的关系为。 共基极T型高频等效电路如图(b)所示,适用于共基极高频放大电路进行分析,工作频率可达100MHZ以上。 混合π型高频等效电路如图(c)所示,适用于分析共发射极的高频发达电路。在较宽的频率范围之内,等效电路的参数和工作频率无关。另外还存在着简化的混合π型高频等效电路,其中和处于开路状态。 2、共发射极放大电路 共发射极放大电路是一种使用的最为广泛的放大电路形式,其特点是电压增益和电流增益都比较高。自定义M函数amplifl..m用来仿真共发射极放大电路,使用它可以计算该放大器的的智力参数和交流参数。该

放大器的电路如下图。 MATLAB的特点之一就是适合进行线性代数运算,因此午在分析直流参数或分析交流参数时,都可以采用基尔霍夫定理,然后采用矩阵求逆的方式求出电压和电流的具体数值,进一步便可得到该放大器的各种参数。在分析共发射极放大的交流参数时,采用的晶体管模型是低频H 参数等效电路。一般来说,每个晶体管都可以用三个节点来表示,他们分别是基极集电极和发射极。在计算交流参数过程中,忽略各电容器的容抗。 3、直接耦合放大器 在两个或三个晶体管之间进行直接耦合的放大器称为直接耦合放大器,他多用作音响系统中的前置放大器,录音机内的磁头放大器。直接耦合放大器的主要特点是工作点稳定,电压增益高,下图是一个典型的直接耦合放大电路,它有三个晶体管构成,第一级为低噪声放大,第二级为高增益放大,第三极为射随器,整个放大器的电压增益由负反馈电路确定。由于采用了串联电压负反馈,同时又使用了射随器,因此该电路具有较高的输入阻抗和较低的输出阻抗。 4、差分放大器

光纤传输损耗测试实验介绍

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成 2016 年05 月日

预 习 报 告 一、 实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、 实验仪器 20MHz 双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、 实验原理 光纤在波长λ处的衰减系数为()αλ,其含义为单位长度光纤引起的光功率衰减,单位是dB/km 。当长度为L 时, 10() ()l g (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G .650、G .651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。

图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条件)由于插入被测光纤引起的功率损耗。显然,功率 1 P 、 2 P 的测量没有 截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。 (a ) (b ) 图1.2 典型的插入损耗法测试装置

光纤实验报告--数字光纤通信线路编译码CPLD仿真实验

光纤实验报告--数字光纤通信线路编译码CPLD仿真实验

数字光纤通信线路编译码 CMI实验

班级: 姓名: 一、实验目的: 1.熟悉m序列NRZ码、任意周期码产生原理以及光纤线路CMI编译码原理。 2.初步熟练Altera公司Maxplus II仿真平台的使用。 3.进一步熟悉数字电路设计技巧。 4.基本掌握如何进行CPLD的电路设计与仿真。 5.深入理解光纤线路编译码在光纤通信系统中的实际运用方法。 二、实验内容: 1.学习使用Altera公司Maxplus II仿真平台进行CPLD数字电路的设计与仿真。

2.设计m序列NRZ码产生电路以及光纤线路CMI编译码电路。 m序列: 伪随机序列; NRZ: 不归零码; CMI编码规则: 0码:01; 1码::00/11 交替; 3.通过CPLD仿真确保上述电路的正确设计。 4.总结光纤线路编译码在光纤通信系统中的实际运用。 三、实验要求: 在MAX+plus II软件仿真环境中, 1.用绘制原理图的方法建立新工程,设计CPLD内部下述电路:15位m序列NRZ码的生成电路; CMI编码电路; CMI编码输入的选择电路:周期15位m序列与由周期15位二进制码表示本组内某学号最后四位(前面可补零)分别选择作为CMI编码输入; CMI译码电路(在实验室条件下使用统一系统时钟,输入为CMI编码输出)。 2.对所做设计完成正确编译。 3.使用仿真环境完成信号波形仿真。CPLD电路仿真的输入输出信号即各测试点数 信号要求如下: 输入:电路的总复位信号:1路(位); 系统时钟信号(2Mbps):1路; CMI编码输入的选择信号:1路; 输出:周期15位m序列NRZ码:1路; 周期15位二进制后四位学号:1路; CMI编码输出信号:1路; CMI译码输出信号:1路;

数字信号处理实验

实验一 离散傅里叶变换(DFT )对确定信号进行谱分析 一.实验目的 1.加深对DFT 算法原理和基本性质的理解。 2.熟悉DFT 算法和原理的编程方法。 3.学习用DFT 对信号进行谱分析的方法,了解可能出现的误差及其原因,以便在实际中正确利用。 二.实验原理 一个连续信号)(t x a 的频谱可以用其傅里叶变换表示,即 dt e t x j X t j a a Ω-∞ ∞ -? = Ω)()( 若对)(t x a 进行理想采样可得采样序列 )(|)()(nT x t x n x a nT t a === 对)(n x 进行DTFT ,可得其频谱为: ∑∞ -∞ =-= n n j j e n x e X ωω )()( 其中数字频率ω与模拟频率Ω的关系为: s f T Ω = Ω=ω )(n x 的DFT 为∑∞ -∞ =-= n nk N j e n x k X π 2)()( 若)(t x a 是限带信号,且在满足采样定理的条件下,)(ω j e X 是)(Ωj X a 的周期延拓, )(k X 是)(ωj e X 在单位圆上的等间隔采样值,即k N j e X k X πωω2| )()(= =。 为在计算机上分析计算方便,常用)(k X 来近似)(ω j e X ,这样对于长度为N 的有限 长序列(无限长序列也可用有限长序列来逼近),便可通过DFT 求其离散频谱。 三.实验内容 1.用DFT 对下列序列进行谱分析。 (1))()04.0sin(3)(100n R n n x π=

1 (2)]0,0,0,0,0,0,0,0,1,1,1,1[)(=n x 2.为了说明高密度频谱和高分辨率频谱之间的区别,考察序列 )52.0cos()48.0cos()(n n n x ππ+= (1)当0≤n ≤10时,确定并画出x(n)的离散傅里叶变换。 (2)当0≤n ≤100时,确定并画出x(n)的离散傅里叶变换。 四.实验结果 1. (1) (2)

数字信号处理实验

实验六: 用FFT对信号作频谱分析 一、实验目的 1.了解双音多频信号的产生、检测、包括对双音多频信号进行DFT时的参数选择等。 2.初步了解数字信号处理在是集中的使用方法和重要性。 3.掌握matlab的开发环境。 二、实验原理与方法 1、引言 双音多频(Dual Tone Multi Frequency, DTMF)信号是音频电话中的拨号信号,由美国AT&T贝尔公司实验室研制,并用于电话网络中。这种信号制式具有很高的拨号速度,且容易自动监测识别,很快就代替了原有的用脉冲计数方式的拨号制式。这种双音多频信号制式不仅用在电话网络中,还可以用于传输十进制数据的其它通信系统中,用于电子邮件和银行系统中。这些系统中用户可以用电话发送DTMF信号选择语音菜单进行操作。DTMF信号系统是一个典型的小型信号处理系统,它要用数字方法产生模拟信号并进行传输,其中还用到了D/A变换器;在接收端用A/D变换器将其转换成数字信号,并进行数字信号处理与识别。为了系统的检测速度并降低成本,还开发一种特殊的DFT算法,称为戈泽尔(Goertzel)算法,这种算法既可以用硬件(专用芯片)实现,也可以用软件实现。下面首先介绍双音多频信号的产生方法和检测方法,包括戈泽尔算法,最后进行模拟实验。下面先介绍电话中的DTMF信号的组成。在电话中,数字0~9的中每一个都用两个不同的单音频传输,所用的8个频率分成高频带和低频带两组,低频带有四个频率:679Hz,770Hz,852Hz和941Hz;高频带也有四个频率:1209Hz,1336Hz,1477Hz和1633Hz.。每一个数字均由高、低频带中各一个频率构成,例如1用697Hz和1209Hz两个频率,信号用表示。这样8个频率形成16种不同的双频信号。具体号码以及符号对应的频率如表10.6.1所示。表中最后一列在电话中暂时未用。DTMF信号在电话中有两种作用,一个是用拨号信号去控制交换机接通被叫的用户电话机,另一个作用是控制电话机的各种动作,如播

光纤通信系统实验指导书

光纤通信系统实验指导书 光纤通信系统实验指导书 桂林电子科技大学信息科技学院 二零零九年三月 目录 实验一数字光纤传输测试系统实验 (2) 实验二SDH点对点组网2M配置实验 (9)

实验三SDH 链型组网配置实验 (17) 实验四SDH 环形组网配置实验 (27) 实验一数字光纤传输测试系统实验 概述 光纤通信是利用光波作为载波,以光纤作为传输媒质实现信息传输,是一种最新的通信技术。 光纤是光导纤维的简称。光纤通信是以光波为载频,以光导纤维为传输媒质

的一种通信方式。光纤通信使用的波长在近红外区,即波长800~1800nm,可分为短波长波段(850nm)和长波长波段(1310nm和1550nm),这是目前所采用的三个通信窗口。 通信发展过程是以不断提高载频频率来扩大通信容量,光是一种频率极高的电磁波(3×1014HZ),因此用光作载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,是通信发展的必然方向。 光纤通信有许多优点:首先它有极宽的频带。目前我国已完成了10Gbps的光纤通信系统,这意味着在125um的光纤中可以传输大约11万路电话。其次,光纤的传输损耗很小,传统的同轴电缆损耗约在5dB/Km以上,站间距离不足10Km;而工作在1.55um的光纤最低已达到0.2dB/Km的损耗,站间无中继传输可达100Km以上。另外,光纤通信还具有抗电磁干扰、抗腐蚀、抗辐射等特点,它 。 在地球上有取之不尽,用之不竭的光纤原材料—SiO 2 光纤通信可用于市话中继线,长途干线通信,高质量彩色电视传输,交通监控指挥,光纤局域网,有线电视网和共用天线(CATV)系统。 波分复用技术(WDM)的出现,使光纤传输技术向更高的领域发展,实现信息宽带、高速传输。 光纤通信将会在光同步数字体系(SDH)、相干光通信、光纤宽带综合业务数字网(B—ISDN)、用户光纤网、ATM及全光通信有进一步发展。 光纤通信系统主要由三部分组成:光发射机、传输光纤和光接收机。其电/光和光/电变换的基本方式是直接强度调制和直接检波。实现过程如下:输入电信号既可以是模拟信号(如视频信号、电话语音信号、正弦波或三角波信号),也可以是数字信号(如计算机数据、PCM编码信号、数字信号源信号);调制器将输入的电信号转换成适合驱动光源器件的电流信号并用来驱动光源器件,对光源器件进行直接强度调制,完成电/光变换的功能;光源 输出的光信号直接耦合到传输光纤中,经一定长度的光纤传输后送达接收端;在接收端,光电检测器对输入的光信号进行直接检波,将光信号转换成相应的电信号,再经过放大恢复等电信号处理过程,以弥补线路传输过程中带来的信号损伤(如损耗、波形畸变),最后输出和原始输入信号相一致的电信号,从而完成整个传送过程。 根据所使用的光波长、传输信号形式、传输光纤类型和光接收方式的不同,光纤通信系统可分成:

光发送机仿真

光发送机的仿真实验 ㈠实验目的: ①学会使用仿真软件进行仿真模信号 ②了解光发机的组成与仿真实验图的构建 ③熟悉光发射机工作原理 ㈡实验原理及结果: 光发送机是一个非常重要组成部分,它的作用是将电信号转化成光信号,并有效地将光信号传入光纤,其核心是光源和其驱动电路。现在广泛应用的有两种半导体光源:发光二极管(LED)、激光二极管(LD)。其中LED输出的是非相干光,频谱宽,入纤功率小,调制速率低:而LD是相干光则与之相反。前者适宜于短距离低速系统,后者适宜于长距离高速系统。 光发送机一般都是由光源、脉冲驱动电路、光调制器组成,图1如下: (图1)

①构建一个外调制激光发射机:光源为频率193.1THZ的激光二极管,同时用仿真软件模拟所需数字信号序列,经过NRZ 脉冲发生器转化成所需电脉冲信号,让该信号通过调制器加载到光波上,成为载有“信息”的光信号。构建图2如下: (图2) ②设计实例,对铌酸型Mach-Zehnder调制的啁啾分析,外调制器由于激光光源处于窄带稳频模式,消除降低系统啁啾量。典型的外调器是由铌酸锂(LiNo3)晶体构成。通过对其外加电压的分析调整而减少其啁啾量,设计图3如下: (图3)

③在图3中,驱动电路1电压改变量▽V1和驱动电路2电压改变量▽V2相同,图4为MZ调制器参数设定窗口,MZ以正交模式工作,其参数调制如下图4: (图4) 其中V1、V2分别为两个驱动电路的的电压,α为啁啾系数:α=(V1+V2)/(V1—V2) 图5为一系列信号脉冲输入时,在2、3口的电压V1=-V2=2.0V 时的波形,根据公式可得图6的结果:

数字信号处理实验答案完整版

数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验一熟悉Matlab环境 一、实验目的 1.熟悉MATLAB的主要操作命令。 2.学会简单的矩阵输入和数据读写。 3.掌握简单的绘图命令。 4.用MATLAB编程并学会创建函数。 5.观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 clear all; a=[1 2 3 4]; b=[3 4 5 6]; c=a+b; d=a-b; e=a.*b; f=a./b; g=a.^b; n=1:4; subplot(4,2,1);stem(n,a); xlabel('n');xlim([0 5]);ylabel('A'); subplot(4,2,2);stem(n,b); xlabel('n');xlim([0 5]);ylabel('B'); subplot(4,2,3);stem(n,c); xlabel('n');xlim([0 5]);ylabel('C'); subplot(4,2,4);stem(n,d); xlabel('n');xlim([0 5]);ylabel('D'); subplot(4,2,5);stem(n,e); xlabel('n');xlim([0 5]);ylabel('E'); subplot(4,2,6);stem(n,f); xlabel('n');xlim([0 5]);ylabel('F'); subplot(4,2,7);stem(n,g); xlabel('n');xlim([0 5]);ylabel('G'); (2)用MATLAB实现下列序列: a) x(n)= 0≤n≤15 b) x(n)=e+3j)n 0≤n≤15 c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15 d) 将c)中的x(n)扩展为以16为周期的函数x(n)=x(n+16),绘出四个周期。

数字信号光纤通信技术实验报告

数字信号光纤通信技术实验的报告 预习要求 通过预习应理解以下几个问题: 1.数字信号光纤传输系统的基本结构及工作过程; 2.衡量数字通信系统有那两个指标?; 3.数字通信系统中误码是怎样产生的?; 4.为什么高速传输系统总是与宽带信道对应?; 5.引起光纤中码元加宽有那些因素?; 6.本实验系统数字信号光-电/电-光转换电路的工作原理; 7.为什么在数字信号通信系统中要对被传的数据进行编码和解码?; 8.时钟提取电路的工作原理。 目的要求 1.了解数字信号光纤通信技术的基本原理 2.掌握数字信号光纤通信技术实验系统的检测及调试技术 实验原理 一、数字信号光纤通信的基本原理 数字信号光纤通信的基本原理如图8-2-1示(图中仅画出一个方向的信道)。工作的基本过程如下:语音信号经模/数转换成8位二进制数码送至信号发送电路,加上起始位(低电平)和终止位(高电平)后,在发时钟TxC的作用下以串行方式从数据发送电路输出。此时输出的数码称为数据码,其码元结构是随机的。为了克服这些随机数据码出现长0或长1码元时,使接收端数字信号的时钟信息下降给时钟提取带来的困难,在对数据码进行电/光转换之前还需按一定规则进行编码,使传送至接收端的数字信号中的长1或长0码元个数在规定数目内。由编码电路输出的信号称为线路码信号。线路码数字信号在接收端经过光/电转换后形成的数字电信号一方面送到解码电路进行解码,与此同时也被送至一个高Q值的RLC谐振选频电路进行时钟提取. RLC谐振选频电路的谐振频率设计在线路码的时钟频率处。由时钟提取电路输出的时钟信号作为收时钟RxC,其作用有两个:1.为解码电路对接收端的线路码进行解码时提供时钟信号;2.为数字信号接收电路对由解码电路输出的再生数据码进行码值判别时提供时钟信号。接收端收到的最终数字信号,经过数/模转换恢复成原来的语音信号。 图8-2-1 数字信号光纤通信系统的结构框图 在单极性不归零码的数字信号表示中,用高电平表示1码元,低电平表示0码元。码元持续时间(亦称码元宽度)与发时钟TxC的周期相同。为了增大通信系统的传输容量,就要求提高收、发时钟的频率。发时钟频率愈高码元宽度愈窄。 由于光纤信道的带宽有限,数字信号经过光纤信道传输到接收端后,其码元宽度要加宽。加宽程度由光纤信道的频率特性和传输距离决定。单模光纤频带宽,多模光纤频带窄。因为按光波导理论[1]分析:光纤是一种圆柱形介质波导,光在其中传播时实际上是一群满足麦克斯韦方程和纤芯—包层界面处边界条件的电磁波,每个这样的电磁波称为一个模式。光纤中允许存在的模式的数量与纤芯半径和数字孔径有关。纤芯半径和数字孔径愈大,光纤中参与光信号传输的模式也愈多,这种光纤称为多模光纤(芯径50或62.5μm)。多模光纤中每个模式沿光纤轴线方向的传播速度都不相同。因此,在光纤信道的输入端同时激励起多个模式时,每个模式携带的光功率到达光纤信道终点的时间也不一样,从而引起了数字信号码元的加宽。码元加

光纤通信仿真知识分享

光纤通信仿真

光纤通信仿真实验 光纤模型实验:自相位效应姓名:万方力 学号:2013115030305 班级:1303班 指导老师:胡白燕 院系:计算机科学与技术学院

光纤模型实验:自相位效应 一、实验目的 1、通过进行本次实验,加深光纤结构以及特性的理解,通过实验现象的分析,结合理论知识获得进一步的认识。 2、本次实验是对自相位调制在脉冲传播上的模型进行模拟和验证,是基于光纤性质上的实验,通过本次实验,了解自相位效应的产生及影响,加深光纤相关知识的理解。 二、实验原理 1、光纤的色散特性 色散(Dispersion)是在光纤中传输的光信号,由于不同成分的光的传输时间不同而产生的一种物理效应。色散一般包括模式色散、材料色散和波导色散。 1)模式色散 光纤的模式色散只存在于多模光纤中。每一种模式到达光纤终端的时间先后不同,造成了脉冲的展宽,从而出现色散现象。 2)材料色散

含有不同波长的光脉冲通过光纤传输时,不同波长的电磁波会导致玻璃折射率不相同,传输速度不同就会引起脉冲展宽,导致色散。 3)波导色散 由光纤的几何结构决定的色散,其中光纤的横截面积尺寸起主要作用。光在光纤中通过芯与包层界面时,受全反射作用,被限制在纤芯中传播。但是,如果横向尺寸沿光纤轴发生波动,除导致模式间的模式变换外,还有可能引起一少部分高频率的光线进入包层,在包层中传输,而包层的折射率低、传播速度大,这就会引起光脉冲展宽,从而导致色散。 2、自相位调制 信号光强的瞬时变化引起其自身的相位调制,即自相位调制。 在单波长系统中光强变化导致相位变化时,自相位调制效应使信号频 谱逐渐展宽。这种展宽与信号的脉冲形状和光纤的色散有关。在光纤的正常色散区中,由于色散效应,一旦自相位调制引起频谱展宽,沿着光纤传输 的信号将经历暂时的较大展宽。但在异常色散区,光纤的色散效应和自相 位调制效应可能会相互补偿,从而使信号的展宽小一些。 在一般情况下,SPM效应只在高累积色散或超长系统中比较明显。受色散限制的系统可能不会容忍自相位调制效应。在信道很窄的多通道系统中,由自相位调制引起的频谱展宽可能在相邻信道间产生干扰。 在G.652光纤中的低啁啾强度调制信号的自相位调制效应将引起脉冲的压缩,但同时使传输光谱展宽。采用G.652光纤时,把信道设置在零色散波长附近将有利于减少自相位调制效应的影响。在长距离系统中,这种光 纤可采用以适当间隔作色散补偿的方法来控制自相位调制效应的影响,当然,也可通过减少输入光功率的方法来减少自相位调制效应的影响。

数字信号处理实验三

实验三:离散LSI 系统的频域分析 一、实验内容 2、求以下各序列的z 变换: 12030() ()sin() ()sin()n an x n na x n n x n e n ωω-=== 程序清单如下: syms w0 n z a; x1=n*a^n;X1=ztrans(x1) x2=sin(w0*n);X2=ztrans(x2) x3= exp(-a*n)*sin(w0*n);X3=ztrans(x3) 程序运行结果如下: X1 =z/(a*(z/a - 1)^2) X2 =(z*sin(w0))/(z^2 - 2*cos(w0)*z + 1) X3 =(z*exp(a)*sin(w0))/(exp(2*a)*z^2 - 2*exp(a)*cos(w0)*z + 1) 3、求下列函数的逆z 变换 0 312342 1 1() () () ()() 1j z z z z X z X z X z X z z a z a z e z ω---= = = = ---- 程序清单如下: syms w0 n z a; X1=z/(z-a);x1=iztrans(X1) X2= z/(a-z)^2;x2=iztrans(X2) X3=z/ z-exp(j*w0);x3=iztrans(X3) X4=(1-z^-3)/(1-z^-1);x4=iztrans(X4) 程序运行结果如下: x1 =a^n x2 =n*a^n/a 课程名称 数字信号 实验成绩 指导教师 实 验 报 告 院系 信息工程学院 班级 学号 姓名 日期

x3 =charfcn[0](n)-iztrans(exp(i*w0),w0,n) x4 =charfcn[2](n)+charfcn[1](n)+charfcn[0](n) 4、求一下系统函数所描述的离散系统的零极点分布图,并判断系统的稳定性 (1) (0.3)()(1)(1) z z H z z j z j -= +-++ z1=[0,0.3]';p1=[-1+j,-1-j]';k=1; [b1,a1]=zp2tf(z1,p1,k); subplot(1,2,1);zplane(z1,p1); title('极点在单位圆外); subplot(1,2,2);impz(b1,a1,20); 由图可见:当极点位于单位圆内,系统的单位序列响应随着频率的增大而收敛;当极点位于单位圆上,系统的单位序列响应为等幅振荡;当极点位于单位圆外,系统的单位序列响应随着频率的增大而发散。由此可知系统为不稳定系统。 -1 -0.5 00.51 -2 -1.5-1-0.500.511.5 2Real Part I m a g i n a r y P a r t 极点在单位圆外 n (samples) A m p l i t u d e Impulse Response

光纤通信实验指导书3

光纤通信实验指导书 南昌工程学院通信工程专业 2014年12月

实验一光发射机的仿真验证与设计 实验目的 1.熟悉Optisystem实验环境,练习使用元件库中的常用元件组建光纤通信系统。 2.利用Optisystem的优化功能仿真计算光纤通信系统的各项性能参数,并进行分析。 3. 分析LED和LD的谱宽及P/I特性。 实验原理 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS和MANS都使用。一个基于实际光纤通讯系统模型的系统级模拟器,OptiSystem具有强大的模拟环境和真实的器件和系统的分级定义。它的性能可以通过附加的用户器件库和完整的界面进行扩展,而成为一系列广泛使用的工具。 OptiSystem允许对物理层任何类型的虚拟光连接和宽带光网络的分析,从远距离通讯到MANS和LANS都适用。它的广泛应用包括:物理层的器件级到系统级的光通讯系统设计;CA TV或者TDM∕WDM网络设计;SONET∕SDH的环形设计;传输器、信道、放大器和接收器的设计;色散图设计;不同接受模式下误码率(BER)和系统代价(penalty)的评估;放大的系统BER和连接预算计算。 Optisystem环境是一种为利用元件库组建光纤通信系统,利用优化功能仿真计算系统的各项性能参数,通过数据分析和图形显示来获得最佳的光纤通信系统。Optisystem通过3部分来实现光纤通信系统仿真,即:器件库、光学方案图编辑器、图形演示。 1、器件库 (1) 发射器 发射器件库包括了所有与光信号产生和编码相关的器件,例如半导体激光器、调制器、编码器和比特序列发生器等。半导体激光器由于它在发射器中的重要角色而成为了最重要的发射器部件。使用OptiSystem,用户可以输入测量过的数据来评估速率方程所需的那些参数。

数字信号处理实验4

数字信号处理实验四 第一题结果: (1)没有增加过渡点 源码如下: N = 15; H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小 %H(3,13) = 0.75;H(5,11) = 0.25; %设置过渡点 k = 0:N-1; A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小 HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2); stem(real(hn),'.'); %绘制单位冲激响应的实部 line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))'); 单位脉冲响应曲线 幅频和相频特性曲线

(2)增加过渡点 源码如下: N = 15; H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小 H(3) = 0.75;H(13) = 0.75;H(5) = 0.25;H(11) = 0.25; %设置过渡点 k = 0:N-1; A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小 HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2); stem(real(hn),'.'); %绘制单位冲激响应的实部 line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))'); 单位脉冲响应曲线 幅频和相频特性曲线 第二题结果:

数字信号处理实验

数字信号处理实验

实验一 自适应滤波器 一、实验目的 1、掌握功率谱估计方法 2、会用matlab 对功率谱进行仿真 二、实验原理 功率谱估计方法有很多种,一般分成两大类,一类是经典谱估计;另一类是现代谱估计。经典谱估计可以分成两种,一种是BT 法,另一种是周期法;BT 法是先估计自相关函数,然后将相关函数进行傅里叶变换得到功率谱函数。相应公式如下所示: ||1 *0 1 ?()()()(11) ??()(12) N m xx n jwn BT xx m r m x n x n m N P r m e --=∞ -=-∞ =+-=-∑ ∑ 周期图法是采用功率谱的另一种定义,但与BT 法是等价的,相应的功率谱估计如下所示: 21 1? ()()01 (13)N jw jwn xx n P e x n e n N N --== ≤≤--∑ 其计算框图如下所示: 观测数据x(n) FFT 取模的平方 1/N ) (jw xx e ∧ 图1.1周期图法计算用功率谱框图

由于观测数据有限,所以周期图法估计分辨率低,估计误差大。针对经典谱估计的缺点,一般有三种改进方法:平均周期图法、窗函数法和修正的周期图平均法。 三、实验要求 信号是正弦波加正态零均值白噪声,信噪比为10dB,信号频率为2kHZ,取样频率为100kHZ。 四、实验程序与实验结果 (1)用周期图法进行谱估计 A、实验程序: %用周期法进行谱估计 clear all; N1=128;%数据长度 N2=256; N3=512; N4=1024; f=2;%正弦波频率,单位为kHZ fs=100;%抽样频率,单位为kHZ n1=0:N1-1; n2=0:N2-1; n3=0:N3-1; n4=0:N4-1; a=sqrt(20);%由信噪比为10dB计算正弦信号的幅度

实验一音频信号光纤传输技术实验

音频信号光纤传输技术实验 [目的要求] 1.熟悉半导体电光/光电器件的基本性能。 2.了解音频信号光纤传输的结构。 3.学习分析集成运放电路的基本方法。 4.了解音频信号在光纤通信的基本结构和原理 [仪器设备] 1.ZY120FCom13BG3型光纤通信原理实验箱。 2.20MHz双踪模拟示波器。 3.FC/PC-FC/PC 单模光跳线 4.数字万用表。 5.850nm光发端机和光收端机 6.连接导线 7.电话机 [实验原理] 一.半导体发光二极管结构、工作原理、特性及驱动、调制电路光纤通讯系统中,对光源器件在发光波长、电光效率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED)、半导体激光二极管(LD),本实验采用LED作光源器件。 图 1 半导体发光二极管及工作原理 光纤传输系统中常用的半导体发光二极管是一个如图所示的N-P-P三层结构的半导体器件,中间层通常是由GaAs(砷化镓)p型半导体材料组成,称有源层,其带隙宽度较窄,两侧分别由GaAlAs的N型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙。具有不同带隙宽度的两种半导体单晶之间的结构称为异结。在图(1)中,有源层与左侧的N层之间形成的是p-N 异质结,而与右侧P层之间形成的是p-P异质结,故这种结构又称N-p-P双异质结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p-P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层与空穴复合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子:

光纤通信实验报告

OptiSystem实验 一、OptiSystem简介 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS 和MANS都适用。OptiSystem有一个基于实际光纤通讯系统模型的系统级模拟器,并具有强大的模拟环境和真实的器件和系统的分级定义。它的性能可以通过附加的用户器件库和完整的界面进行扩展,从而成为一系列广泛使用的工具。全面的图形用户界面提供光子器件设计、器件模型和演示。丰富的有源和无源器件库,包括实际的、波长相关的参数。参数扫描和优化允许用户研究特定的器件技术参数对系统性能的影响。OptiSystem满足了急速发展的光子市场对于一个强有力而易于使用的光系统设计工具的需求,深受系统设计者、光通信工程师、研究人员的青睐。 OptiSystem软件允许对物理层任何类型的虚拟光连接和宽带光网络的分析,从远距离通讯到MANS和LANS都适用。它可广泛应用下列场合: 1.物理层的器件级到系统级的光通讯系统设计; 2.CATV或者TDM?WDM网络设计; 3.SONET?SDH的环形设计; 4.传输装置、信道、放大器和接收器的设计; 5.色散图设计; 6.不同接受模式下误码率(BER)和系统代价(Penalty)的评估; 7.放大系统的BER和连接预算计算。 实验1 OptiSystem快速入门:以“激光外调制”为例 一、实验目的 1、掌握软件的简单操作 2、了解软件的元件库 3、掌握建立新的project(新的工作界面) 4、掌握搭建系统:将元件从元件库中拖入project、连线、搭建系统 5、掌握设置参数 6、掌握软件的运行、观察结果、导出数据 二、实验过程 1.建立一个新文件。(File>New) 2.将光学器件从数据库里拖入主窗口进行布局. 3.光标移至有锁链图标出现时,进行连线。(如图1所示) 4.设置连续波激光器参数。 (1)点击frequency>mode, 出现下拉菜单,选中script。 (2)在value中输入数据并作评估。 (3)点击单位,选择“THZ”,点击OK 回主窗口。(如图2所示)

光纤传输实验报告

音频信号光纤传输 实验目的: 1、 学习音频信号光纤传输系统的基本结构和各部件的选配原则。 2、 熟悉光纤传输系统中电光/光电转换器件的基本性能。 3、训练如何在音频信号光纤传输系统中获得较好的信号传输质量。 实验仪器 TKGT-1型音频信号光纤传输实验仪 信号发生器 双踪示波器 实验原理 光纤,又名光导纤维,是20世纪70年代为光通信而发展起来的一种新型材料,具有损耗低、频带宽、耐高温、绝缘性好、抗电磁干扰、光学特性好等优点。 1970年,美国康宁公司率先研制出了世界上第一根传输衰减损耗小于20dB/km 的石英光纤。目前,普通单模光纤的传输损耗在工作波长为1550纳米窗口损耗小于0.2dB/km ,在1310纳米窗口小于0.3 dB/km 。目前商用光纤制作工艺多为渐变折射率芯层光纤。 从传输模式来说,光纤分为单模和多模两种;从结构上来说,分为普通光纤和特殊光纤,普通光纤包括单模和多模光纤,特殊光纤包括保偏光纤、单偏振光纤和塑料光纤等。普通光纤的外径为125微米,单模光纤芯径为5-10微米,多模光纤芯径为50、62.5、80、100微米,加护套总直径约为1毫米。目前通信干线用光纤一般为单模光纤,光纤工作波长为1550纳米。 一般光纤的结构是由导光的纤芯和周围包覆的涂层组成。光纤的工作基础是光的全反射。由于纤芯的折射率大于涂层的折射率,当光从纤芯射向涂层,且入射角大于临界角,则射入的光在界面上产生全反射,成“之”字形前进,传播到圆柱形光纤的另一端而发射出去,这就是光纤的传光原理。 附:光的全反射原理 根据光的反射和折射定律,即11θθ=' 2211s i n n s i n n θθ= 若n1>n2,横线上为2,下为1介质,即光由光密介质射入光疏介质,且入射角大于临界角,即c θθ>时,就发生光的全反射现象。由于在临界状态下, 2 2π θ= ,代入上式,则??? ? ??=12 c n n arcsin θ ,称为全反射临界角。 光波在光纤中传输,可以用两种不同的理论来解释。一种是电磁理论,或称模式理论;另一种是几何光学理论,或称为射线理论。 1、光信号的发送(示意图) 系统低频响应不大于20赫兹,取决电阻、电容网络。 图1 图

相关文档
最新文档