音频信号光纤传输技术实验报告

音频信号光纤传输技术实验报告
音频信号光纤传输技术实验报告

音频信号光纤通信.

音频信号光纤传输实验 实验目的 1.了解音频信号光纤传输的方法、结构及选配各主要部件的原则。 2.熟悉半导体电光/光电器件的基本性能及其主要特性的测试方法。 3.学习分析音频信号集成运放电路的基本方法。 4.训练音频信号光纤传输系统的调试技术。 实验仪器 YOF-A音频信号光纤传输技术实验仪、光功率计、多波段收音机、音箱 实验原理 一、系统的组成 图1示出了一音频信号光纤传输系统的结构原理图,它由半导体发光二极管LED及其调制、驱动电路组成的光信号发送部分、传输光纤部分和由硅光电池、前置电路和功放电路组成的光信号接收三个部分组成。 图1 光纤传输系统原理图 塑料光纤很柔软,而且可以弯曲,加工很方便。在光信息处理技术、光学计量、短距离数据传输等方面已获得较好的应用。本系统中,我们采用的传输光纤是进口低损耗多模塑料光纤,它的纤维直径是lmm,芯径为990μm,包层厚度为5μm。半导体发光二极管是采用发光亮度很高的可见红色光发光二极管作为光源,光电转换采用高灵敏的硅光电池作为转换元件,整个传输过程一目了然。 为了避免或减少谐波失真,要求整个传输系统的频带宽度要能复盖被传信号的频谱范围,对于语音信号,其频谱在300--3400Hz的范围内。由于光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。

二、半导体发光二极管(LED)的结构及工作原理 光纤通讯系统中对光源器件在发光波长、电光功率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED)和半导体激光器(LD)。光纤传输系统中常用的半导体发光二极管是一个如图2所示的N-p-P三层结构的半导体器件,中间层通常是由直接带隙的GaAs(砷化镓)p型半导体材料组成,称有源层,其带隙宽度较窄,两侧分别由AlGaAs的N型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙。具有不同带隙宽度的两种半导体单晶之间的结构称为异质结,在图2中,有源层与左侧的N层之间形成的是P-N异质结,而与右侧P层之间形成的是p-P异质结,敌这种结构又称N-p-P双异质结构,简称DH结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p-P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层内与空穴复合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子: (1) 其中h是普朗克常数,是光波的频率,E 1是有源层内导电电子的能量,E 2 是导电电子与空穴复合后处于价键束缚状态时的能量。两者的差值Eg与DH结构中各层材料及其组份的选取等多种因素有关,制做LED时只要这些材料的选取和组份的控制适当,就可使得LED的发光中心波长与传输光纤的低损耗波长一致。所以为了减少损耗,LED发光波长应与传输光纤的低损耗波长一致,在实际通讯系统中,LED发出的光介于可见光的边远区域。 图2 半导体发光二极管的结构及工作原理 光纤通讯系统中使用的半导体发光二极管的光功率为光导纤维的尾纤输出功率,出纤光功率与LED驱动电流的关系称LED的电光特性,为了避免和减少非线性失真,使用时应先给LED一个适当的偏置电流I,其修正等于这一特性曲线线性部分中点对应的电流值,而调制信号的峰一峰值应位于电光特性的直线范围内。对于非线性失真要求不高的情况,也可把偏置电流选为LED最大允许工作电

光通信实验报告

竭诚为您提供优质文档/双击可除 光通信实验报告 篇一:光通信实验报告 信息与通信工程学院 光纤通信实验报告 班姓学 级:名:号: 班内序号:17 日 期:20XX年5月 一、oTDR的使用与测量 1、实验原理 oTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。oTDR就测量回到oTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信

号都有所损耗。 给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。 在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到oTDR。作为1550nm波长的oTDR,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm或1625nm波长,oTDR的测试距离就必然受到限制,因为测试设备需要在oTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。 菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,oTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。 oTDR的工作原理就类似于一个雷达。它先对光纤发出一

音频技术实验报告

实验编号:四川师大《声音媒体技术》实验报告 2017年11月5日计算机科学学院级班实验名称:声音信号的编辑处理 姓名:学号:指导老师:实验成绩: 实验录音系统的连接和使用 一.实验目的及要求 (1)掌握录音系统的连接方法; (2)熟悉录音系统相应设备的功能,并熟练使用; (3)掌握录音系统功率匹配、阻抗匹配的原理; 二.实验内容 (1)利用阻抗匹配、功率匹配原理,实现录音系统连接; (2)熟练掌握阻抗匹配、功率匹配实现录音系统连接的工作原理; (3)熟悉录音系统各类设备的操作使用; 三.实验主要流程、步骤(该部分如不够填写,请另加附页) 1.利用阻抗匹配、功率匹配原理,实现录音系统连接。 (1)老师介绍调音台的各输入与输出端子的功能,以及其控制按钮的名称和作用。 (2)用转换头将电容式话筒连接到调音台,电容式话筒的插头插在1和2路录音孔中,(遵循阻抗匹配原理,一定要注意传输线的特性阻抗与所接负载阻抗的大小相等且相位相同,即传输线的输入端或输出端处于阻抗匹配状态); (3)再把监听耳机的插头插在监听插口。 (4)把调音台的输出端用连接线与电脑的主机连接,给电脑传送音频信号,(遵循阻抗匹配原理,电脑的功率要和传输线的输出功率匹配); (5)最后连接电源线 (6)MONITOR是总监听音量旋钮,调节该通路在监听线路中的音量大小。.通过调节HIGH、MIDDLE、LOW三段均衡器旋钮来调节声音大小打开电脑进行调试,测试录音能否正常工作。 2.熟练掌握阻抗匹配、功率匹配实现录音系统连接的工作原理。 (1)阻抗匹配是指负载阻抗与激励源内部阻抗相适配,得到最大功率输出的一种工作状态,阻抗匹配则传输功率大,内阻等于负载时,输出功率最大,此时阻抗匹配。 (2)设备输出功率要与负载阻抗一致。 3.熟悉录音系统各类设备的操作使用。 (1)POWER ON是调音台开关,当 ON 的一边被按下时,调音台便接通电源; (2)MIC是麦克风输入接口,LINE是高电平输入接口,MONITOR是监听输出接口; (3)电容式话筒的敏感度及其高,在录制声音史应该对准说话的人; (4)在调音台每一路输入通道上都有一组均衡旋钮,HIGH是高频,MID是中频,LOW是低频,高中低频率旋钮向左(顺时针)旋时,对应的频段就会得到提升,反之衰减。 四.实验结果的分析与评价(该部分如不够填写,请另加附页 1.阻抗匹配的方法有两种,一种是改变阻抗力,另一种是调整传输线的长度。 2.调音台可对输入的不同电平不同阻抗的音源信号进行放大、衰减、动态调整等,用附 带的均衡器对信号各频段进行处理,调整各通道信号的混合比例后,对各通道进行分配并送至各个接收端,控制现场扩声信号及录制信号。 3.调音台的输入信号大体上分为低阻话筒信号输入和高阻线路信号输入两种。 4.调音台输入插口基本可以分为3种:TRS,XLR,RCA。

光纤通信实验报告

计算机与信息技术学院实验报告 专业:通信工程 年级/班级:2009级 2011—2012学年第一学期 课程名称 光纤通信 指导教师 李新源 本组成员 学号姓名 XXXXXX 实验地点 计算机楼501 实验时间 2012年4月6 日 项目名称 自动光功率控制电路 实验类型 硬件实验 一、 实验目的 1.掌握自动功率控制电路的工作原理 二、实验内容: 1.学习自动功率控制电路的工作原理 2.测量相关特征测试点的参数 三、实验仪器: 1.示波器。 2.光纤通信实验系统。 3.光功率计。 4.万用表。 5.FC/PC 型光纤跳线2根。 四、实验原理: 激光器输出光功率与温度和老化效应密切相关。保持激光器输出光功率稳定,可以用光反馈来自动调整偏置电流,电路如下图所示: 1 A 3 A 2 A B I

首先,PIN管监测背向光功率,经检出的光电流由A1放大,送入比较器A3的反向输入端,输入的数字信号和直流参考信号经A2比较放大,接到的A3同相输入端。A3和VT3组成恒流源,给激光器加上偏置电流IB的大小,其中信号参考电压是防止控制电路在无输入信号或长连“0”时,使偏流自动上升。这种电路在10°C~50°C温度范围内功率不稳定度ΔP/P可小于5%。 五、实验步骤: 1.关闭系统电源。按以下方式用连信号连接导线连接: 数字信号模块(数字信号输出一)P300—P100 1310数字光发模块 (数字光发信号输 入) 2.用光纤跳线连接1310nm光发模块和光功率计。 3.将1310nm光发模块的J100,两位都调到ON状态。 4.将1310nm光发模块的J101设置为“数字”。 5.打开系统电源,将数字信源模块第一路的拨码开关U311全拨到OFF状态。这时输入到1310nm数字光发模块的信号始终为“1”。 6.用万用表测量R124两端的电压。测量方法:先将万用表打到20V直流电 压档。然后,将红表笔插入1310nm数字发光模块的台阶插座TP101黑表笔插入TP102。读出万用表的读数U1,代入公式I1= U1/ R124(R124=51Ω)可得此时 自动光功率控制所补偿的电流。观察此时光功率计的读数P1。然后,将1310nm 的拨码开关的右边一位拨到OFF状态,记下光功率计的读数P2。 7.调整手调电位器RP100改变光功率的大小,再重复实验步骤5,将测的实 验数据填入下表。 8.关闭系统电源,拆除实验导线。将各实验仪器摆放整齐。 六、实验结果和心得: 1 2 3 4 5 6 7 16.31dB 16.17dB 11.90dB 7.62dB 6.62dB 4.59dB 3.40dB 37.31dB 25.58dB 11.88dB 7.62dB 6.63dB 4.59dB 3.42dB 3.14mA 5.88mA 8.43mA 12.75mA 1 4.51mA 19.80mA 24.12mA

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

光通信技术实验报告

光通信技术实验报告 实验一光通讯系统WDM系统设计 实验目的 1.熟悉Optisystem实验环境,练习使用元件库中的常用元件组建光纤通信系统。 2.使用OptiSystem模拟仿真WDM系统的各项性能参数,并进行分析。 实验原理 光波分复用系统简介 光波分复用是指将两种或多种各自携带有大量信息的不同波长的光载波信号,在发射端经复用器汇合,并将其耦合到同一根光纤中进行传输,在接收端通过解复用器对各种波长的光载波信号进行分离,然后由光接收机做进一步的处理,使原信号复原,这种复用技术不仅适用于单模或多模光纤通信系统,同时也适用于单向或双向传输。 波分复用系统的工作波长可以从0.8μm到1.7μm,由此可见,它可以适用于所有低衰减、低色散窗口,这样可以充分利用现有的光纤通信线路,提高通信能力,满足急剧增长的业务需求。 WDM光通信结构组成 1)滤波器:在WDM系统中进行信道选择,只让特定波长的光通过,并组织其他光波长 通过。可调谐光滤波器能从众多的波长中选出某个波长让其通过。在WDM系统的光接收机中,为了选择所需的波长,一般都需依赖于其前端的可调谐滤波器。要求其有宽的谱宽以传输需要的全部信号谱成分,且带宽要窄以减小信道间隔。 2)复用器/解复用器(MUX/DEMUX):将多个光波长信号耦合到一路信道中,或使混合 的信号分离成单个波长供光接收机处理。一般,复用/解复用器都可以进行互易,其结构基本是相同的。实际上即是一种波长路由器,使某个波长从指定的输入端口到一个指定的输出端口。 实验软件介绍 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS和MANS都使用。一个基于实际光纤通讯系统模型的系统级模拟器,OptiSystem具有强大的模拟环境和真实的

实验一音频信号光纤传输技术实验

音频信号光纤传输技术实验 [目的要求] 1.熟悉半导体电光/光电器件的基本性能。 2.了解音频信号光纤传输的结构。 3.学习分析集成运放电路的基本方法。 4.了解音频信号在光纤通信的基本结构和原理 [仪器设备] 1.ZY120FCom13BG3型光纤通信原理实验箱。 2.20MHz双踪模拟示波器。 3.FC/PC-FC/PC 单模光跳线 4.数字万用表。 5.850nm光发端机和光收端机 6.连接导线 7.电话机 [实验原理] 一.半导体发光二极管结构、工作原理、特性及驱动、调制电路光纤通讯系统中,对光源器件在发光波长、电光效率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED)、半导体激光二极管(LD),本实验采用LED作光源器件。 图 1 半导体发光二极管及工作原理 光纤传输系统中常用的半导体发光二极管是一个如图所示的N-P-P三层结构的半导体器件,中间层通常是由GaAs(砷化镓)p型半导体材料组成,称有源层,其带隙宽度较窄,两侧分别由GaAlAs的N型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙。具有不同带隙宽度的两种半导体单晶之间的结构称为异结。在图(1)中,有源层与左侧的N层之间形成的是p-N 异质结,而与右侧P层之间形成的是p-P异质结,故这种结构又称N-p-P双异质结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p-P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层与空穴复合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子:

光纤通信实验报告2012301200003

武汉大学电工电子信息学院实验报告 电子信息学院通信工程专业2015年 9 月17日 实验名称光纤通信的光传输指导教师易本顺 姓名徐佑宇年级2012级学号2012301200003成绩 一、预习部分 1.实验目的 2.实验基本原理 3.主要仪器设备(含必要的元器件、工具) 一、实验目的 1、通过光传输系统课程设计使学生熟悉常见的几种传输网络的特点及应用场 合; 2、了解ZXMP S325的具体硬件结构,加深对于光传输的理解; 3、掌握 ZXMP S325 的组网过程以及网管工具的使用,培养学生在传输组网工 程方面的实际应用技能。 二、实验设备 1、SDH设备:ZXMP S325; 2、实验用维护终端 三、实验原理 SDH技术是目前通信网络的主流技术,它以其突出的技术优势为网络提供优质、高效、可靠的通信业务,能够满足带宽数据及图像视频等多业务的传输需求,自愈功能强。 1、光传输原理及优势 SDH 全称同步数字体系(Synchronous Digital Hierarchy), SDH 规范了数字信号的帧结构、复用方式、传输速率等级、接口码型特性,提供了一个国际支持框架,在此基础上发展并建成了一种灵活、可靠、便于管理的世界电信传输网。这种传输网易于扩展,适于新电信业务的开展,并且使不同厂家生产的设备互通成为可能,这正是网络建设者长期以来追求的目标。 其优势主要体现在以下几个方面: (1)接口方面 ·电接口:STM-1是SDH的第一个等级,又叫基本传输模块,比特率为155.520Mb/s,STM-N是SDH第N个等级的同步传送模块,比特率是STM-1的N倍(N=4n=1,4,16...)·光接口:仅对电信号扰码,光口信号码型是加扰的NRZ码,采用世界统一的7级扰码。 (2)复用方式 低速SDH信号以字节间插方式复用进高速SDH帧结构中,位置均匀、有规律,是可预见的

音频信号的光纤传输+实验报告

音频信号光纤传输实验 摘要: 实验通过对LED-传输光纤组件的电光特性的测量,得出了在合适的偏置电流下,其具有线性。验证了硅光电二极管可以把传输光纤出射端输出的信号转变成与之成正比的光电流。 Abstracf The experimental transmission through the LED-fiber components of the electro-optical properties Measuring obtained at the right bias current, with its linear. Verification of the silicon photodiode fiber can transmit a radio-signal output into with the current proportional to the light. 一.前言: 1.实验的历史地位: 光纤自20世纪60年代问世以来,其在远距离信息传输方面的应用得到了突飞猛进的发展,以光纤作为信息传输介质的“光纤通信”技术,是世界新技术革命的重要标志,也是未来信息社会各种信息网的主要传输工具。随着光纤通信技术的发展,一个以微电子技术,激光技术,计算机技术呵现代通信技术为基础的超高速宽带信息网将使远程教育.远程医疗.电子商务.智能居住小区越来越普及.光纤通信以其诸多优点将成为现代通信的主流,未来信息社会的一项基础技术和主要手段. 2.实验目的 了解音频信号光纤传输系统的结构 熟悉半导体电光/光电器件的基本性能及主要特性的测试方法 了解音频信号光纤传输系统的调试技能 3.待解决的几个主要问题: 声音是一种低频信号,你可能有这样的经历,当你说话的声音较低时,只有你旁边的人可以听见你的声音,要让声音传的远些你必须大声喊。这说明了低频信号的传播受周围环境的影响很大,传播的范围有限。为了解决上述的问题,在通信技术中一般是使用一个高频信号作为载波利用被传输的信号(如音频信号)对载波进行调制。当信号到达传输地点时需要对信号进行解调,也就是将高频载波滤掉,最终得到被传输的音频信号。随着通信容量的增加和信息传递速度的加快,上述传播过程的缺陷也暴露了出来,主要为以下几点: 1信号间的干扰; 2 对接手端和发射端阻抗匹配要求较高; 3 传播速度受到一定的限制。 专家们一致认为解决上述问题的关键是利用光作为信号的载体,也就是所说的光纤通信。本实验的目的就是去了解光纤传输系统的结构,以及半导体电光/光电器件的基本性能及主要特性的测试方法。 二. 实验介绍 1.实验原理

光纤通信实验资料报告材料

实验1 数字发送单元指标测试实验 一、实验目的 1.了解数字光发端机平均输出光功率的指标要求 2.掌握数字光发端机平均输出光功率的测试方法 3.了解数字光发端机的消光比的指标要求 4.掌握数字光发端机的消光比的测试方法 二、实验仪器 1.ZYE4301G型光纤通信原理实验箱1台 2.光功率计1台 3.FC/PC-FC/PC单模光跳线1根 4.示波器1台 5.850nm光发端机1个 6.ST/PC-FC/PC多模光跳线1根 三、实验原理 四、实验容 1.测试数字光发端机的平均光功率 2.测试数字光发端机的消光比 3.比较驱动电流的不同对平均光功率和消光比的影响 五、实验步骤 A、1550nm数字光发端机平均光功率及消光比测试 1.伪随机码的产生:伪随机码由CPLD下载模块产生,请参看系统简介中的CPLD下载模块。将PCM编译码模块的4.096MH Z时钟信号输出端T661与CPLD下载模块的NRZ信号产生电路的信号输入端T983连接,NRZ信号输出端T980将产生4M速率24-1位的伪随机信号,用示波器观测此信号。将此信号与1550nm光发模块输入端T151连接,作为信号源接入1550nm光发端机。 2.用FC-FC光纤跳线将光发端机的输出端1550T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1550nm信号。 3.用K60、K90和K15接通PCM编译码模块、CPLD模块和光发模块的电源。 4.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 5.测消光比用数字信号源模块输出的NRZ码作为信号源。用K60接通电源,用用示波器从T504观测此信号,将K511接1、2或2、3可观测到速率的变化,将此信号接到T151,作为伪随机信号接入光发端机。 6.用数字信号源模块的K501、K502、K503将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。 7.将P1,P0代入公式2-1式即得1550nm数字光纤传输系统消光比。 B、1310nm数字发端机平均光功率及消光比测试 8.信号源仍用4M速率24-1位的伪随机信号,与1310nm光发模块输入端T101连接。 9.用FC-FC光纤跳线将1310nm光发模块输出端1310T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1310nm信号。 10.将BM1拨至数字,BM2拨至1310nm。 11.接通PCM编译码模块、CPLD模块和1310nm光发模块(用K10)的电源。 12.用万用表在T103和T104监控R110(阻值为1Ω)两端电压,调节电位器W101,使半导体激光器驱动电流为额定值25mA。 13.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 14.测消光比用数字信号源模块输出的NRZ码作为信号源,请参看系统简介中的数字信号源模块部分。用示波器从T504观测此信号,连接T504与T101,将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。 15.将P1,P0代入公式2-1式即得1310nm数字光纤传输系统消光比。 16.重复9-15步,调节电位器W101,调节驱动电流大小为下表中数值时,测得的平均光功率及消 光比填入下表。

光纤音频信号传输技术实验

TKGT-1型音信号传输仪器 评 价 报 告 学院:工业制造学院 专业:测控技术与仪器 班级:2010级2班 报告人:邱兆芳 学号:201010114201

光纤音频信号传输技术实验 1.引言 随着Internet网络时代的到来,人们对数据通讯的带宽、速度的要求越来越高,光纤通讯具有频带宽、高速、不受电磁干扰影响等一系列优点,正在得到不断发展和应用。通过使用THKGT-1型光纤音频信号传输实验仪做音频信号光纤传输实验,让学生熟悉了解信号光纤传输的基本原理。同时学生可以了解光纤传输系统的基本结构及各部件选配原则,初步认识光发送器件LED的电光特性及使用方法,光检测器件光电二极管的光电特性及使用方法,基本的信号调制与解调方法,完成光纤通讯原理基本实验。 光纤即为光导纤维的简称。光纤通信是以光波为载波,以光导纤维为传输媒质的一种通信方式,由发送电端机将待传送的模拟信号转换成数字信号,再由发送光端机将电信号转换成相应的光信号,并将它送入光纤中传输至接收端。接收光端机将传来的光信号转换成相应的电信号并进行放大,然后通过接收电端机恢复成原来的模拟信号。 光纤广泛应用于各种工业控制、分布式数据采集等场合,特别适合电力系统自动化、交通控制等部门。 通过本实验的学习,在了解光导纤维的基本结构和光在其中传播规律的基础上,要建立起光导纤维的数值孔径、光纤色散、光纤损耗、集光本领等基本概念。 [实验目的] 1.学习音频信号光纤传输系统的基本结构及各部件选配原则。 2.熟悉光纤传输系统中电光/光电转换器件的基本性能。 3.训练如何在音频光纤传输系统中获得较好信号传输质量。 [实验仪器] THKGT-1型光纤音频信号传输实验仪,函数信号发生器,双踪示波器。 [实验原理] 光纤传输系统如图1所示,一般由三部分组成:光信号发送端;用于传送光信号的光纤;光信号接收端。光信号发送端的功能是将待传输的电信号经电光转换器件转换为光信号,目前,发送端电光转换器件一般采用发光二极管或半导体激光管。发光二极管的输出光功率较小,信号调制速率相对低,但价格便宜,其输出光功率与驱动电流在一定范围内基本上呈线性关系,比较适宜于短距离、低速、模拟信号的传输;激光二极管输出功率大,信号调制速率高,但价格较高,适宜于远距离、高速、数字信号的传输。光纤的功能是将发送端光信号以尽可能小的衰减和失真传送到光信号接收端,目前光纤一般采用在近红外波段0.84μm、1.31μm、1.55μm有良好透过率的多模或单模石英光纤。光信号接收端的功能是将光信号经光电转换器件还原为相应的电信号,光电转换器件一般采用半导体光电二极管或雪崩光电二极管。组成光纤传输系统光源的发光波长必须与传输光纤呈现低损耗窗口的波段、光电检测器件的峰值响应波段匹配。本实验发送端电光转换器件采用中心发光波长为0.84μm的高亮度近红外半导体发光二极管,传输光纤采用多模石英光纤,接收端光电转换器件采用峰值响应波长为0.8~0.9μm的硅光电二极管。下面对各部分作进一步介绍。

光纤传输损耗测试-实验报告

光纤传输损耗测试-实验报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成

2016 年05 月日 预习报告 一、实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、实验仪器 20MHz双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、实验原理 αλ,其含义为单位长度光纤引起的光纤在波长λ处的衰减系数为()

光功率衰减,单位是dB/km 。当长度为L 时, 10()()lg (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G.650、G.651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。 偏置电路 注入系统 光源 滤模器 包层模 剥除器 被测光纤 检测器 放大器电平测量 图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条件)由于插入被测光纤引起的功率损耗。显然,功率 1 P 、 2 P 的测量 没有截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。

光纤通信实验报告

光纤通信实验报告 班级:14050Z01 姓名:李傲 学号:1405024239

实验一光发射机的设计 一般光发送机由以下三个部分组成: 1)光源(Optical Source):一般为LED和LD。 2)脉冲驱动电路(Electrical Pulse Generator):提供数字量或模拟量的电信号。 3)光调制器(Optical Modulator):将电信号(数字或模拟量)“加载”到光波上。以 光源和调制器的关系来看,分为光源的内调制(图1.1)和光源的外调制(图1.2)。 采用外调制器,让调制信息加到光源的直流输出上,可获得更好的调制特性、更好的调制速率。目前常采用的外调制方法为晶体的电光、声光及磁光效应。图1.2的结构中,光源为频率193.1Thz 的激光二极管,同时我们使用一个Pseudo-Random Bit Sequence Generator模拟所需的数字信号序列,经过一个NRZ脉冲发生器(None-Return-to-Zero Generator)转换为所需要的电脉冲信号,该信号通过一个Mach-Zehnder调制器,通过电光效应加载到光波上,成为最后入纤所需的载有“信息”的光信号。 图1.1内调制光发射机图1.2外调制光发射机 对于直接强度调制状态下的单纵模激光器,其载流子浓度的变化是随注入电流的变化而变化。这样使有源区的折射率指数发生变化,从而导致激光器谐振腔的光通路长度相应变化,结果致使振荡波长随时间偏移,导致所谓的啁啾现象。啁啾是高速光通讯系统中一个十分重要的物理量,因为它对整个系统的传输距离和传输质量都有关键的影响。 内容:铌酸锂(LiNbO3)型Mach-Zehnder调制器中的啁啾(Chirp)分析 1设计目的 对铌酸锂Mach-Zehnder调制器中的外加电压和调制器输出信号啁啾量的关系进行模拟和分析,从而决定具体应用中MZ调制器的外置偏压的分布和大小。 2设计布局图 外调制器由于激光光源处于窄带稳频模式,可以降低或者消除系统的啁啾量。典型的外调制器是由铌酸锂(LiNO3)晶体构成。本设计中,通过对该晶体外加电压的分析调整而最终减少该光发送机中的啁啾量,其模型的设计布局图如图1.3所示。

音频信号光纤传输技术

音频信号光纤传输技术实验 实验目的 1.熟悉半导体电光/光电器件的基本性能及主要特性的测试方法 2.了解音频信号光纤传输系统的结构及选配各主要部件的原则 3.学习分析集成运放电路的基本方法 4.训练音频信号光纤传输系统的调试技术 实验仪器 YOF—B型音频信号光纤传输技术实验仪(由四川大学物理系研制); 音频信号发生器; 示波器; 数字万用表 实验原理 一.系统的组成 图(1)给出了一个音频信号直接光强调制光纤传输系统的结构原理图,它主要包括由LED及其调制、驱动电 路组成的光信号发送器、传输光纤和由光电转换、I—V变换及功放电路组成的光信号接收器三个部分。光源器件L ED的发光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近,本实验采用中心波长0.85μm附近的GaAs半导体发光二极管作光源、峰值响应波长为0.8~0.9μm的硅光二极管(SPD)作光电检测元件。为了避免或减少谐波失真,要求整个传输系统的频带宽度能够覆盖被传信号的频谱范围,对于语音信号,其频谱在300~3400Hz的范围内。由于光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。 此电路的工作原理如下: 音频信号经IC1放大电路传到LED调制电路。W2调节发光管LED工作(偏置)电流,音频电流调制此工作电流,并经LED转换成音频调制的光信号,经光纤传至光电二极管SPD 再复原成原始音频电流信号,经由IC2构成的I—V变换电路转换成电压信号,最后通过功率放大电路输出声音功率信号,推动扬声器发出声音。这样就完成了音频信号通过光纤的传输过程。 二、半导体发光二极管的驱动、调制电路

光纤传输实验报告

音频信号光纤传输 实验目的: 1、 学习音频信号光纤传输系统的基本结构和各部件的选配原则。 2、 熟悉光纤传输系统中电光/光电转换器件的基本性能。 3、训练如何在音频信号光纤传输系统中获得较好的信号传输质量。 实验仪器 TKGT-1型音频信号光纤传输实验仪 信号发生器 双踪示波器 实验原理 光纤,又名光导纤维,是20世纪70年代为光通信而发展起来的一种新型材料,具有损耗低、频带宽、耐高温、绝缘性好、抗电磁干扰、光学特性好等优点。 1970年,美国康宁公司率先研制出了世界上第一根传输衰减损耗小于20dB/km 的石英光纤。目前,普通单模光纤的传输损耗在工作波长为1550纳米窗口损耗小于0.2dB/km ,在1310纳米窗口小于0.3 dB/km 。目前商用光纤制作工艺多为渐变折射率芯层光纤。 从传输模式来说,光纤分为单模和多模两种;从结构上来说,分为普通光纤和特殊光纤,普通光纤包括单模和多模光纤,特殊光纤包括保偏光纤、单偏振光纤和塑料光纤等。普通光纤的外径为125微米,单模光纤芯径为5-10微米,多模光纤芯径为50、62.5、80、100微米,加护套总直径约为1毫米。目前通信干线用光纤一般为单模光纤,光纤工作波长为1550纳米。 一般光纤的结构是由导光的纤芯和周围包覆的涂层组成。光纤的工作基础是光的全反射。由于纤芯的折射率大于涂层的折射率,当光从纤芯射向涂层,且入射角大于临界角,则射入的光在界面上产生全反射,成“之”字形前进,传播到圆柱形光纤的另一端而发射出去,这就是光纤的传光原理。 附:光的全反射原理 根据光的反射和折射定律,即11θθ=' 2211s i n n s i n n θθ= 若n1>n2,横线上为2,下为1介质,即光由光密介质射入光疏介质,且入射角大于临界角,即c θθ>时,就发生光的全反射现象。由于在临界状态下, 2 2π θ= ,代入上式,则??? ? ??=12 c n n arcsin θ ,称为全反射临界角。 光波在光纤中传输,可以用两种不同的理论来解释。一种是电磁理论,或称模式理论;另一种是几何光学理论,或称为射线理论。 1、光信号的发送(示意图) 系统低频响应不大于20赫兹,取决电阻、电容网络。 图1 图

四路视频和音频信号的光纤传输系统设计

第32卷 第1期华侨大学学报(自然科学版)Vol.32 No.1 2011年1月Journal of Huaqiao University(Natural Science)Jan.2011   文章编号: 1000-5013(2011)01-0035-04 四路视频和音频信号的光纤传输系统设计 林琳,王加贤,凌朝东 (华侨大学信息科学与工程学院,福建泉州362021) 摘要: 利用可编程式逻辑器件、并串转换器和串并转换器及光收发器,设计一个专用的数字光纤传输系统.将多路模拟基带信号的视频和音频进行数字化,形成高速数字流;然后,在现场可编程门阵列(FPGA)上对高速数字流进行时分复用,并通过并串转换器转换为串行数字流,送到光发射器;最后,通过光发射器发射耦合进入光纤传输.接收端则进行相反的操作,还原出原来的模拟基带信号.实验证明,系统工作性能稳定可靠,实时传输效果好. 关键词: 光纤传输;模/数转换;数/模转换;时分复用;视频信号;音频信号 中图分类号: TN 919.6+4;TN 818文献标识码: A 随着数字化技术的飞速发展,传统的模拟光传输技术已经不能满足人们对传输质量和传输容量的要求.传统的视频、音频信号是利用电缆传输的,传输抗干扰能力差,在传输和存储过程中会受到各种干扰和引入各种噪声,并且经多次传输后,会不断积累噪声[1].相比较于传统的电缆传输,光纤传输数字信号具有损耗极低、中继距离长、频带极宽、传输容量很大和抗电磁干扰性能好等优点.本文将现场可编程门阵列(Field-Programmable Gate Array,FPGA)、数字技术和光纤传输技术相结合,研制一种基于光纤传输的无压缩四路数字视音频传输系统. 1 设计原理 数字光纤传输系统是基于时分复用技术,在一根光纤中实现四路视频、四路音频传输,其框图如图1所示. 图1 数字光纤传输系统框图 Fig.1 Diagram of digital optical fiber transmit system 在发送端,发送机将摄像机采集到的模拟视频信号经过视频放大、钳位、滤波、模/数(A/D)转换成数字信号;同时,将麦克风采集到的音频信号经过放大、滤波、模/数转换为数字信号.在采样时钟的控  收稿日期: 2010-05-13  通信作者: 王加贤(1955-),男,教授,主要从事激光技术与固体激光器件的研究.E-mail:wangjx@hqu.edu.cn.  基金项目: 福建省厦门市科技计划项目(3502Z20080010,3502Z20093032)

北邮现代通信技术光纤熔接实验报告

信息与通信工程学院现代通信技术实验报告二 题目:光纤的熔接 : 班级: 学号: 序号:

光纤的熔接 一、实验目的 1.了解光纤剥线钳、光纤切割刀和光纤熔接机的原理和使用方法; 2.实际动手完成光纤的熔接; 二、实验容 在老师的演示和指导下完成光纤的熔接。 三、实验仪器介绍 实验仪器:光纤剥线钳、光纤切割刀和光纤熔接机。 其中光纤熔接机组成: 1.光纤的准直与夹紧机构 光纤的准直与夹紧结构由精密V型槽和压板构成。精密V型槽的作用是使一对光纤不产生轴偏移。 2.光纤的对准机构 要对准两条光纤,每条光纤需要6个自由度。将光纤在准直与夹紧机构的一段光纤作为对象分析,并把光纤的放置方向定为Z方向,即有以下6个自由度影响光纤的位置:X,Y,Z三个方向的平移自由度和绕X,Y,Z三个方向旋转的自由度。 3.电弧放电机构 熔接机的电弧放电由两根电极完成。熔接机的放电电流和放电时间均可以调节。 4.电弧放电和电机驱动的控制机构 驱动机构由丝杆和步进电机构成。为了实现光纤的对准过程,使V型槽可以在X、Y、Z 三个方向上平动。 四、实验过程 1.使用光纤剥线钳剥除2cm左右的光纤被覆,光纤剥线钳上有3个钳孔,孔径尺寸由大至 小分别用于剥除光纤的塑料保护层、光纤的被覆以及树脂涂层。在剥除时,注意将光纤置于刀孔正中间,防止光纤折断或扭曲;此外光纤应尽量保持平直,避免过度弯曲裸光纤,从而导致光纤变形影响熔接参数。(剥线钳可以适度倾斜,方便快速剥除被覆)2.用蘸有酒精的脱脂棉擦净光纤,去除光纤表面的被覆残留。擦拭时应注意避免重复污染, 擦拭干净后不能再触碰裸光纤。 3.按步骤用光纤切割刀切断光纤。光纤切割刀的截面如图所示。将清洁后的裸光纤放置在 光纤切割刀中较小的V型槽中(如果固定端有被覆,应置于较大槽),保持光纤与刀片

音频信号光纤传输技术实验

音频信号光纤传输技术实验上课请带手机和耳机 [目的要求] 1.熟悉半导体电光/光电器件的基本性能及主要特性的测试方法2.了解音频信号光纤传输系统的结构及选配各主要部件的原则 3. 掌握半导体电光/光电器件在模拟信号光纤传输系统中的应用技术4.训练音频信号光纤传输系统的调试技术 [仪器设备] 1.OFE—A型光纤传输及光电技术综合实验仪一套;

[实验原理] 一、半导体发光二极管LED结构、工作原理、特性及驱动、调制电路 LED把电信号转为光信号。光纤通讯系统中对光源器件在发光波长、电光效率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED)和半导体激光二极管(LD),本实验采用LED作光源器件.光纤传输系统中常用的半导体发光二极管是一个如图(1)所示的N—p—P三层结构的半导体 器件,中间层通常是由GaAs(砷化镓)p型半导体材料组成,称有源S层,其带隙宽度较窄,两侧分别由GaAlAs的N型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙. 具有不同带隙宽度的两种半导体单晶之间的结构称为异质结. 在图(3)中,有源层与左侧的N层之间形成的是p—N异质结,而与右侧P层之间形成的是p—P异质结,故这种结构又称N—p—P双异质结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p—P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层与空穴符合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子: hυ=E 1—E 2 =E g 其中h是普郎克常数,υ是光波的频率,E 1是有源层内导电电子的能量,E 2 是 导电电子与空穴复合后处于价健束缚状态时的能量。 本实验采用的半导体发光二极管的正向伏安特性如图3所示,与普通的二极管相比,在正向电压大于1V以后,才开始导通,在正常使用情况下,正向压降为

相关文档
最新文档