音频信号光纤传输技术实验仪器评价

音频信号光纤传输技术实验仪器评价
音频信号光纤传输技术实验仪器评价

音频信号光纤传输技术实验仪器评价

学院:工业制造 专业与班级:机设(本)10-1班 姓名:何克胜 学号:201010111202 前言

1、光纤,又名光导纤维,是20世纪70年代为光通信而发展起来的一种新型材料,具

有损耗低、频带宽、耐高温、绝缘性好、抗电磁干扰、光学特性好等优点。

1970年,美国康宁公司率先研制出了世界上第一根传输衰减损耗小于20dB/km 的石英光纤。目前,普通单模光纤的传输损耗在工作波长为1550纳米窗口损耗小于0.2dB/km ,在1310纳米窗口小于0.3 dB/km 。目前商用光纤制作工艺多为渐变折射率芯层光纤。

从传输模式来说,光纤分为单模和多模两种;从结构上来说,分为普通光纤和特殊光纤,普通光纤包括单模和多模光纤,特殊光纤包括保偏光纤、单偏振光纤和塑料光纤等。普通光纤的外径为125微米,单模光纤芯径为5-10微米,多模光纤芯径为50、62.5、80、100微米,加护套总直径约为1毫米。目前通信干线用光纤一般为单模光纤,光纤工作波长为1550纳米。

一般光纤的结构是由导光的纤芯和周围包覆的涂层组成。光纤的工作基础是光的全反射。由于纤芯的折射率大于涂层的折射率,当光从纤芯射向涂层,且入射角大于临界角,则射入的光在界面上产生全反射,成“之”字形前进,传播到圆柱形光纤的另一端而发射出去,这就是光纤的传光原理。

2、随着Internet 网络时代的到来,人们对数据通讯的宽带的要求越来越高,光纤通讯具有宽频带、高速、抗干扰等优点,正在得到不断发展和应用,通过实验使用TKGT-1型光纤音频型号传输实验仪,我们可以了解光纤传输系统的基本结构及各部件选配原则,,初步认识光发送器件LED 的电光特性,光检测器件光电二极管的光电特性及使用方法,基本的信号调制与解调方法,完成光纤通讯基本原理实验。信号传输的频率:20Hz~20kHz.

一、光纤信号的过程

根据光的反射和折射定律,即11θθ=' 2211s i n n s i n

n θθ= 若n1>n2,横线上为2,下为1介质,即光由光密介质射入光疏介质,且入射角大于临界角,即c θθ>时,就发生光的全反射现象。由于在临界状态下,2

θ=

,代入上式,则???

?

??=12

c n n arcsin θ ,称为全反射临界角。

光波在光纤中传输,可以用两种不同的理论来解释。一种是电磁理论,或称模式理论;

另一种是几何光学理论,或称为射线理论。 1、光信号的发送(示意图)

系统低频响应不大于20赫兹,取决电阻、电容网络。

系统高频响应不大于20千赫兹,取决于运放电路的响应频率。

光纤通信的三个窗口波段:0.84 1.31 1.55微米(μm ),窗口波段与光纤传输呈现低损耗,与光电检测器件的峰值响

应波段相匹配(本系统在0.8-0.9微米)。

在光纤应用中,常用的光源有:发光二极管(LED)和激光二极管(LD)。

半导体激光器实质上是一个光波振荡器,它具有振荡、反馈与放大作用。根据光纤的特性通常选用长波长激光器,一般为1310nm 。它通常是由P 型限制层与有源层和N 型限制层与有源层所组成的两个异质结。

2、光信号的接收(示意图)

常用的光探测器是半导体光电二极管PIN 和雪崩二极管。

半导体光电二极管PIN 具有体积小,材料合适、灵敏度高、响应速度快等特点,在光纤通信系统中有着十分广泛的应用。其伏安特性为L kT

qU

0I )e

1(I I +-=。其中I 0为无光照时

的反向饱和电流,U 为二极管的端电压(正向电压为正,反向电压为负),q 为电子电荷,k

为波尔兹曼常数,T 为温度(单位为K ),I L 为无偏压状态下光照时的短路电流,与光照时的光功率成正比。

3、光纤传输三个技术指标:

光纤损耗:光纤的损耗是指光在光纤中传播时,由于介质的吸收、散射和辐射等原因,光强不可避免地要随着传播距离的增加而减少。光纤的损耗反映了光波在光纤中传输时所引起的能量损失情况。设输入光纤的光波功率为P 0,输出功率为P ,则光纤损耗定义为两者比值的对数,用α表

示,即α=lgP 0/P 单位是贝尔,这个单位太大,实际应用中常用分贝,则α=10lgP 0/P 。

吸收损耗是由于光纤物质对光的吸收造成。光照射到光纤材料的原子、分子上,若光子

图1

能量恰好等于电子两能级之间的能量差,则光子便将能量转移给电子,使之产生能级跃迁,这就是光纤吸收损耗的定性解释。

散射损耗,是指光在光纤中传播时,遇到材料本身和制造工艺的限制所引起的不均匀性或不连续性造成的损耗。

光纤损耗和光纤色散就是通常主要所指的光纤传输特性。 数值孔径:它决定了能够在光纤中传播的光束半孔径角的最大值max θ,记作N.A.(numerical aperture ),定义为222

1max 0n n sin n NA -=

=θ (max 2θ称为光纤的受光角)

。可以看出,光纤的数值孔径只取决于光纤纤芯和包层的折射率,与光纤的几何尺寸无关,因此可制成数

值孔径很大而截面积又很小的光纤。其值在0.1---0.6之间,角度值在9度---33度之间。

二、光线的质量和效果

频带宽、通信容量大

用电磁波传输信号,其容量大小与所用载波的频率有关。光波的频率很高1014赫兹,比微波频率108-1010要高几个数量级。同样取其频率的1%作带宽,容量相差十万倍。 损耗低

同轴电缆线路内信号迅速衰减,每隔几公里就需要设一个中继站;而光纤通信的中继站可增大到几十公里或几百公里。 质量小,原材料资源丰富

其材料密度只有铜的四分之一,节约稀有金属。 抗干扰性强、保密性好

一般情况下,外界电磁干扰频率都比较低,不在光波频段;同时光纤本身又是电中性,不受高压电、雷电、电车线等电磁感应的影响。外界光频段的干扰,也易于屏蔽,不至于进入光纤。而且光纤也很少有光泄露出来,泄密可能性基本消除。另外,光纤材料化学稳定性高,防腐蚀、防火、防水能力强,适合在恶劣环境下和危险情况下使用。

三、实验内容与步骤

1.光纤传输系统静态电光/光电传输特性测定

打开仪器电源,连接光纤,分别观测面板上两个三位半数字表头分别显示发送光驱动强度和接收光强度。调节发送光强度电位器,每隔200单位(相当于改变发光管驱动电流2mA )分别记录发送光驱动强度数据与接收光强度数据,填写表格并在方格纸上绘制静态电光/光 电传输特性曲线。

接收光强 200 400 600 800 1000 发送光强 174

280

382

503

640

最大不失真输出电压 发送光 强度

V 2.光纤传输系统频响的测定

将输入选择开关打向外,在音频输入接口上从信号 发生器输入正弦波,将双踪示波器的通道 1 和通道 2 分别接到发送端示波器接口和接收端音频信号输出口,

保持输入信号的幅度不变,连续调节信号发生器输出

频率(可以从1k 赫兹开始,使频率连续调小或连续调大),

记录输出端信号电压幅度的变化情况,分别测定系统的 低频和高频截止频率(可以信号衰减为正常信号

(如频率1k 赫兹)响应电压幅度的三分之一左右视为截止)。 作关系曲线如右图并要求给出具体数据即最低和最高 截止频率。

3.LED 偏置电流与无失真最大信号调制幅度关系测定

将从信号发生器输入的正弦波频率设定在1kHz ,保持

不变。输入信号幅度调节电位器置于最大位置,然后在LED 偏置电流为5、10mA 两种情况下,调节信号发生器的信号 源输出幅度,使其从零伏开始增加,同时在信号接收端观察 波输出波形电压变化,直到波形出现失真现象时,记录下此 时电压波形的峰-峰值,由此确定LED 在不同偏置电流下 信号输出的最大幅度。作关系曲线如右图并要求给 出具体数据。

4.多种波形光纤传输实验

通过信号发生器的上档键切换方波与正弦波,将方波信号和三角波信号先后输入音频接口,分别改变输入频率和输入电压,从接收端观察输出波形变化情况。(结论:在数字光纤传输系统中往往采用方波来传输数字信号,但我们本套系统,不太适合方波传播)。

四、 实验分析

根据实验数据可知,这部仪器存在一些不足广播传波效率不是很理想。随着发射光强度的增加,收到的光强度效率反而下降,这可能是在光电转换器、光纤方面出现了问题。比如:光电转换器或者接口处没接好。出现了光波的损耗或者是光波的变形。

在光波的频率从小逐渐增大的过程中,信号出现失真的频率段为60至7150Hz 范围类,而对于标准的学习型TKGT-1型音频信号光纤传输试验仪,它

的范围为20至20000Hz之间,范围存在较大差异。频率信号耦合不是很好,可能是仪器生产的问题也可能是仪器使用过程中磨损的原因。

五、仪器评价

对于TKGT-1型实验仪的设计还是很好的,使用方便,它是我们我们学习光纤传输的一个很好的工具。但是在使用中还是存在些许问题。比如精度和使用寿命。我建议生产时把材料提高一个档次。增加它的使用寿命和精确度,让同学们能够更好地完成光纤传输实验。从中体会到实验应该有的严谨态度和和享受实验带来的乐趣。

音频信号光纤通信.

音频信号光纤传输实验 实验目的 1.了解音频信号光纤传输的方法、结构及选配各主要部件的原则。 2.熟悉半导体电光/光电器件的基本性能及其主要特性的测试方法。 3.学习分析音频信号集成运放电路的基本方法。 4.训练音频信号光纤传输系统的调试技术。 实验仪器 YOF-A音频信号光纤传输技术实验仪、光功率计、多波段收音机、音箱 实验原理 一、系统的组成 图1示出了一音频信号光纤传输系统的结构原理图,它由半导体发光二极管LED及其调制、驱动电路组成的光信号发送部分、传输光纤部分和由硅光电池、前置电路和功放电路组成的光信号接收三个部分组成。 图1 光纤传输系统原理图 塑料光纤很柔软,而且可以弯曲,加工很方便。在光信息处理技术、光学计量、短距离数据传输等方面已获得较好的应用。本系统中,我们采用的传输光纤是进口低损耗多模塑料光纤,它的纤维直径是lmm,芯径为990μm,包层厚度为5μm。半导体发光二极管是采用发光亮度很高的可见红色光发光二极管作为光源,光电转换采用高灵敏的硅光电池作为转换元件,整个传输过程一目了然。 为了避免或减少谐波失真,要求整个传输系统的频带宽度要能复盖被传信号的频谱范围,对于语音信号,其频谱在300--3400Hz的范围内。由于光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。

二、半导体发光二极管(LED)的结构及工作原理 光纤通讯系统中对光源器件在发光波长、电光功率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED)和半导体激光器(LD)。光纤传输系统中常用的半导体发光二极管是一个如图2所示的N-p-P三层结构的半导体器件,中间层通常是由直接带隙的GaAs(砷化镓)p型半导体材料组成,称有源层,其带隙宽度较窄,两侧分别由AlGaAs的N型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙。具有不同带隙宽度的两种半导体单晶之间的结构称为异质结,在图2中,有源层与左侧的N层之间形成的是P-N异质结,而与右侧P层之间形成的是p-P异质结,敌这种结构又称N-p-P双异质结构,简称DH结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p-P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层内与空穴复合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子: (1) 其中h是普朗克常数,是光波的频率,E 1是有源层内导电电子的能量,E 2 是导电电子与空穴复合后处于价键束缚状态时的能量。两者的差值Eg与DH结构中各层材料及其组份的选取等多种因素有关,制做LED时只要这些材料的选取和组份的控制适当,就可使得LED的发光中心波长与传输光纤的低损耗波长一致。所以为了减少损耗,LED发光波长应与传输光纤的低损耗波长一致,在实际通讯系统中,LED发出的光介于可见光的边远区域。 图2 半导体发光二极管的结构及工作原理 光纤通讯系统中使用的半导体发光二极管的光功率为光导纤维的尾纤输出功率,出纤光功率与LED驱动电流的关系称LED的电光特性,为了避免和减少非线性失真,使用时应先给LED一个适当的偏置电流I,其修正等于这一特性曲线线性部分中点对应的电流值,而调制信号的峰一峰值应位于电光特性的直线范围内。对于非线性失真要求不高的情况,也可把偏置电流选为LED最大允许工作电

音频技术实验报告

实验编号:四川师大《声音媒体技术》实验报告 2017年11月5日计算机科学学院级班实验名称:声音信号的编辑处理 姓名:学号:指导老师:实验成绩: 实验录音系统的连接和使用 一.实验目的及要求 (1)掌握录音系统的连接方法; (2)熟悉录音系统相应设备的功能,并熟练使用; (3)掌握录音系统功率匹配、阻抗匹配的原理; 二.实验内容 (1)利用阻抗匹配、功率匹配原理,实现录音系统连接; (2)熟练掌握阻抗匹配、功率匹配实现录音系统连接的工作原理; (3)熟悉录音系统各类设备的操作使用; 三.实验主要流程、步骤(该部分如不够填写,请另加附页) 1.利用阻抗匹配、功率匹配原理,实现录音系统连接。 (1)老师介绍调音台的各输入与输出端子的功能,以及其控制按钮的名称和作用。 (2)用转换头将电容式话筒连接到调音台,电容式话筒的插头插在1和2路录音孔中,(遵循阻抗匹配原理,一定要注意传输线的特性阻抗与所接负载阻抗的大小相等且相位相同,即传输线的输入端或输出端处于阻抗匹配状态); (3)再把监听耳机的插头插在监听插口。 (4)把调音台的输出端用连接线与电脑的主机连接,给电脑传送音频信号,(遵循阻抗匹配原理,电脑的功率要和传输线的输出功率匹配); (5)最后连接电源线 (6)MONITOR是总监听音量旋钮,调节该通路在监听线路中的音量大小。.通过调节HIGH、MIDDLE、LOW三段均衡器旋钮来调节声音大小打开电脑进行调试,测试录音能否正常工作。 2.熟练掌握阻抗匹配、功率匹配实现录音系统连接的工作原理。 (1)阻抗匹配是指负载阻抗与激励源内部阻抗相适配,得到最大功率输出的一种工作状态,阻抗匹配则传输功率大,内阻等于负载时,输出功率最大,此时阻抗匹配。 (2)设备输出功率要与负载阻抗一致。 3.熟悉录音系统各类设备的操作使用。 (1)POWER ON是调音台开关,当 ON 的一边被按下时,调音台便接通电源; (2)MIC是麦克风输入接口,LINE是高电平输入接口,MONITOR是监听输出接口; (3)电容式话筒的敏感度及其高,在录制声音史应该对准说话的人; (4)在调音台每一路输入通道上都有一组均衡旋钮,HIGH是高频,MID是中频,LOW是低频,高中低频率旋钮向左(顺时针)旋时,对应的频段就会得到提升,反之衰减。 四.实验结果的分析与评价(该部分如不够填写,请另加附页 1.阻抗匹配的方法有两种,一种是改变阻抗力,另一种是调整传输线的长度。 2.调音台可对输入的不同电平不同阻抗的音源信号进行放大、衰减、动态调整等,用附 带的均衡器对信号各频段进行处理,调整各通道信号的混合比例后,对各通道进行分配并送至各个接收端,控制现场扩声信号及录制信号。 3.调音台的输入信号大体上分为低阻话筒信号输入和高阻线路信号输入两种。 4.调音台输入插口基本可以分为3种:TRS,XLR,RCA。

信号光纤传输技术实验.

音频信号光纤传输技术实验 预习要求 通过预习应理解以下几个问题: 1.音频信号光纤传输系统由那几个部分组成、主要器件(LED 、SPD 和光纤)的工作原理; 2.LED 调制、驱动电路工作原理 3.LED 偏置电流和调制信号的幅度应如何选择、; 4.测量SPD 光电流的I-V 变换电路的工作原理。 实验目的 1.熟悉半导体电光/光电器件基本性能及主要特性的测试方法; 2.了解音频信号光纤传输系统的结构及各主要部件的选配原则; 3.掌握半导体电光和光电器件在模拟信号光纤传输系统中的应用技术; 4.学习音频信号光纤传输系统的调试技术。 实验原理 一.系统的组成 音频信号光纤传输系统的原理图如图8-1-1所示。它主要包括由LED (光源)及其调制、驱动电路组成的光信号发送器、传输光纤和由光—电转换、I —V 变换及功放电路组成的光信号接收器三个部分。光源器件LED 的发光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近。本实验采用中心波长0.85μm的GaAs 半导体发光二极管作光源、峰值响应波长为0.8~0.9μm的硅光二极管SPD 作光电检测元件。为了避免或减少谐波失真,要求整个传输系统的频带

宽度能够覆盖被传信号的频谱范围。对于音频信号,其频谱在20Hz ~20KHz 的范围内。光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的频率特性。 二、光纤的结构及传光原理 衡量光纤信道性能好坏有两个重要指标:一是看它传输信息的距离有多远,二是看它单位时间内携带信息的容量有多大。前者决定于光纤的损耗特性,后者决定于光纤的频率特性。目前光纤的损耗容易做到每公里零点几dB 水平。光纤的损耗与工作波长有关,所以在工作波长的选用上,应尽量选用低损耗的工作波长。光纤通讯最早是用短波长0.85μm,近来发展到能用1.3~1.55μm范围的波长,在这一波长范围内光纤不仅损耗低,而且“色散”也小。 光纤的频率特性主要决定于光纤的模式性质。光纤按其模式性质通常可以分成单模光纤和多模光纤。无论单模或多模光纤,其结构均由纤芯和包层两部分组成。纤芯的折射率较包层折射率大。对于单模光纤,纤芯直径只有5~10μm,在一定条件下,只允许一种电磁场形态的光波在纤芯内传播。多模光纤的纤芯直径为50μm或62.5μm,允许多种电磁场形态的光波传播。以上两种光纤的包层直径均为125μm。按其折射率沿光纤截面的径向分布状况又分成阶跃型和渐变型两种光纤,对于阶跃型光纤,在纤芯和包层中折射率均为常图8-1-1 音频信号光纤传输系统原理图 数,但纤芯折射率n 1略大于包层折射率n 2。所以对于阶跃型多模光纤,可用几何光学的全反射理论解释它的导光原理。在渐变型光纤中,纤芯折射率随离开光纤轴线距离的增加而逐渐减小,直到在纤芯—包层界面处减到某一值后,在包层

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

光纤通信optisystem实验

光纤通信大作业 1.选择一个你认为合适的方案 供选方案:NRZ、RZ调制格式,直接调制或者外调制,APD管或者PIN管,low pass rectangular filter或者low pass gauss filter。请选择你认为实际中可实现的通信性能最好的一组方案。并给出相应的理由。 答:选择NRZ调制格式,直接调制,APD管,low pass gauss filter。选择这个方案的理由是:为了使得整个系统得到最好的信噪比,并且保证系统误码率在可接受的范围内。具体理由分析如下: 选择NRZ调制格式,因为经NRZ调制的光信号具有紧凑的频谱特性,调制和调解结构简单,在10G和一部分40G系统中得到广泛应用,一直被作为中短距离光纤通信系统中的主要调制格式,通过色散管理和终端可调色散补偿技术,NRZ调制格式在终端传输距离普通光纤获得良好的光传输性能。 选择直接调制,因为直接强度调制是用信号直接调制激光器的驱动电流,使其输出功率随信号变化.这种方式设备相对简单,研究较早,现已成熟并商品化.外调制则常用于要求较高的通信系统。 选择APD管,因为由书上的P264页的图8.3可知,PIN管接收灵敏度适用于低数据速率光纤通信,当系统通信数据速率为10G时,PIN灵敏度管不适于应用,我们优选ADP管。 选择low pass gauss filter(低通高斯响应滤波器),因为low pass rectangular filter(低通矩形响应滤波器)是理想的低通滤波器的模型,在幅频特性曲线上呈现矩形。在现实中,如此理想的特性是无法实现的,所有的设计只不过是力图逼近矩形滤波器的特性而已。而low pass gauss filter(低通高斯响应滤波器)采用时域法测量有效带宽,具有直观、简便的优点,而采用时域法能够显著缩短有效带宽测量时间。 实验过程: 本次实验中,由NRZ调制格式、直接调制、APD管和low pass gauss filter构成的光纤通信系统。 1).根据实验要求,连接实验电路。同时为了实时地观察系统的运行状态,必须在系统外围增加监测及显示装置,将系统运行结果显示出来,便于观察和分析。因此,在系统中加入了Eye Diagram Analyzer、BER Analyzer、Optical Time Domain Visualizer、Optical Power Meter、Optical Spectrum Analyzer、Oscilloscope Visualizer。通过这些监测及显示器件,可以较为直观地观察到入纤光功率、调制前后的光信号频谱与时域波形、解调后的信号波形、信号眼图及误码率等系统的运行状态和运行结果。整个光纤通信系统的架构如下图示:

LED可见光音频信号传输系统设计

LED可见光音频信号传输系统设计 摘要:LED具有调制特性良好的优点,可以使LED光源在照明的同时传输音频信号,本设计发射端利用三极管将音频信号放大后驱动LED发光,LED 的发光强度受音频的调制,接收端利用光敏二极管接收调制信号,功率放大器进行功率放大,最后将音频信号输出,实现无失真音频传输。 标签:LED;调制;放大;音频传输 引言 LED具有高亮度、低功耗、灵敏度高、调制特点好等优点,利用这些特性可以实现在照明的同时,把信号调制到LED光中进行传输。实现利用可见光为信息载体,不使用光纤等有线传输介质,在空气中直接传送光信号的通信方式,即可见光通信技术(Visible Light Communication,VLC) 利用LED高速调试的特性将音频信号调制到LED可见光上进行信息传输,这传输方式减少了电磁辐射对环境的影响,适合对电磁信号敏感的区域使用。在当前节能和环保两大主题的前提下,随着世界各国对白光照明光源的大力推广,以及其光谱特性、一特性、调制特性等性能的提高,基于白光可见光通信正在逐渐发展起来。 1 系统设计 系统整体由发射端和接收端两部分组成,发射端由MP3或音频信号发生器输入音频信号,通过三极管放大电路将音频信号放大,并驱动LED发光。接收端将光信号转化为电信经放大电路放大,再由功率放大器进行功率放大,从扬声器输出。系统框图如图1所示。 图1 系统框图 2 电路设计 (1)电源设计。电源输入电压为220V工频交流电,三端稳压器采用电子设备中常用的线性稳压集成电路LM7812和LM7912。电路如图2所示,电路图中LM7812和LM7912接有一大一小两个滤波电容,大电容低频滤波,小电容高频滤波。跨接于LM7812和LM7912输入输出端的二极管D4、D5可以保护三端稳压器不被反向浪涌电流的冲击而烧毁。 (2)发射端设计。发射端电路如图3所示,当音频信号由A、B端输入,经耦合电容C1的隔直作用后会在三极管的基极加上一组和音频信号一样变化的电流,在由三极管的放大作用,驱动两个LED。因LED的发光强度与电流的大小成正比,所以LED的发光强度与音频信号的幅度大小同步调制,实现音频信

实验一音频信号光纤传输技术实验

音频信号光纤传输技术实验 [目的要求] 1.熟悉半导体电光/光电器件的基本性能。 2.了解音频信号光纤传输的结构。 3.学习分析集成运放电路的基本方法。 4.了解音频信号在光纤通信的基本结构和原理 [仪器设备] 1.ZY120FCom13BG3型光纤通信原理实验箱。 2.20MHz双踪模拟示波器。 3.FC/PC-FC/PC 单模光跳线 4.数字万用表。 5.850nm光发端机和光收端机 6.连接导线 7.电话机 [实验原理] 一.半导体发光二极管结构、工作原理、特性及驱动、调制电路光纤通讯系统中,对光源器件在发光波长、电光效率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED)、半导体激光二极管(LD),本实验采用LED作光源器件。 图 1 半导体发光二极管及工作原理 光纤传输系统中常用的半导体发光二极管是一个如图所示的N-P-P三层结构的半导体器件,中间层通常是由GaAs(砷化镓)p型半导体材料组成,称有源层,其带隙宽度较窄,两侧分别由GaAlAs的N型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙。具有不同带隙宽度的两种半导体单晶之间的结构称为异结。在图(1)中,有源层与左侧的N层之间形成的是p-N 异质结,而与右侧P层之间形成的是p-P异质结,故这种结构又称N-p-P双异质结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p-P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层与空穴复合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子:

光纤通信optisystem实验

光纤通信大作业 1、选择一个您认为合适的方案 供选方案:NRZ、RZ调制格式,直接调制或者外调制,APD管或者PIN管,low pass rectangular filter或者low pass gauss filter。请选择您认为实际中可实现的通信性能最好的一组方案。并给出相应的理由。 答:选择NRZ调制格式,直接调制,APD管,low pass gauss filter。选择这个方案的理由就是:为了使得整个系统得到最好的信噪比,并且保证系统误码率在可接受的范围内。具体理由分析如下: 选择NRZ调制格式,因为经NRZ调制的光信号具有紧凑的频谱特性,调制与调解结构简单,在10G与一部分40G系统中得到广泛应用,一直被作为中短距离光纤通信系统中的主要调制格式,通过色散管理与终端可调色散补偿技术,NRZ调制格式在终端传输距离普通光纤获得良好的光传输性能。 选择直接调制,因为直接强度调制就是用信号直接调制激光器的驱动电流,使其输出功率随信号变化、这种方式设备相对简单,研究较早,现已成熟并商品化、外调制则常用于要求较高的通信系统。 选择APD管,因为由书上的P264页的图8、3可知,PIN管接收灵敏度适用于低数据速率光纤通信,当系统通信数据速率为10G时,PIN灵敏度管不适于应用,我们优选ADP管。 选择low pass gauss filter(低通高斯响应滤波器),因为low pass rectangular filter(低通矩形响应滤波器)就是理想的低通滤波器的模型,在幅频特性曲线上呈现矩形。在现实中,如此理想的特性就是无法实现的,所有的设计只不过就是力图逼近矩形滤波器的特性而已。而low pass gauss filter(低通高斯响应滤波器)采用时域法测量有效带宽,具有直观、简便的优点,而采用时域法能够显著缩短有效带宽测量时间。 实验过程: 本次实验中,由NRZ调制格式、直接调制、APD管与low pass gauss filter构成的光纤通信系统。 1)、根据实验要求,连接实验电路。同时为了实时地观察系统的运行状态,必须在系统外围增加监测及显示装置,将系统运行结果显示出来,便于观察与分析。因此,在系统中加入了Eye Diagram Analyzer、BER Analyzer、Optical Time Domain Visualizer、Optical Power Meter、Optical Spectrum Analyzer、Oscilloscope Visualizer。通过这些监测及显示器件,可以较为直观地观察到入纤光功率、调制前后的光信号频谱与时域波形、解调后的信号波形、信号眼图及误码率等系统的运行状态与运行结果。整个光纤通信系统的架构如下图示: 完整的光纤通信系统

音频信号的光纤传输+实验报告

音频信号光纤传输实验 摘要: 实验通过对LED-传输光纤组件的电光特性的测量,得出了在合适的偏置电流下,其具有线性。验证了硅光电二极管可以把传输光纤出射端输出的信号转变成与之成正比的光电流。 Abstracf The experimental transmission through the LED-fiber components of the electro-optical properties Measuring obtained at the right bias current, with its linear. Verification of the silicon photodiode fiber can transmit a radio-signal output into with the current proportional to the light. 一.前言: 1.实验的历史地位: 光纤自20世纪60年代问世以来,其在远距离信息传输方面的应用得到了突飞猛进的发展,以光纤作为信息传输介质的“光纤通信”技术,是世界新技术革命的重要标志,也是未来信息社会各种信息网的主要传输工具。随着光纤通信技术的发展,一个以微电子技术,激光技术,计算机技术呵现代通信技术为基础的超高速宽带信息网将使远程教育.远程医疗.电子商务.智能居住小区越来越普及.光纤通信以其诸多优点将成为现代通信的主流,未来信息社会的一项基础技术和主要手段. 2.实验目的 了解音频信号光纤传输系统的结构 熟悉半导体电光/光电器件的基本性能及主要特性的测试方法 了解音频信号光纤传输系统的调试技能 3.待解决的几个主要问题: 声音是一种低频信号,你可能有这样的经历,当你说话的声音较低时,只有你旁边的人可以听见你的声音,要让声音传的远些你必须大声喊。这说明了低频信号的传播受周围环境的影响很大,传播的范围有限。为了解决上述的问题,在通信技术中一般是使用一个高频信号作为载波利用被传输的信号(如音频信号)对载波进行调制。当信号到达传输地点时需要对信号进行解调,也就是将高频载波滤掉,最终得到被传输的音频信号。随着通信容量的增加和信息传递速度的加快,上述传播过程的缺陷也暴露了出来,主要为以下几点: 1信号间的干扰; 2 对接手端和发射端阻抗匹配要求较高; 3 传播速度受到一定的限制。 专家们一致认为解决上述问题的关键是利用光作为信号的载体,也就是所说的光纤通信。本实验的目的就是去了解光纤传输系统的结构,以及半导体电光/光电器件的基本性能及主要特性的测试方法。 二. 实验介绍 1.实验原理

数字信号光纤通信技术实验报告

数字信号光纤通信技术实验的报告 预习要求 通过预习应理解以下几个问题: 1.数字信号光纤传输系统的基本结构及工作过程; 2.衡量数字通信系统有那两个指标?; 3.数字通信系统中误码是怎样产生的?; 4.为什么高速传输系统总是与宽带信道对应?; 5.引起光纤中码元加宽有那些因素?; 6.本实验系统数字信号光-电/电-光转换电路的工作原理; 7.为什么在数字信号通信系统中要对被传的数据进行编码和解码?; 8.时钟提取电路的工作原理。 目的要求 1.了解数字信号光纤通信技术的基本原理 2.掌握数字信号光纤通信技术实验系统的检测及调试技术 实验原理 一、数字信号光纤通信的基本原理 数字信号光纤通信的基本原理如图8-2-1示(图中仅画出一个方向的信道)。工作的基本过程如下:语音信号经模/数转换成8位二进制数码送至信号发送电路,加上起始位(低电平)和终止位(高电平)后,在发时钟TxC的作用下以串行方式从数据发送电路输出。此时输出的数码称为数据码,其码元结构是随机的。为了克服这些随机数据码出现长0或长1码元时,使接收端数字信号的时钟信息下降给时钟提取带来的困难,在对数据码进行电/光转换之前还需按一定规则进行编码,使传送至接收端的数字信号中的长1或长0码元个数在规定数目内。由编码电路输出的信号称为线路码信号。线路码数字信号在接收端经过光/电转换后形成的数字电信号一方面送到解码电路进行解码,与此同时也被送至一个高Q值的RLC谐振选频电路进行时钟提取. RLC谐振选频电路的谐振频率设计在线路码的时钟频率处。由时钟提取电路输出的时钟信号作为收时钟RxC,其作用有两个:1.为解码电路对接收端的线路码进行解码时提供时钟信号;2.为数字信号接收电路对由解码电路输出的再生数据码进行码值判别时提供时钟信号。接收端收到的最终数字信号,经过数/模转换恢复成原来的语音信号。 图8-2-1 数字信号光纤通信系统的结构框图 在单极性不归零码的数字信号表示中,用高电平表示1码元,低电平表示0码元。码元持续时间(亦称码元宽度)与发时钟TxC的周期相同。为了增大通信系统的传输容量,就要求提高收、发时钟的频率。发时钟频率愈高码元宽度愈窄。 由于光纤信道的带宽有限,数字信号经过光纤信道传输到接收端后,其码元宽度要加宽。加宽程度由光纤信道的频率特性和传输距离决定。单模光纤频带宽,多模光纤频带窄。因为按光波导理论[1]分析:光纤是一种圆柱形介质波导,光在其中传播时实际上是一群满足麦克斯韦方程和纤芯—包层界面处边界条件的电磁波,每个这样的电磁波称为一个模式。光纤中允许存在的模式的数量与纤芯半径和数字孔径有关。纤芯半径和数字孔径愈大,光纤中参与光信号传输的模式也愈多,这种光纤称为多模光纤(芯径50或62.5μm)。多模光纤中每个模式沿光纤轴线方向的传播速度都不相同。因此,在光纤信道的输入端同时激励起多个模式时,每个模式携带的光功率到达光纤信道终点的时间也不一样,从而引起了数字信号码元的加宽。码元加

光纤音频信号传输技术实验

TKGT-1型音信号传输仪器 评 价 报 告 学院:工业制造学院 专业:测控技术与仪器 班级:2010级2班 报告人:邱兆芳 学号:201010114201

光纤音频信号传输技术实验 1.引言 随着Internet网络时代的到来,人们对数据通讯的带宽、速度的要求越来越高,光纤通讯具有频带宽、高速、不受电磁干扰影响等一系列优点,正在得到不断发展和应用。通过使用THKGT-1型光纤音频信号传输实验仪做音频信号光纤传输实验,让学生熟悉了解信号光纤传输的基本原理。同时学生可以了解光纤传输系统的基本结构及各部件选配原则,初步认识光发送器件LED的电光特性及使用方法,光检测器件光电二极管的光电特性及使用方法,基本的信号调制与解调方法,完成光纤通讯原理基本实验。 光纤即为光导纤维的简称。光纤通信是以光波为载波,以光导纤维为传输媒质的一种通信方式,由发送电端机将待传送的模拟信号转换成数字信号,再由发送光端机将电信号转换成相应的光信号,并将它送入光纤中传输至接收端。接收光端机将传来的光信号转换成相应的电信号并进行放大,然后通过接收电端机恢复成原来的模拟信号。 光纤广泛应用于各种工业控制、分布式数据采集等场合,特别适合电力系统自动化、交通控制等部门。 通过本实验的学习,在了解光导纤维的基本结构和光在其中传播规律的基础上,要建立起光导纤维的数值孔径、光纤色散、光纤损耗、集光本领等基本概念。 [实验目的] 1.学习音频信号光纤传输系统的基本结构及各部件选配原则。 2.熟悉光纤传输系统中电光/光电转换器件的基本性能。 3.训练如何在音频光纤传输系统中获得较好信号传输质量。 [实验仪器] THKGT-1型光纤音频信号传输实验仪,函数信号发生器,双踪示波器。 [实验原理] 光纤传输系统如图1所示,一般由三部分组成:光信号发送端;用于传送光信号的光纤;光信号接收端。光信号发送端的功能是将待传输的电信号经电光转换器件转换为光信号,目前,发送端电光转换器件一般采用发光二极管或半导体激光管。发光二极管的输出光功率较小,信号调制速率相对低,但价格便宜,其输出光功率与驱动电流在一定范围内基本上呈线性关系,比较适宜于短距离、低速、模拟信号的传输;激光二极管输出功率大,信号调制速率高,但价格较高,适宜于远距离、高速、数字信号的传输。光纤的功能是将发送端光信号以尽可能小的衰减和失真传送到光信号接收端,目前光纤一般采用在近红外波段0.84μm、1.31μm、1.55μm有良好透过率的多模或单模石英光纤。光信号接收端的功能是将光信号经光电转换器件还原为相应的电信号,光电转换器件一般采用半导体光电二极管或雪崩光电二极管。组成光纤传输系统光源的发光波长必须与传输光纤呈现低损耗窗口的波段、光电检测器件的峰值响应波段匹配。本实验发送端电光转换器件采用中心发光波长为0.84μm的高亮度近红外半导体发光二极管,传输光纤采用多模石英光纤,接收端光电转换器件采用峰值响应波长为0.8~0.9μm的硅光电二极管。下面对各部分作进一步介绍。

音频信号光纤传输技术

音频信号光纤传输技术实验 实验目的 1.熟悉半导体电光/光电器件的基本性能及主要特性的测试方法 2.了解音频信号光纤传输系统的结构及选配各主要部件的原则 3.学习分析集成运放电路的基本方法 4.训练音频信号光纤传输系统的调试技术 实验仪器 YOF—B型音频信号光纤传输技术实验仪(由四川大学物理系研制); 音频信号发生器; 示波器; 数字万用表 实验原理 一.系统的组成 图(1)给出了一个音频信号直接光强调制光纤传输系统的结构原理图,它主要包括由LED及其调制、驱动电 路组成的光信号发送器、传输光纤和由光电转换、I—V变换及功放电路组成的光信号接收器三个部分。光源器件L ED的发光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近,本实验采用中心波长0.85μm附近的GaAs半导体发光二极管作光源、峰值响应波长为0.8~0.9μm的硅光二极管(SPD)作光电检测元件。为了避免或减少谐波失真,要求整个传输系统的频带宽度能够覆盖被传信号的频谱范围,对于语音信号,其频谱在300~3400Hz的范围内。由于光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。 此电路的工作原理如下: 音频信号经IC1放大电路传到LED调制电路。W2调节发光管LED工作(偏置)电流,音频电流调制此工作电流,并经LED转换成音频调制的光信号,经光纤传至光电二极管SPD 再复原成原始音频电流信号,经由IC2构成的I—V变换电路转换成电压信号,最后通过功率放大电路输出声音功率信号,推动扬声器发出声音。这样就完成了音频信号通过光纤的传输过程。 二、半导体发光二极管的驱动、调制电路

四路视频和音频信号的光纤传输系统设计

第32卷 第1期华侨大学学报(自然科学版)Vol.32 No.1 2011年1月Journal of Huaqiao University(Natural Science)Jan.2011   文章编号: 1000-5013(2011)01-0035-04 四路视频和音频信号的光纤传输系统设计 林琳,王加贤,凌朝东 (华侨大学信息科学与工程学院,福建泉州362021) 摘要: 利用可编程式逻辑器件、并串转换器和串并转换器及光收发器,设计一个专用的数字光纤传输系统.将多路模拟基带信号的视频和音频进行数字化,形成高速数字流;然后,在现场可编程门阵列(FPGA)上对高速数字流进行时分复用,并通过并串转换器转换为串行数字流,送到光发射器;最后,通过光发射器发射耦合进入光纤传输.接收端则进行相反的操作,还原出原来的模拟基带信号.实验证明,系统工作性能稳定可靠,实时传输效果好. 关键词: 光纤传输;模/数转换;数/模转换;时分复用;视频信号;音频信号 中图分类号: TN 919.6+4;TN 818文献标识码: A 随着数字化技术的飞速发展,传统的模拟光传输技术已经不能满足人们对传输质量和传输容量的要求.传统的视频、音频信号是利用电缆传输的,传输抗干扰能力差,在传输和存储过程中会受到各种干扰和引入各种噪声,并且经多次传输后,会不断积累噪声[1].相比较于传统的电缆传输,光纤传输数字信号具有损耗极低、中继距离长、频带极宽、传输容量很大和抗电磁干扰性能好等优点.本文将现场可编程门阵列(Field-Programmable Gate Array,FPGA)、数字技术和光纤传输技术相结合,研制一种基于光纤传输的无压缩四路数字视音频传输系统. 1 设计原理 数字光纤传输系统是基于时分复用技术,在一根光纤中实现四路视频、四路音频传输,其框图如图1所示. 图1 数字光纤传输系统框图 Fig.1 Diagram of digital optical fiber transmit system 在发送端,发送机将摄像机采集到的模拟视频信号经过视频放大、钳位、滤波、模/数(A/D)转换成数字信号;同时,将麦克风采集到的音频信号经过放大、滤波、模/数转换为数字信号.在采样时钟的控  收稿日期: 2010-05-13  通信作者: 王加贤(1955-),男,教授,主要从事激光技术与固体激光器件的研究.E-mail:wangjx@hqu.edu.cn.  基金项目: 福建省厦门市科技计划项目(3502Z20080010,3502Z20093032)

音频信号光纤传输技术实验

音频信号光纤传输技术实验上课请带手机和耳机 [目的要求] 1.熟悉半导体电光/光电器件的基本性能及主要特性的测试方法2.了解音频信号光纤传输系统的结构及选配各主要部件的原则 3. 掌握半导体电光/光电器件在模拟信号光纤传输系统中的应用技术4.训练音频信号光纤传输系统的调试技术 [仪器设备] 1.OFE—A型光纤传输及光电技术综合实验仪一套;

[实验原理] 一、半导体发光二极管LED结构、工作原理、特性及驱动、调制电路 LED把电信号转为光信号。光纤通讯系统中对光源器件在发光波长、电光效率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED)和半导体激光二极管(LD),本实验采用LED作光源器件.光纤传输系统中常用的半导体发光二极管是一个如图(1)所示的N—p—P三层结构的半导体 器件,中间层通常是由GaAs(砷化镓)p型半导体材料组成,称有源S层,其带隙宽度较窄,两侧分别由GaAlAs的N型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙. 具有不同带隙宽度的两种半导体单晶之间的结构称为异质结. 在图(3)中,有源层与左侧的N层之间形成的是p—N异质结,而与右侧P层之间形成的是p—P异质结,故这种结构又称N—p—P双异质结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p—P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层与空穴符合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子: hυ=E 1—E 2 =E g 其中h是普郎克常数,υ是光波的频率,E 1是有源层内导电电子的能量,E 2 是 导电电子与空穴复合后处于价健束缚状态时的能量。 本实验采用的半导体发光二极管的正向伏安特性如图3所示,与普通的二极管相比,在正向电压大于1V以后,才开始导通,在正常使用情况下,正向压降为

音频信号光纤通信原理实验报告评分标准

《音频信号光纤通信原理》实验报告评分标准 一实验预习(20分) 学生进入实验室前应预习实验,并书写实验预习报告。预习报告应包括:①实验目的,②实验原理,③实验仪器,④实验步骤⑤实验数据记录表等五部分。以各项表述是否清楚、完整,版面 验前还应预习实验)。 二实验操作过程(20分) 学生在教师的指导下进行实验。操作过程分三步:第一步,半导体二极管LED的电光特性I D-P0数据测量,包括:①光功率计的调节;②半导体二极管LED的电光特性I D-P0数据测量;第二步,光电二极管SPD的光电特性P0-I0数据测量,包括:①.正确连接好SPD测量电路;②.半导体光电二极管SPD的光电特性P0-I f 数据测量。第三步,音频信号的光纤通信系统,包括:①光纤通信系统的连接;②改变调制电流I D时对传输信号的影响。以各项是否能够按照实验要求独立、正确完成,数据记录是否准确、正确分三段给分。 三实验纪律( 学生进入实验室,按照学生是否按规定进入实验室,是否按照操作要求使用仪器,是否在实验结束后将仪器整理整齐,是否有大声喧哗、打闹现象。分三段给分。 课后完成一份完整的实验报告。 四、数据记录及处理(35分) 1 数据记录是否与课堂实验记录一致,书写是否准确,分三段给分。 2 学生在数据处理过程中,是否按照要求正确书写中间计算结果、最终实验结果和不确定度的有效数字位数,分三段给分。 二、思考题(10分) 学生在实验结束后,在三道思考题中选择两道,抄写题目并回答。按照问题回答是否准确,有自己的见解,分三段给分。

《音频信号光纤通信原理》技能测试评分标准学生进入实验室,用15分钟的时间看书,15分钟之后将书收起来,开始进行实验测试。测试期间禁止看书。评分标准如下: 一实验操作部分(70分) 第一步:半导体发光二极管LED的电光特性I D-P0数据测量:(30分) ①.光功率计调零:连接好线路,调节I D为零,然后调节光功率计调零旋扭使光功率计示 数为零。②.调节光功率计最佳偶合:调节I D为任意示数,旋转光纤尾纤(带SPD的插头),使光功率计示数为最大值,此后不能再转动光纤尾纤。③.测量半导体发光二极管LED的电光特性:改变LED调制电流I D,记录光功率计的示数值P0。分三步给分。 ①.光功率计调零: ②.调节光功率计最佳偶合: ③.测量半导体发光二极管LED的电光特性: 第二步:半导体光电二极管SPD的光电特性P0-I f 数据测量:(20分) ①.正确连接好SPD测量电路:按原理图连接好线路,数字电压表测量R f端电压U0(U0为何即为R f端电压?)。②.半导体光电二极管SPD的光电特性P0-I f 数据测量:改变LED调制电流I D,记录R f端电压U0;P0为上次测量半导体发光二极管LED的电光特性I D-P0所对应的值。分两步给分。 ①.正确连接好SPD测量电路: ②.半导体发光二极管LED的电光特性I D-P0数据测量:

音频信号采集与传输

《信号与系统》 ——综合性设计性实验报告标题:音频信号采集与传输 组长:学号 成员:学号 学号 学号 实验时间:2011年6月20日星期一第1、2节2011年6月27日星期一第1、2节实验地点:电子信息楼617 实验课室: 机械与电气工程学院 电子信息工程系 信息工程专业 教师:胡晓

目录 1、课题设计流程 (3) 2、课题设计理论基础 (3) 2.1信号的采集 (3) 2.2频谱分析 (3) 2.3 调制与解调 (3) 2.4 高斯白噪声 (4) 2.5 滤波 (4) 3、课题设计(程序) (4) 4、课题设计效果(效果图) (6) 5、课题设计总结 (7) 6、心得体会 (7)

1、课题设计流程 用matlab录制音频文件 ?→ ?)(f t频谱分析?→ ?调制? ? ? ?→ ?加入高斯白噪声解调?→ ?滤 波?→ ?扬声器 2、课题设计理论基础 2.1信号的采集 用matlab录制5秒mic声音,y = wavrecord(5*fs,fs,'int16'),其中采样率为44100,时长为5*fs,然后用wavplay(y,fs);语句播放出来,再写成以xinhao_test01命名的wav文件。Y也可以直接用windows自带的录音工具进行录音,并直接读取[y,fs,bits]=wavread('xinhao_test01.wav'),然后对声音进行回放sound(y,fs),感觉效果。 2.2频谱分析 快速傅里叶变换原理: 在matlab的信号处理工具箱中函数FFT用于快速傅里叶变换,此次实验调用FFT函数的一种格式y=fft(x,N),其中x是序列,y是序列的FFT,N为正整数,函数执行N点的FFT,由于实验中fs=44100,所以取N=2^16,由于经过fft求得的y一般是复序列,所以用其幅值进行分析,可以用函数abs(y)进行计算复向量y的幅值。由于用matlab自带的FFT快速傅里叶变换得到的幅频图的横坐标是从1到1/2fs,是从低频到高频,再由1/2fs到1,是从高频到低频,实验中用语句Y0(2^N/2+1:2^N)=Y(1:2^N/2),Y0(1:2^N/2)=Y(2^N/2+1:2^N)(其中N=16)。这样就可以将幅频图变成横坐标原点是低频,向坐标的正负端频率逐渐递增的形式,这是平常傅里叶变换得到的幅频图横坐标。

相关文档
最新文档