螺旋桨拉力计算

螺旋桨拉力计算
螺旋桨拉力计算

机翼升力计算公式

升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N)

机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。

在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力

滑翔比与升阻比

升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。

如果有两台飞行器,有着完全相同的气动外形,一台大量采用不锈钢材料的,另一台大量采用碳纤维材料,那么碳纤维材料的滑翔比肯定优于不锈钢材料的。这个在SU-27和歼11-B身上就能体现出来,歼11-B应该拥有更大的滑翔比。

螺旋桨拉力计算公式(静态拉力估算)

你的飞行器完成了,需要的拉力与发动机都计算好了,但螺旋桨需要多大规格呢?下面我们就列一个估算公式解决这个问题

螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克)

前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。1000米以下基本可以取1。

例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得:

100×50×10×502×1×0.00025=31.25公斤。

如果转速达到6000转/分,那么拉力等于:

100×50×10×1002×1×0.00025=125公斤

可靠性测试规范

手机可靠性测试规范 1. 目的 此可靠性测试检验规范的目的是尽可能地挖掘由设计,制造或机构部件所引发的机构部分潜在性问题,在正式生产之前寻找改善方法并解决上述问题点,为正式生产在产品质量上做必要的报证。 2. 范围 本规范仅适用于CECT通信科技有限责任公司手机电气特性测试。 3. 定义 UUT (Unit Under Test) 被测试手机 EVT (Engineering Verification Test) 工程验证测试 DVT (Design Verification Test) 设计验证测试 PVT (Product Verification Test) 生产验证测试 4. 引用文件 GB/T2423.17-2001 盐雾测试方法 GB/T 2423.1-2001 电工电子产品环境试验(试验Ab:低温) GB/T 2423.2-1995 电工电子产品环境试验(试验Bb:高温) GB/T 2423.3-1993 电工电子产品环境试验(试验Ca:恒定湿热) GB/T 2423.8-1995 电工电子产品环境试验(自由跌落) GB/T 2423.11-1997 电工电子产品环境试验(试验Fd: 宽频带随机振动) GB 3873-83 通信设备产品包装通用技术条件 《手机成品检验标准》XXX公司作业指导书 5. 测试样品需求数 总的样品需求为12pcs。 6. 测试项目及要求 6.1 初始化测试 在实验前都首先需要进行初始化测试,以保证UUT没有存在外观上的不良。如果碰到功能上的不良则需要先记录然后开始试验。在实验后也要进行初始化测试,检验经过实验是否造成不良。具体测试请参见《手机成品检验标准》。 6.2 机械应力测试 6.2.1 正弦振动测试 测试样品: 2 台

螺旋桨设计计算说明书.

某沿海单桨散货船螺旋桨设计计算说明书 姓名: XXX 班级:XXX 学号:XXX 联系方式:XXX 日期:XXX

1.已知船体的主要参数 船长 L = 118.00 米 型宽 B = 9.70 米 设计吃水 T = 7.20 米 排水量 △ = 5558.2 吨 方型系数 C B = 0.658 桨轴中心距基线高度 Zp = 3.00 米 由模型试验提供的船体有效马力曲线数据如下: 航速V (kn ) 13 14 15 16 有效马力PE (hp ) 2160 2420 3005 4045 2.主机参数 型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向 右旋 传递效率 ηs=0.98 3.相关推进因子 伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率 ηR = 1.0 船身效率 0777.111=--=w t H η 4.可以达到最大航速的计算 采用MAU 四叶桨图谱进行计算。 取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力: P D = 4762.8 根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算: 项 目 单位 数 值 假定航速V kn 13 14 15 16 V A =(1-w)V kn 9.373 10.094 10.815 11.536 Bp=NP D 0.5/V A 2.5 42.34 35.18 29.60 25.19

Bp 6.51 5.93 5.44 5.02 MAU 4-40 δ75.82 70.11 64.99 60.75 P/D 0.640 0.667 0.694 0.720 ηO0.5576 0.5828 0.6055 0.6260 P TE =P D ·η H ·η O hp 2862.09 2991.44 3107.95 3213.18 MAU 4-55 δ74.35 68.27 63.57 59.33 P/D 0.686 0.713 0.741 0.770 ηO0.5414 0.5672 0.5909 0.6112 P TE =P D ·η H ·η O hp 2778.94 2911.36 3043.28 3137.21 MAU 4-70 δ73.79 67.79 63.07 58.70 P/D 0.693 0.723 0.754 0.786 ηO0.5209 0.5456 0.5643 0.5828 P TE=P D ·η H ·η O hp 2673.71 2800.49 2891.86 2991.44 据上表的计算结果可绘制PT E、δ、P/D及η O 对V的曲线,如下图所示。

机翼升力计算公式滑翔比与升阻比螺旋桨拉力计算公式

机翼升力计算公式滑翔比与升阻比螺旋桨拉力计算公式(静态拉力估算) 2009-04-16 08:02 机翼升力计算公式 升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N) 机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。 在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力 滑翔比与升阻比

升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。 如果有两台飞行器,有着完全相同的气动外形,一台大量采用不锈钢材料的,另一台大量采用碳纤维材料,那么碳纤维材料的滑翔比肯定优于不锈钢材料的。这个在SU-27和歼11-B 身上就能体现出来,歼11-B应该拥有更大的滑翔比。 螺旋桨拉力计算公式(静态拉力估算) 你的飞行器完成了,需要的拉力与发动机都计算好了,但螺旋桨需要多大规格呢下面我们就列一个估算公式解决这个问题 螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数()=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数()=拉力(克) 前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在。1000米以下基本可以取1。 例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得: 100×50×10×502×1×=公斤。 如果转速达到6000转/分,那么拉力等于: 100×50×10×1002×1×=125公斤 注:仅供参考

端子拉力标准

1.0目的:为确保本公司于生产过程中,端子压着能符合品质需求而制订此规范. 2.0范围:此规范适用于各类端子压着检验. 3.权责: 3.1.制造部:依此规范进行生产. 3.2.品保部:负责依此规范进行检验. 4.定义:无. 5.0内容: 5.1.端子正确铆压标准: 5.1.1.端子的外模压着绝缘外被铆压部分须在端子内模与外模间距的1/2或2/3的位置即可. 5.1.2.端子的内模压着导体后外露部分须超过0.2~1mm。 5.1.3.正确铆压见: 如附图一. 5.2.端子不良铆压标准: 5.2.1.绝缘外被压着过长(即绝缘外被过于靠近导体压着部分或将绝缘外被直接压着于导体压 着部份),此种现象将造成铜丝易断落。如附图二。 5.2.2.绝缘外被压着过短(即绝缘外被未完全被压着或没被端子外模包覆),此种现象将造成端 子拉力不足,易脱落。如附图三。 5.2.3.尾料切断部分,所剩下之料头超过1mm. 如附图四。 5.2.4.端子内模有导体外露(分叉). 如附图五。 5.2.5.导体压着过长(导体过于靠近端子头部),此现象将造成端子不易与 5.2. 6.导体压着过短(即导体未完全被压着或没被端子内模包覆),此种现象将造成端子拉力不 足,易脱落。如附图七。 5.2.7.端子内模压着突嘴过大(超过内模的1/3)。如附图八。 5.3.端子内模导体压着高度测量方式:如附图九 5.4.端子外模绝缘外被压着检验方式: 5.4.1.导体外被压着后需将导线做上下90度弯曲三次,检查绝缘被覆是否有损伤或滑出,若有表 面损伤或滑出,则压着高度须重新调整。如附图十. 5.5.端子内模导体拉力测试及检验方式:如附图十一. 5.5.1.测试长度以150mm左右为标准 5.5.2.脱去外被20mm左右。 5.5.3.以拉力计拉引测试,直到导体与端子分离,记下此时拉力计上指针之刻度即为端子拉力。 5.5.4.若端子为有外皮包裹的,测量端子拉力时先去除外皮后再测量. 5.5.5.拉力测试后应检验端子拉出后的状况,若导体七股芯线全部断在端子内模内为端子压着

螺旋桨计算公式

直升机螺旋桨升力计算公式 直升机螺旋桨升力计算公式 一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。 1.现在的直升机螺旋桨(叫旋翼)的桨叶是由碳纤维和玻璃钢纤维与复合材料制造而成。 有一定的弹性,不转时,桨叶略有下垂弯曲。当螺旋桨旋转时,由于离心力的原理,桨叶会被拉直。打个比方,我们看杂技“水流星”吧,两只水碗栓在一根绳子两端,放着不动时,绳子是支持不了水碗的,当旋转起来后,我们看到水碗和绳子象直线一样, 空中飞舞。 2.直升机的主螺旋桨是怎么支撑飞机的重量?这个问题就是直升机的飞行原理:(以一般直升机为例)直升机能在空中进行各种姿态的飞行,都是由主旋翼(你讲的螺旋桨) 旋转产生的升力并操纵其大小和方向来实现的。升力大于重量时,就上升,反之,就下降。 平衡时,就悬停在空中。直升机的升力大小,不但决定于旋翼的转速, 而且决定于旋翼的安装角(又称桨叶角)。升力随着转速.桨叶角的增大而增大; 随着转速.桨叶角的减小而减小。直升机在飞行时,桨叶在转每一圈的过程中, 桨叶角都是不同的;而且,每片桨叶的桨叶角也是不同的。这才使直升机能够前. 后仰, 左.右倾,完成各种姿态。直升机尾旋翼的转速和桨叶角的变化同主旋翼原理相同,控制直升机的左转弯.右转弯和直飞。不管天空有风无风,直升机要稳定飞行, 不变航向,也要靠稳定陀螺仪控制尾旋翼来完成。总之,直升机旋翼系统非常复杂,我只讲直升机空中姿态变化与旋翼的关系。 1,直接影响螺旋桨性能的主要参数有: a.直径D——相接于螺旋桨叶尖的圆的直径。通常,直径越大,效率越高, 但直径往往受到吃水和输出转速等的限制; b.桨叶数N; c.转速n——每分钟螺旋桨的转数; d.螺距P——螺旋桨旋转一周前进的距离,指理论螺距; e.滑失率——螺旋桨旋转一周,船实际前进的距离与螺距之差值与螺距之比; f.螺距比——螺距与直径的比(P/D),一般在0.6~1.5之间;一般地说来,高速轻载船选取的值比较大,低速重载的船选取的值比较小; g.盘面比——各桨叶在前进方向上的投影面积之和与直径为D的圆面积之比。通常,高转速的螺旋桨所取的比值小,低速、大推力的螺旋桨所取的比值大。例如,拖轮的螺旋桨盘面比大于1.2甚至更大的情况也不少见; 机翼升力计算公式 升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N) 机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。

模型飞机螺旋桨原理与拉力计算

模型飞机螺旋桨原理与拉力计算 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n —螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数

螺旋桨公式

螺旋桨公式 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数

航速及螺旋桨计算书设绘通则

航速及螺旋桨计算书设绘通则

1 主题内容与适用范围 1.1主题内容 航速及螺旋桨计算书是计算船舶在要求吃水状态下的阻力、航速、螺旋桨几何要素、螺旋桨的强度校核、空泡校核、系柱推力和转速、重量、惯量及螺旋桨特性等。为绘制螺旋桨图和进行轴系扭振计算提供依据。 1.2适用范围 应用MAU型或楚思德B型螺旋桨设计图谱设计常规螺旋桨并计算航速。 2 引用标准及设绘依据图纸 2.1引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 a) GB4954-84 船舶设计常用文字符号 2.2 编制依据图纸 a)技术规格书或设计任务书; b)总布置图; c)静水力曲线图或表; d)阻力估算方法或船模试验报告; e)螺旋桨设计图谱; f)主机主要参数及特性曲线; g)减速齿轮箱主要参数。 3 基本要求 提供完整的航速及螺旋桨计算书。 4 内容要点 4.1 计算说明 说明应用上海船舶研究设计院电子计算机程序SC88-CR158计算或应用何种螺旋桨设计图谱直接计算。 4.2 主要参数 4.2.1 船舶数据:主尺度(见表1)、船型系数(见表2)。

船舶主尺度表1 船型系数表2 4.2.2 主机参数:型号X台数、额定功率、额定转速、转向(见表3)。 主机参数表3 4.2.3 减速齿轮箱参数:型号、台数、减速比(见表4)。

减速齿轮箱参数表4 4.2.4 螺旋桨设计要求:主机功率、螺旋桨设计转速、螺旋桨只数、螺旋桨浸深、螺旋桨旋向、桨叶形式和叶片数、桨毂形状和尺度(见表5)。 螺旋桨设计要求表5 4.3 计算阻力、有效功率曲线 根据阻力计算公式及图谱计算实船阻力或按船模试验报告换算实船阻力,绘制有效功率曲线。 4.4 推进因子及螺旋桨收到功率 根据船型特点、主机和齿轮箱参数、船模试验或应用经验公式确定轴系传递效率、螺旋桨收到功率、伴流分数、推力减额分数、相对旋转效率、船身效率。 4.5 航速计算 应用螺旋桨设计图谱计算。 4.6 螺旋桨空泡校核 应用伯努利及各种定理推导出校验空泡的衡准数,若不产生空泡的条件可直接应用勃力尔空泡图。 上述计算中应用的符号及单位,见表6。

螺旋桨推力计算模型

螺旋桨推力计算模型 根据船舶原理知:42D n K T T ρ=(T K 为螺旋桨的淌水特性) 通过资料查得:T K 为进速系数J 的二次多项式,但无具体的公式表示,只能通过图谱查得,同时t K K T T -=10 (0T K 为淌水桨在相同的转速情况下以速度为V A 运动时的推力、进速系数nD W U nD V J P A p )1(-==) 估算推力减额分数的近似公式: 1. 汉克歇尔公式: 2. 对于单螺旋桨标准型商船(C B =~) t=对于单螺旋桨渔船: t=对于双螺旋桨标准型商船(C B =~) t=商赫公式 对于单桨船 t=KW 式中:K 为系数 K=~ 适用于装有流线型舵或反映舵者 K=~ 适用于装有方形舵柱之双板舵者 K=~ 适用于装单板舵者 对于双螺旋桨船采用轴包架者:t=+ 对于双螺旋桨船采用轴支架者:t=+ 3. 哥铁保公式 对于单螺旋桨标准型商船(C B =~) P B WP B C C C C t ??? ? ??+-=5.13.257.1 对于双螺旋桨标准型商船(C B =~) B WP B C C C t 5.13 .267.1+-= 4. 霍尔特洛泼公式 对于单螺旋桨船 stern P C BT D C BC B L t 0015.0)/(1418.0000524.00585.1)/(001979.02101+--+-=

式中:10C 的定义如下: 当L/B> L B C /10= 当L/B< )134615385.0//(003328402.025.010--=L B C 对于双螺旋桨船: BT D C t B /1885.0325.0-= 估算伴流分数的近似公式 1. 泰洛公式(适用于海上运输船舶) 对于单螺旋桨船 05.05.0-=B C ω 对于双螺旋桨船 20.055.0-=B C ω 式中C B 为船舶的方形系数。 2. 汉克歇尔公式: 对于单螺旋桨标准型商船(C B =~) 18.070.0-=p C ω 对于单螺旋桨渔船: 28.077.0-=p C ω 对于双螺旋桨标准型商船(C B =~) 3.07.0-=p C ω 式中C p 为船舶的纵向棱形系数。 3. 巴浦米尔公式 ωω?-?=D C x B 3165.0 式中: C B 为船舶的方形系数; ?为船的排水量(3m ); D 为螺旋桨直径(m ); x 为指数,x=1时适用于中线处的螺旋桨,x=2是适用于侧螺旋桨 ω?为伴流系数修正值,与傅氏数gL V F r = 有关,可据下式决定: 当2.0?r F 时, ()2.01.0-=?r F ω

螺旋桨拉力计算

机翼升力计算公式 升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N) 机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。 在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力 滑翔比与升阻比 升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。 如果有两台飞行器,有着完全相同的气动外形,一台大量采用不锈钢材料的,另一台大量采用碳纤维材料,那么碳纤维材料的滑翔比肯定优于不锈钢材料的。这个在SU-27和歼11-B 身上就能体现出来,歼11-B应该拥有更大的滑翔比。 螺旋桨拉力计算公式(静态拉力估算)

你的飞行器完成了,需要的拉力与发动机都计算好了,但螺旋桨需要多大规格呢?下面我们就列一个估算公式解决这个问题 螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克) 前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。1000米以下基本可以取1。 例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得: 100×50×10×502×1×0.00025=31.25公斤。 如果转速达到6000转/分,那么拉力等于: 100×50×10×1002×1×0.00025=125公斤 展弦比: 展弦比即机翼翼展和平均几何弦之比,常用以下公式表示: λ=l/b=l^2/S 这里l为机翼展长,b为几何弦长,S为机翼面积。因此它也可以表述成 翼展(机翼的长度)的平方除以机翼面积,如圆形机翼就是直径的平方除以圆面积,用以表现机翼相对的展张程度。 从空气动力学基础理论来说!展弦比越大,诱导阻力会越小,升阻比会提高。 但同时,较大的展弦比会降低飞机的机动能力,因为较大的展弦比会使诱导阻力减小,但同时使翼面切向阻力加大。飞机维持平飞时稳定性极好,但一旦需要机动,则翼载和阻力都很大。加速性和超音速性能都很差。 相反,随着后掠角的加大,展弦比会呈现一次函数线性衰减,此时诱导阻力增加,升阻比降低,但飞机在超音速飞行时的性能明显改善,机动性也提高。 所以,对于要求长航程,稳定飞行的飞机而言,需要大展弦比设计。而战斗机多采用小展弦比设计。例如:B-52轰炸机展弦比为6.5,U-2侦察机展弦比10.6,全球鹰无人机展弦比更是高达25;而小航程、高机动性飞机,如歼-8展弦比为2,Su-27展弦比为3.5,F-117展弦比为1.65。 低速飞机设计的关键一是加大升力面积二是减轻重量,通过降低翼载荷实现低速。加大翼展可获得大升力面积但从结构强度考虑将大大增加重量,而仅仅通过加大翼弦获得大升力面积

螺旋桨的定义及其效率计算

螺旋桨的定义及其效率计算 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J 变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数 直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。此外还要考虑螺旋桨桨尖气流速度不应过大(<0.7音速),否则可能出现激波,导致效率降低。 桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正比。超轻型飞机一般采用结构简单的双叶桨。只是在螺旋桨直径受到限制时,采用增加桨叶数目的方法使螺旋桨与发动机获得良好的配合。 实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。它的影响与桨叶数目

拉力测试标准

GB/T 228-2002 金属材料室温拉伸试验方法 GB/T 232-1999 金属材料弯曲试验方法 GB/T 2975-1998 钢及钢产品力学性能试验取样位置及试样制备 1.抗拉试验 抗拉试验是测试钢板屈服点、抗拉强度以及延伸率的基本方法。通常的抗拉试验,把一定的负荷施加于固定的试样,把负荷量增加试使样断裂。 2.试样 在KS、JIS、ASTM等的规格薄中明确表示着抗拉试验所使用的试样种类、尺寸等 3.抗拉试验结果 抗拉试验结果主要用于判断钢板工作性能和加工性能等的基础标准。 a. 延伸率 延伸率越高,加工性能越优良。 b. 屈服点 屈服点越低,最后产品的形状越良好。 P : 平行部的距离 ....... 约60mm L : 标距......50mm W : 宽度.......25mm R : 肩部半径......15mm c. 屈服比例: (屈服点/抗拉强度) 屈服比例越低,屈服点和抗拉强度的差距越大,钢板在同等强度对比加工时,形状冻结性优良。 d.弹性系数 弹性系数与钢板的反弹性成反比例。 反弹性越低,最后产品的形状越良好。 e. n值(加工硬化指数) 加工硬化指数是应力曲线到δε" 附近时得到的。加工性与>n值成正比例。 f. r值(塑性变形系数) In wo / w --------- In to / t wo, w=试验前后的宽度 to, t=试验前后的厚度 厚度方向部分的减少(缩小率)与r值成反比例,宽度方向部分的较少则与r值成比例,

因此,r 值大,钢板不易产生龟裂,更容易 加工。 4.DBTT Test 方法 -试验流程 : : 杯成形(Blanking, Punching) 试验温度变 D 落锤试验(Drop weigh test?/span> 观察脆性断裂与否( 转变温度是不出现落锤断裂的最低温度) 5.DBTT 评价试验条件(杯成形后No-trimming) * Drawing Ratio 变化(1.7~2.16) : 85mm(1.7)~108mm(2.16) 6.弯曲试验 弯曲试验是测定钢板软性的,其方法通常如下:冷轧钢板的弯曲性试验通常使用上注明的试样。弯曲试验时将弯曲试样放成轴上规定的角度。此时,试样弯曲部分是否产生龟烈,来判断钢板的软性。冷轧钢板的试样,通常弯曲180° 7.洛氏硬度试验 使用钢球(Steel Ball),开始时对试样表面施加规定的轻微载荷,然后,把载荷缓慢地增至正常的主载荷水平。 消除主载荷后,以试样表面的压痕深度来计算材料的硬度大小,两次以上反复此试验,因净载荷量增加而产生的表面压痕被称为洛氏硬度B-Scale 及F-Scale 。 B-Scale 是使用口径 1/16英寸(1.588mm)的 Steel Ball 并施加100kg 试验载荷而求得。F-Scale 则是施加60kg 试验载荷而求得的,采用与 B-Scale 相同大小的Steel Ball 。B-Scale 是试样厚度为 0.762mm(0.030in)或其以上时可获得正确的硬度,0.762mm 以下的试样推荐采用 F-Scale 。 8.加工性试验 可采取多种方法测定冷轧钢板的加工性能。 加工性是经复杂的生产过程而获得的,因此,实际上以单纯的一个试验方法很难获得正确的数值。在 此仅说明通常采用的两种试验方法。 埃氏杯突试验方法主要是为试验钢板的深冲性。正如右图,用圆型的球面体插件冲压试验片。然后,把插件降至试验片产生龟裂的突面。试验片破裂时获得的h 值即为埃氏杯突深度值锥形杯突试验 此试验方法是最近常用的钢板加工性试验。正如右图,平平或划园地冲压试验片。试验值是压入试验片的杯直径测定值。该试验值与钢板实际加工工艺几乎相似,目前,汽车制造厂普遍采用该试验法埃氏杯突试验

螺旋桨推力计算模型

螺旋桨推力计算模型 根据船舶原理知: T K T n2 D 4( K T为螺旋桨的淌水特性) 通过资料查得: K T为进速系数J的二次多项式,但无具体的公式表示,只能通过图谱查得,同时 K T K T0( K T0为淌水桨在相同的转速情况下以速度为V A运动时的推力、进速系数 1 t J p V A U(1 W P)) nD nD 估算推力减额分数的近似公式: 1.汉克歇尔公式: 对于单螺旋桨标准型商船(C B=0.54~0.84 )t=0.50Cp-0.12 对于单螺旋桨渔船:t=0.77Cp-0.30 对于双螺旋桨标准型商船(C B=0.54~0.84 )t=0.50Cp-0.18 2.商赫公式 对于单桨船t=KW 式中: K 为系数 K=0.50~0.70适用于装有流线型舵或反映舵者 K=0.70~0.90适用于装有方形舵柱之双板舵者 K=0.90~1.5适用于装单板舵者 对于双螺旋桨船采用轴包架者:t=0.25w+0.14 对于双螺旋桨船采用轴支架者:t=0.7w+0.06 3.哥铁保公式 对于单螺旋桨标准型商船(C B=0.6~0.85 )对于双螺旋桨标准型商船(C B=0.6~0.85 ) 4.霍尔特洛泼公式 对于单螺旋桨船 C B t 1.57 2.3 1.5C B C P C WP C B t 1.67 2.3 1.5C B C WP t 0.001979L /( B BC P1 ) 1.0585C100.000524 0.1418D 2 /( BT )0.0015C stern 式中: C10的定义如下: 当 L/B>5.2C 10 B / L 当 L/B<5.2C 100.250.003328402/(B / L 0.134615385) 对于双螺旋桨船:t C D /BT 0.325B0.1885

船舶螺旋桨的设计与计算过程.课件资料

某沿海单桨散货船螺旋桨 设计计算说明书 刘磊磊 2008101320 2011年7月

某沿海单桨散货船螺旋桨设计计算说明书 1.已知船体的主要参数 船长 L = 118.00 米 型宽 B = 9.70 米 设计吃水 T = 7.20 米 排水量 △ = 5558.2 吨 方型系数 C B = 0.658 桨轴中心距基线高度 Zp = 3.00 米 由模型试验提供的船体有效马力曲线数据如下: 航速V (kn ) 13 14 15 16 有效马力PE (hp ) 2160 2420 3005 4045 2.主机参数 型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向 右旋 传递效率 ηs=0.98 3.相关推进因子 伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率 ηR = 1.0 船身效率 0777.111=--= w t H η 4.可以达到最大航速的计算 采用MAU 四叶桨图谱进行计算。 取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力: P D = 4762.8 hp

根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算: 项 目 单位 数 值 假定航速V kn 13 14 15 16 V A =(1-w)V kn 9.373 10.094 10.815 11.536 Bp=NP D 0.5/V A 2.5 69.013042 69.01304 69.01304225 69.013042 25 Bp 268.96548 323.7116 384.6505072 451.99967 07 MAU 4-40 δ 75.6 72.10878 64.87977369 60.744 P/D 0.64 0.667321 0.685420561 0.720498 ηO 0.5583333 0.582781 0.605706806 0.62606 P TE =P D ·ηH ·ηO hp 2863.9907 2989.395 3106.994626 3211.4377 MAU 4-55 δ 74.629121 68.63576 63.56589147 59.341025 P/D 0.6860064 0.713099 0.740958466 0.7702236 ηO 0.5414217 0.567138 0.590941438 0.6111996 P TE =P D ·ηH ·ηO hp 2777.2419 2909.156 3031.255144 3135.1705 MAU 4-70 δ 73.772563 67.77185 63.03055556 58.68503 P/D 0.69254 0.723162 0.754280639 0.7861101 ηO 0.5210725 0.54571 0.565792779 0.5828644 P TE =P D ·ηH ·ηO hp 2672.8601 2799.238 2902.2542 2989.8239 据上表的计算结果可绘制PT E 、δ、P/D 及ηO 对V 的曲线,如下图所示。

航模螺旋桨基础知识

一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数 直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。 此外还要考虑螺旋桨桨尖气流速度不应过大(<音速),否则可能出现激波,导致效率降低。 二、桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正 比。超轻型飞机一般采用结构简单的双叶桨。只是在螺旋桨直径受到限制时,采用增加桨叶数目的方法使螺旋桨与发动机获得良好的配合。 实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。它的影响与桨叶数目的影响相似。随实度增加拉力系数和功率系数增大。

螺旋桨推力计算模型

螺旋桨推力计算模型 根据船舶原理知:4 2 D n K T T ρ=(T K 为螺旋桨的淌水特性) 通过资料查得:T K 为进速系数J 的二次多项式,但无具体的公式表示,只能通过图谱查得,同时t K K T T -= 10(0T K 为淌水桨在相同的转速情况下以速度为V A 运动时的推力、进速系数 nD W U nD V J P A p ) 1(-= = ) 估算推力减额分数的近似公式: 1. 汉克歇尔公式: 对于单螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.12 对于单螺旋桨渔船: t=0.77Cp-0.30 对于双螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.18 2. 商赫公式 对于单桨船 t=KW 式中:K 为系数 K=0.50~0.70 适用于装有流线型舵或反映舵者 K=0.70~0.90 适用于装有方形舵柱之双板舵者 K=0.90~1.5 适用于装单板舵者 对于双螺旋桨船采用轴包架者:t=0.25w+0.14 对于双螺旋桨船采用轴支架者:t=0.7w+0.06 3. 哥铁保公式 对于单螺旋桨标准型商船(C B =0.6~0.85) P B WP B C C C C t ??? ? ? ?+-=5.13.257.1 对于双螺旋桨标准型商船(C B =0.6~0.85) B WP B C C C t 5.13.267.1+-= 4. 霍尔特洛泼公式 对于单螺旋桨船 stern P C BT D C BC B L t 0015.0)/(1418.0000524.00585.1)/(001979.02101+--+-=式中:10C 的定义如下: 当L/B>5.2 L B C /10= 当L/B<5.2 )134615385.0//(003328402.025.010--=L B C 对于双螺旋桨船: BT D C t B / 1885.0325.0-=

螺旋桨设计计算书(2015)

MAU型螺旋桨设计计算书 1.船体的主要参数 船体总长L OA=150m 设计水线长L WL=144m 垂线间长L PP=141m 型宽B=22m 型深D=11m 设计吃水T=5.5m 方形系数C b=0.84 菱形系数C p=0.849 中剖面系数C m=0.69 排水量△=14000t 桨轴中心距基线距离Z P=2m 船体有效马力曲线数据如下: 2.主机参数 型号N/A(两台) 额定功率P S =1714hp 转速N=775r/min 齿轮箱的减速比i=5 桨轴处转速n=155 r/min 轴系传送效率ηS=0.97(中机型船)减速装置的效率ηG=0.97 旋向双桨外旋 3.推进因子的决定 伴流分数ω=0.248 推力减额分数t =0.196 相对旋转效率ηR=1.00 4.船身效率计算 ηH=(1-t)/(1-ω)=1.069

5.收到马力计算 储备功率取 10% 收到马力P D =0.9* P S*ηG *ηS*ηR= 0.9*1714*0.97*0.97*1=1451.43hp 6.假定设计航速有效马力计算 根据MAU4-40,MAU4-55,MAU4-70的Bp-δ图谱列下表计算。 据表中的计算结果可绘制P TE--Vs曲线,如下图1所示。从P TE--Vs曲线P E曲线交点处可获得: MAU4-40 Vs= 11.83Kn MAU4-55 Vs= 11.73Kn MAU4-70 Vs= 11.56Kn

7.初步确定桨的要素 8.空泡校核 根据柏利尔商船界限线计算 桨轴沉深 h s =T–Z P =3.5m 计算t=15°C,则Pv=174kgf/m2 取水温15度,Pa-大气压为:10330Kgf/m2 P 0-P v = P a –P v + h s γ= 13743.5kgf/m2

COMPASS轴系和螺旋桨计算(SRM06)

COMPASS-RULES计算软件用户手册 轴系和螺旋桨计算(SRM06) 二零零九年七月

轴系和螺旋桨计算程序(SRM06) 目 录 1概述 (1) 2计算方法 (1) 3程序流程图 (2) 4操作说明 (3) 4.1 操作界面及布局 (3) 4.2 输入数据 (4) 4.2.1 基本数据 (4) 4.2.2 轴径、桨叶厚度、螺旋桨安装1、螺旋桨安装2 (5) 4.3 数据打印说明 (8) 4.4 计算结果保存 (9) 5保存数据文件 (9) 6运行环境 (9)

1概述 z本计算程序是对CCS《钢质海船建造与入级规范》(2001)第 3 篇第 11 章“轴系及螺旋桨”和第 14 章有关部分中需要计算的内容进行计算。为扩展应用范围,还加入了“有健连接螺旋桨液压湿式安装时的推入量计算” 和ICAS统一要求“无冰区加强要求的螺旋桨无健安装”部分。 z本程序具有如下功能: 1)轴径计算(含冰区加强); 2)联轴器法兰厚度、过渡园角半径计算;联轴器螺栓直径计算(采用普通螺栓时的预 紧力计算); 3)联轴器、螺旋桨的键有效面积计算; 4)联轴器液压无健套合时的轴向推入量计算; 5)螺旋桨桨叶厚度计算(含冰区加强); 6)螺旋桨油压无健安装时的轴向推入量计算; 7)有健连接螺旋桨液压湿式安装时的推入量计算; 8)ICAS中无冰区加强要求的螺旋桨无健安装。 z注意:主机类型、额定功率、额定转速、主机列数、冲程数、气缸直径、活塞行程、曲臂回转半径、连杆长度、单缸往复质量、机械效率等数据属多分支模块公共数据,这些数据修改后会影响到其它模块的计算结果。 2计算方法 z按照CCS 《钢质海船建造与入级规范》(2001)第 3 篇第 11 章“轴系及螺旋桨”和第 14 章有关部分。“有健连接螺旋桨液压湿式安装时的推入量计算” 和“ICAS中无冰区加 强要求的螺旋桨无健安装”参考《船舶机构检验》(人民交通出版社,1994)第八章第五节。

相关文档
最新文档