解三角形应用举例 说课稿 教案 教学设计

解三角形应用举例   说课稿  教案  教学设计
解三角形应用举例   说课稿  教案  教学设计

解三角形应用举例

●教学目标

知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题过程与方法:本节课是在学习了相关内容后的第三节课,学生已经对解法有了基本的了解,这节课应通过综合训练强化学生的相应能力。除了安排课本上的例1,还针对性地选择了既具典型性有具启发性的2道例题,强调知识的传授更重能力的渗透。课堂中要充分体现学生的主体地位,重过程,重讨论,教师通过导疑、导思让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三。

情感态度与价值观:培养学生提出问题、正确分析问题、独立解决问题的能力,并在教学过程中激发学生的探索精神。

●教学重点

能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系

●教学难点

灵活运用正弦定理和余弦定理解关于角度的问题

●教学过程

Ⅰ.课题导入

[创设情境]

提问:前面我们学习了如何测量距离和高度,这些实际上都可转化已知三角形的一些边和角求其余边的问题。然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题。

Ⅱ.讲授新课

[范例讲解]

例1、如图,一艘海轮从A出发,沿北偏东75?的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32?的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1?,距离精确到0.01n mile)

学生看图思考并讲述解题思路

教师根据学生的回答归纳分析:首先根据三角形的内角和定理求出AC边所对的角∠ABC,即可用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角∠CAB解:在?ABC 中,∠ABC=180?- 75?+ 32?=137?,根据余弦定理,

AC=ABC BC AB BC AB ∠??-+cos 222

=????-+137cos 0.545.6720.545.6722

≈113.15[来源:Z,xx,https://www.360docs.net/doc/7c4369200.html,]

根据正弦定理,

CAB BC ∠sin = ABC AC

∠sin

sin ∠CAB = AC ABC

BC ∠sin

= 15.113137sin 0.54?

≈0.3255,

所以 ∠CAB =19.0?,

75?- ∠CAB =56.0?

答:此船应该沿北偏东56.1?的方向航行,需要航行113.15n mile

例2、在某点B 处测得建筑物AE 的顶端A 的仰角为θ,沿BE 方向前进30m ,至点C 处测得顶端A 的仰角为2θ,再继续前进103m 至D 点,测得顶端A 的仰角为4θ,求θ的大小和建筑物AE 的高。

师:请大家根据题意画出方位图。

生:上台板演方位图(上图)

教师先引导和鼓励学生积极思考解题方法,让学生动手练习,请三位同学用三种不同方法板演,然后教师补充讲评。

解法一:(用正弦定理求解)由已知可得在?ACD 中,

AC=BC=30,

AD=DC=103,

∠ADC =180?-4θ,

∴θ2sin 310=)4180sin(30θ-? 。

因为 sin4θ=2sin2θcos2θ

∴ cos2θ=23

,得 2θ=30?

∴ θ=15?,

∴在Rt ?ADE 中,AE=ADsin60?=15

答:所求角θ为15?

,建筑物高度为15m 解法二:(设方程来求解)设DE= x ,AE=h

在 Rt ?ACE 中,(103+ x)2 + h 2=302[来源:金太阳新课标资源网]

在 Rt ?ADE 中,x 2+h 2=(103)2

两式相减,得x=53,h=15

∴在 Rt ?ACE 中,tan2θ=x h

+310=33

∴2θ=30?,θ=15?

答:所求角θ为15?,建筑物高度为15m 解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得

∠BAC=θ, ∠CAD=2θ, AC = BC =30m , AD = CD =103m

在Rt ?ACE 中,sin2θ=30x

--------- ①

在Rt ?ADE 中,sin4θ=3104

, --------- ②

②÷① 得 cos2θ=23

,2θ=30?,θ=15?,AE=ADsin60?=15

答:所求角θ为15?

,建筑物高度为15m 例3、某巡逻艇在A 处发现北偏东45?相距9海里的C 处有一艘走私船,正沿南偏东75?的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向

追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?

师:你能根据题意画出方位图?教师启发学生做图建立数学模型

分析:这道题的关键是计算出三角形的各边,即需要引入时间这个参变量。

解:如图,设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB=10x, AB=14x,AC=9, ∠ACB=?75+?45=?120

∴(14x) 2= 92+ (10x) 2 -2?9?10xcos ?120

∴化简得32x 2-30x-27=0,即x=23

,或x=-169(舍去)

所以BC = 10x =15,AB =14x =21,

又因为sin ∠BAC =AB BC ?120sin =2115?23=143

5

∴∠BAC =3831'?,或∠BAC =14174'?(钝角不合题意,舍去),∴3831'?+?45=8331'?

答:巡逻艇应该沿北偏东8331'?方向去追,经过1.4小时才追赶上该走私船.

评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解

Ⅲ.课堂练习

解三角形 说课稿(优.选)

高中 数学 编号:__5__

必修五第一章解三角形的说教材文稿 各位专家、评委老师,大家好! 我说教材的题目是人教版高中数学《解三角形》专题。 下面我将从三个方面九个视角来进行说明. 一、说课标 高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。 (一)课程目标: 1.知识与技能:学生初中已学过解直角三角形和锐角三角函数,我们通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并运用它们可以解决一些与测量和几何计算有关的实际问题. 2.过程与方法: (1)通过推导定理的过程,培养学生观察、比较、分析、概括的能力,体会数形结合的思想. (2)通过解三角形在实际中的一些应用,培养学生提出问题、分析和解决问题能力. (3)通过学习提高学生数据处理能力和获取知识能力. 3. 情感态度与价值观: (1)鼓励学生积极、主动的参与教学的整个过程,激发其求知的欲望;培养学生乐于探究、敢于创新的精神. (2)认识数学应用价值和文化价值,发展数学应用意识,体会数学的美学意义,体会理论来源于实践并应用于实践的辩证唯物主义观点. (二)内容标准: 1、通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。 本专题的主要内容是两个重要定理,即正弦定理和余弦定理,以及这两个定理在解任意三角形中的应用.这两个定理是学习有关三角形知识的继续和发展,它进一步揭示了三角形的边角之间的关系,在生产、生活中有着广泛的应用. 新课改要求我们进行课程开发和整合,这就需要我们走出教材,要想走出教材我们就要先走入教材,吃透教材。第二方面说教材

北师大版必修5高中数学第二章解三角形的实际应用举例word教案1

§3 解三角形的实际应用举例 教学目标 1、掌握正弦定理、余弦定理,并能运用它们解斜三角形。 2、能够运用正弦定理、余弦定理进行三角形边与角的互化。 3、培养和提高分析、解决问题的能力。 教学重点难点 1、正弦定理与余弦定理及其综合应用。 2、利用正弦定理、余弦定理进行三角形边与角的互化。 教学过程 一、复习引入 1、正弦定理: 2sin sin sin a b c R A B C === 2、余弦定理:,cos 22 2 2 A bc c b a -+=?bc a c b A 2cos 2 22-+= C ab b a c cos 22 2 2 -+=,?ab c b a C 2cos 2 22-+= 二、例题讲解 引例:我军有A 、B 两个小岛相距10海里,敌军在C 岛,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,为提高炮弹命中率,须计算B 岛和C 岛间的距离,请你算算看。 解:0 60=A 0 75=B ∴0 45=C 由正弦定理知 045 sin 10 60sin =BC 6545 sin 60sin 100 ==?BC 海里 例1.如图,自动卸货汽车采用液压机构,设 计时需要 计算油泵顶杆BC 的长度(如图).已知车厢的最大仰角为60°,油泵顶点B 与车厢支点A 之间的距离为1.95m ,AB 与水平线之间的夹角为 /02060,AC 长为1.40m ,计算BC 的长(保留三个有效数字). 分析:这个问题就是在ABC ?中,已知AB=1.95m ,AC=1.4m, 750 600 C B A

求BC 的长,由于已知的两边和它们的夹角,所以可 根据余弦定理求出BC 。 解:由余弦定理,得 答:顶杠BC 长约为1.89m. 解斜三角形理论应用于实际问题应注意: 1、认真分析题意,弄清已知元素和未知元素。 2、要明确题目中一些名词、术语的意义。如视角,仰角,俯角,方位角等等。 3、动手画出示意图,利用几何图形的性质,将已知和未知集中到一个三角形中解决。 练1.如图,一艘船以32海里/时的速度向正北航行,在A 处看灯塔S 在船的北偏东0 20, 30分钟后航行到B 处,在B 处看灯塔S 在船的北偏东0 65方向上,求灯塔S 和B 处的距离.(保留到0.1) 解:16=AB 由正弦定理知 020 sin 45sin BS AB = 7.745 sin 20 sin 100 ≈= BS 海里 答:灯塔S 和B 处的距离约为7.7海里 例2.测量高度问题 如图,要测底部不能到达的烟囱的高AB ,从与烟囱底部在同一水平直线上的C ,D 两处, 测得烟囱的仰角分别是0 45=α和0 60=β, C、D间的距离是12m.已知测角仪器高1.5m. 求烟囱的高。 图中给出了怎样的一个几何图形?已知什么,求什么? 分析:因为B A AA AB 11+=,又m AA 5.11= 所以只要求出B A 1即可 解:在11D BC ?中, 0001112060180=-=∠C BD ,00011154560=-=∠BD C D C B A 1.40m 1.95m 6020/ 600 ?S B A 1150 450 650200 A 1α β D 1C 1D C B A

三角形说课稿

《三角形的面积》说课稿 一、教材分析: 教学内容:本节课教学内容为人教版义务教育课程标准实验教科书五年级上册第五单元第二课时《三角形的面积》。 教学地位:本节教材是在学生掌握了三角形的特征,以及长方形的面积、平行四边形面积的基础上进行教学。这部分知识学习为以后学习梯形的面积、组合图形的面积、圆的面积、立体图形的表面积以及在第三学段几何图形的学习奠定了基础。因而,本节课的内容在整个教材体系中起着承上启下的作用。 教材的编排加强了学生的动手操作,一方面启发学生设法把研究的图形转化为已经会计算面积的图形,另一方面主动探索研究的图形与已学过的图形之间的联系,从而找出面积的计算方法,而不是直接把公式告诉学生。这样既使学生在理解的基础上掌握了三角形面积计算公式,又培养了学生的思维能力和动手操作能力。教材中的插图给出了转化的操作过程,以便于学生理解公式的来源,同时渗透转化对于解决生活中的实际问题有着重要作用。 根据课程标准、本课的教学内容特制定以下教学目标: 知识与技能:理解和掌握三角形面积计算公式,能够应用公式解决一些简单的问题,培养学生应用已有知识解决新问题的能力。 过程与方法:经历探索三角形面积计算方法的过程,培养学生观察、操作、推理、概括的能力,体会转化的思想。 情感态度与价值观:在解决红领巾、交通警示牌等实际问题的过程中体验数学与生活的联系,进一步培养学习数学的兴趣。 重点:三角形面积公式的推导及应用公式进行计算。 为了把握本节课的重点,放手让学生利用两个完全一样的三角形进行拼摆活动,在操作中探索并掌握三角形的面积计算公式。 难点:理解拼成的平行四边形和原来三角形的关系。 对于难点的突破方法是让学生应用拼摆的方法将两个完全一样的三角形拼成平行四边形,引导学生解释拼摆的过程。让学生在解释中,理解拼成的平行四边形和原来三角形的关系。 二、学情分析: 五年级的学生虽然已经具有一定的知识与生活经验,但是在知识和认知水平还存在一定的局限性,空间想象能力不够丰富,虽然在学习平行四边的面积计算时,对图形的转化、公式的推导有了一定的了解,但是学生的基础、能力差别比较大,

解三角形全章教案(整理)

数学5 第一章 解三角形 第1课时 课题: §1.1.1 正弦定理 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? B C Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的 定 义 , 有 sin a A =, sin b B =,又s i n 1c C == , A 则sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B

山东省郯城三中高二数学《2.2 解三角形应用举例(3)》教案

郯城三中个人备课 课题§2.2解三角形应用举例(3) 高二年级数学备课组

我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。 三、典例分析 解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解。 例1. 如图为了测量河对岸两点,A B 之间的距离,在河岸这边取 点,C D ,测得75ADC ∠=,60BDC ∠=, 45ACD ∠=,75BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离的平方。 例2.如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测出该渔轮在方位角为45,距离为10n mile 的C 处,并测得渔轮正沿方位角为105的方向,以 9/n mile h 的速度向小岛靠拢,我海军舰艇立即以21/n mile h 的速度前去营救.求舰艇靠近渔轮所需的时间(时间精确到1min )。 主要是应用,因而通过 典型例题对应用加以讲解。 讨论交流,给每个学生表现个人的机会。 本例中AB 看成ABC ?或ABD ?的一边,为此需求出AC ,BC 或AD ,BD ,所以可考察ADC ?和BDC ?,根据已知条件和正弦定理来求AC ,BC ,再由余弦定理求AB . 引申:如果A ,B 两点在河的两岸(不可到达),试设计一种测量A ,B 两点间距离的方法. 本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A 到B 与渔轮从C 到B 的时间相同,所以根据余弦定理可求出该时间,从而求出AB 和BC ;再根据正弦定理求出BAC ∠.

解三角形说课稿

正余弦定理解三角形说课稿 魏步国 一、教学分析 1、教材分析:本节内容安排在学生学习了三角函数等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的重要定理,该内容也是对初中解直角三角形内容的直接延伸。也就是说本节内容是在初中“解直角三角形”和前面的“向量”相关内容基础上构建起来的,而定理本身的应用又十分广泛,在实际运用中相对比其它知识更多,对思维训练而言也是很有价值的。教学重点是正弦定理和余弦定理及三角形面积公式的运用;难点是利用正弦定理判断解的个数及判断三角形的形状。 2、学生分析:授课对象为高三班的学生。对数学不太感兴趣。本课之前,学生已经学习了三角函数、向量基本知识和正弦余弦定理有关内容,但是本课综合性强,学生虽有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,因此思维灵活性受到制约,学生学习方面有一定困难。根据这些特点,我采用与新课标要求相一致的新的教学方式,即活动式的教学法和任务型教学法相结合的方法,调动全班学生的积极性,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦,在师生互动、生生互动中实现教学任务和目标。 二、教学所用理论 建构主义认为人的认识不是对于客观实在的被动的反映,而是主体以已有的知识经验为依托所进行的主动建构的过程。因而学习不是学习者被动地接受书本或教师所传授的现成的结论,而是学习者在一定的社会环境下,借助他人的帮助而实现的意义建构的过程。基于这样的观点,建构主义提倡在教师指导下,以学生为中心的教学方式,强调学生是信息加工的主体、知识意义下的主动建构者,教师是建构活动的设计者、组织者和促进者,教师应创设良好的学习环境,形成学生认知冲突,通过协作与会话,充分发挥学生的主观能动性和创造性,从而达到对所学知识的意义建构的目的。 三、教学实践

高中数学必修五解三角形教案

高中数学必修五解三角形教案 高中数学必修五解三角形教案篇一:高中数学必修5解三角形知识总结及练习 解三角形 一、知识点: 1、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R 为???C的外接圆的半径,则有abc???2R.(两类正弦定理解三角形的问题:1、已知sin?sin?sinC 两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角.) 2、正弦定理的变形公式:①a?2Rsin?,b?2Rsin?,c?2RsinC;②sin??等式中) ③a:b:c?sin?:sin?:sinC;abc,sin??,sinC?;(正弦定理的变形经常用在有三角函数的2R2R2R a?b?cabc???.sin??sin??sinCsin?sin?sinC 1113、三角形面积公式:S???C?bcsin??absinC?acsin? 222④ ?a2?b2?c2?2bccosA?2224.余弦定理:?b?a?c?2accos(本文来自:https://www.360docs.net/doc/7c4369200.html, 教师联盟网:高中数学必修五解三角形教案)B 或 ?c2?b2?a2?2bacosC??b2?c2?a2?cosA?2bc?a2?c2?b2? ?cosB?2ac?? b2?a2?c2

?cosC?2ab? (两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.) 2225、设a、b、c是???C的角?、?、C的对边,则:①若a?b?c,则C?90?为 222222直角三角形;②若a?b?c,则C?90?为锐角三角形;③若a?b?c,则C?90?为 钝角三角形. 6.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 7.解题中利用?ABC中A?B?C??,以及由此推得的一些基本关系式进行三角变换的运算,如:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC, sin A?BCA?BCA?BC?cos,cos?sin,tan?cot 222222 二、知识演练 1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于() A.60°B.60°或120°C.30°或150°D.120° 2、若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC, 那么ΔABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形 3.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ).

解三角形应用举例练习高考试题练习

解三角形应用举例练习 班级 姓名 学号 得分 一、选择题 1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为…………………( ) A.α>β B.α=β C.α+β=90° D.α+β=180° 2.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为…..( ) A. 3 400 B. 33400米 C. 2003米 D. 200米 3.在?ABC 中, 已知sinA = 2 sinBcosC, 则?ABC 一定是…………………………………….( ) A. 直角三角形; B. 等腰三角形; C.等边三角形; D.等腰直角三角形. 4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面 成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为……………….( ) A C D B 阳光地面 A.75° B.60° C.50° D.45° 5.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为…………………………………..( ) A.0.5 h B.1 h C.1.5 h D.2 h 6.在△ABC 中,已知b = 6,c = 10,B = 30°,则解此三角形的结果是 …………………( ) A 、无解 B 、一解 C 、两解 D 、解的个数不能确定 二、填空题 7. 甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是 8.我舰在敌岛A 南50°西相距12nmile 的B 处,发现敌舰正由岛沿北10°西的方向以10nmile/h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为 9.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝_______方 向行驶. C D 12 A B D 6045 0 m o o 10..在一座20 m 高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的 高为_______.

山东省郯城三中高二数学《2.2解三角形应用举例》教案

是55m ,∠BAC=?51,∠ACB=?75。求A 、B 两点的距离(精确到0.1m) 解:根据正弦定理,得 ACB AB ∠sin = ABC AC ∠sin AB=ABC ACB AC ∠∠sin sin = ABC ACB ∠∠sin sin 55 = )7551180sin(75sin 55?-?-?? = ? ?54sin 75sin 55 ≈ 65.7(m) 答:A 、B 两点间的距离为65.7米 例2、如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法。 分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测 量问题。首先需要构造三角形,所以需要确定C 、D 两点。根据正弦定 理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别 求出AC 和BC ,再利用余弦定理可以计算出AB 的距离。 解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得∠BCA=α, ∠ ACD=β,∠CDB=γ,∠BDA =δ,在?ADC 和?BDC 中,应用正弦定理得 启发提问1:?ABC 中,根据已知 的边和对应角,运用哪个定理比较适当? 启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。 分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。 变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30?,灯塔B 在观察站C 南偏东60?,则A 、B 之间的距离为多少? 老师指导学生画图,建立数学模型。 解略:2a km 分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分 析。 变式训练:若在河岸选取相距40米的C 、D 两点,测得∠BCA=60?,∠ACD=30?,∠CDB=45?,∠BDA =60? 略解:将题中各已知量代入例2

解直角三角形说课稿

课题:§28.2解直角三角形(说课案) 授课教师:高要市河台镇初级中学吴振潮 人教版九年级数学下册 一、说教材 本节课属《解直角三角形》的第一课时,教学要求:在学生归纳了直角三角形边角关系的基础上,要求学生会运用直角三角形的边角关系,它既是前面所学知识的运用,也是高中继续学习三角函数和解斜三角形的重要预备知识,另外由于解直角三角形在实际生活中运用比较广泛,所以学生熟练掌握直角三角形的边角关系既是本节课的教学重点和教学难点。它的学习还蕴涵着深刻的数学思想方法(数学建模、转化化归),在本节教学中有针对性的对学生进行这方面的能力培养。 二、说教学目标 由于本节课为第一课时,主要使学生理解直角三角形的边角关系,并能运用这些关系解直角三角形,同时解决与之相关的实际问题。所以三维目标的知识与技能目标只要体现在:(一)知识与技能目标:弄清楚解直角三角形的含义,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形。 (二)过程与方法目标:通过学生的探索讨论发现解直角三角形所需的最简条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决,在解决问题的过程中渗透“数学建模”思想。 (三)情感目标:通过学习解直角三角形的应用,认识到数与形相结合的意义和作用,体验到学好知识的意义和作用,体验到学好知识能应用与社会实践,在学习过程中体会探索,发现科学的奥秘和意义。 三、说教学重难点 教学重点:正确运用直角三角形中的边角关系解直角三角形 教学难点:选择适当的关系式解直角三角形 四、说教法学法 本节课采用的是探究式教法,教是为了不教,因此在课堂上更重要的是教师教会学生是如何学习,如何发现问题和解决问题。本节课通过复旧运新学生让主动探究得出解直角三角形的定义,并通过探讨得出解直角三角形所需的最简条件,归纳解直角三角形的类型,整个教学过程鼓励克服困难与障碍,发展了自己的思维力、观察力和想象力,培养了团结协作精神,使他们的智慧潜能得到充分的发挥。让每一个学生以研究者的方式研究几何,突出学生在学习中的主作地位。 五、说教学程序

高中数学必修5《解三角形应用举例》教案

人教版必修5课题:《解三角形应用举例》 教材:人教版 教学目标: (1)学会使用测角仪和皮尺等测量工具,根据实际问题设计合适的方案来测量距离;(2)能够运用直角三角形的边与角的关系以及正弦、余弦定理等解三角形的知识,解决不可到达点的距离测量问题; (3)数学建模思想的体会与运用,知识与生活联系,解决生活中的实际问题,学以致用;(4)培养学生的小组合作交流与自主研究学习的能力; (5)指导学生学会评价分析与改进优化。 教学重点、难点: 分析测量问题的实际情景,从而找到合适的测量距离的方法。 教学方法与手段: 学生小组合作探究问题——设计解决问题的方案——交流学习——评价分析,采用问题启发教学、开放式交流讨论教学与师生合作研究等教学方式,使学生在探究式、开放式的教学思想与模式下学会学习、学会探究、学会与人合作、学会评价分析与改进优化,掌握运用课堂学科知识解决生活中的实际问题,做到学以致用。 教学内容设计: 一、情境导入 位于珠江新城的双子塔(西塔与东塔,西塔已竣工,东塔正在建)与海心塔是广州的标志性建筑,它们隔着珠江相望,并与中信广场形成广州的新中轴,其效果图如下图所示: 探究活动一:假设你处于海心塔所在的海心沙岛上,如何测量海心塔与西塔的距离?(假设海心塔与西塔的底部在同一水平线上) 测量工具为:测角仪与皮尺 首先通过示图,了解测角仪的原理与作用 测角仪常用于测量: (1)仰角与俯角(如图1);(2)方向角(如图2);(3)方位角(如图3)

图1 图2 图3 此问题在课前作为课后研究学习的资料让学生分小组合作研究,提出测量的设计方案。 二、学生设计方案交流 从学生提交的测量设计方案中选取优秀的几个方案,让学生在课堂上作简短的介绍,让同学们交流学习。 三、分析与解决问题 学生每介绍完一个设计的方案,教师要对该方案进行评价分析,指导设计组的学生进一步改进方案,并指导同学们从中学习方法、积累经验,进而总结思想方法。 交流方案一:(以张靖同学为组长来介绍) 如图4,线段CA 表示西塔,线段DB 表示海心塔 在海心塔的底部B 可测得CA 的仰角α,西塔CA 的高 度可通过电脑查得,记为h ,则由直角CAB ?得 海心塔与西塔的距离α tan h AB = 教师指导学生评价分析方案一 图4 优点:(1)简单、明了,图简单、测量简单、计算简单; (2)采用直角三角形,熟悉、方便; (3)从主视图的角度分析问题,采用线段表示物体,符合示意图的要求; (4)懂得利用电脑查询西塔的高度,多样化解决问题。 不足与改进:(1)测角仪器本身的高度没有考虑,会产生误差。改进如图5; 则两塔间的距离为 α tan d h AB -= (2)如果在AB 间有一幢较高的楼房挡住了视线,让测量者无法看到西塔的底部A ,而也不知两塔的底部在不在同一水平线上,则仰角α无法测量。改进如图6,把测量的地点改到能看到西塔底部的地方,或是岛上的其它点,或是在海心塔的顶部测俯角; 图5 图6 αcot 1h AE =,βcot 2h EB =, C A α B D h 仰角 A B C 俯角 水平线 方向角 测量点 北 西 东 南 α C A α B D h d C D α β A B E h 2 h 1

高考数学总复习教案:解三角形应用举例

第三章三角函数、三角恒等变换及解三角形第8课时解三角形应用举例(对应学生用书(文)、(理)55~56页) 考情分析考点新知 正余弦定理在应用题中的应用.能准确地建立数学模型,并能用正弦定 理和余弦定理解决问题. 1. (必修5P11习题4改编)若海上有A、B、C三个小岛,测得A,B两岛相距10海里,∠BAC =60°,∠ABC=75°,则B、C间的距离是________海里. 答案:5 6 解析:由正弦定理, 知 BC sin60°= AB sin(180°-60°-75°), 解得BC=56(海里). 2. (必修5P20练习第4题改编)江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 答案:10 3 解析:如图,OA为炮台,M、N为两条船的位置,∠AMO=45°,∠ANO=60°,OM=AOtan45° =30,ON=AOtan30°= 3 3×30=103,由余弦定理,得MN=900+300-2×30×103× 3 2 =300=103(m). 3. (必修5P18例1改编)如图,要测量河对岸A、B两点间的距离,今沿河岸选取相距40 m的 C、D两点,测得∠ACB=60°,∠BCD=45°,∠ADB=60°,∠ADC=30°,则AB的距离是__________ m. 答案:20 6 解析:由已知知△BDC为等腰直角三角形,故DB=40;由∠ACB=60°和∠ADB=60°知A、B、C、D四点共圆,

所以∠BAD =∠BCD =45°; 在△BDA 中,运用正弦定理可得AB =20 6. 4. (必修5P21习题2改编)某人在C 点测得塔顶A 在南偏西80°,仰角为45°,此人沿南偏东40°方向前进10 m 到D ,测得塔顶A 的仰角为30°,则塔高为________m. 答案:10 解析:如图,设塔高为h ,在Rt △AOC 中,∠ACO =45°,则OC =OA =h. 在Rt △AOD 中,∠ADO =30°,则OD =3h. 在△OCD 中,∠OCD =120°,CD =10. 由余弦定理得OD2=OC2+CD2-2OC·CDcos ∠OCD , 即(3h)2=h2+102-2h×10×cos120°, ∴ h2-5h -50=0,解得h =10或h =-5(舍). 5. 如图,一船在海上自西向东航行,在A 处测得某岛M 的方位角为北偏东α角,前进mkm 后在B 处测得该岛的方位角为北偏东β角,已知该岛周围nkm 范围内(包括边界)有暗礁,现该船继续东行.当α与β满足条件________时,该船没有触礁危险. 答案:mcos αcos β>nsin (α-β) 解析:∠MAB =90°-α,∠MBC =90°-β=∠MAB +∠AMB =90°-α+∠AMB ,∴ ∠AMB =α-β.由题可知,在△ABM 中,根据正弦定理得BM sin (90°-α)=m sin (α-β),解得BM = mcos αsin (α-β).要使船没有触礁危险,需要BMsin(90°-β)=mcos αcos β sin (α-β)>n ,所以α与β满足 mcos αcos β>nsin (α-β)时船没有触礁危险. 1. 用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2. 实际问题中的常用角 (1) 仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①).

11.1.1三角形的边说课稿

集背11.1.1三角形的边说课稿 梅河口市牛心顶学校:王启财 尊敬的各位老师大家好:我今天说课的内容是:义务教材、人教版、初中几何、第十一章、第一节、三角形的边;下面我从教材分析、学情分析、目标分析、教法学法分析、过程设计、教 反思六个方面对本节课的设计进行说明。 一、教材分析 1.本节“三角形的边”是“与三角形有关的线段”中第一课时的内容,教材中主要介绍了三角形的概念及基本要素;三角形的分类和角形三边关系。 2.教材的地位和作用: (1)从基础知识方面看,它既是小学三角形三边关系的回顾和延伸,又是后面学习三角形三线、性质、内外角及多边形的基础,具有承上启下的作用;(2)从基本技能方面看,通过本节课的教学,能让学生初步体验数学当中分类讨论和转化的思想;对提高学生分析能力,科学探究能力有着重要作用。二、学情分析有利因素:从知识角度看,学生已经接触过三角形(如:三角形的内角和、面积等),为本节课的学习奠定了基础。从认知能力角度看,学生具备了一定的分析问题和解决问题的能力。不利因素:从知识角度看:三角形三边关系的应用难度较大,对学习本节课的内容带来了困难,从认知能力角度看:由于年龄、心理特点,初一的学生思维尽管活跃、敏捷;却缺乏冷静,深刻,因而不够严谨,缺乏全面分析问题的能力。 三、目标分析根据学生已有的认知基础及本课教材的地位

和作用,依据新课程标准的要求,我从以下三个方面确定教学目标:1.知识与技能方面:认识三角形的概念,了解三角形的分类,掌握三角形三边关系,并学会应用它们经历有关的计算、证明;养成勇于探索,敢于创新的良好习惯,善于用数学方法解决问题的能力。2.过程与方法方面:在三角形三边关系的探究过程中,使学生对三角形三边关系从具体、形象、直观的认识,到学会用数学的思维方式去观察、分析和表达。3.情感、态度与价值观方面:经过创设学生主动参与的情境,激起学生强烈的好奇心和求知欲望。使学生在积极参与过程中获得成功的体验,体验数学充满着探索与创造。 教学的重难点:根据本节课教材的作用和地位、学情分析以及教学目标的确定,我认为本节课的重点是:探究、发现和理解三角形三边关系;而三角形三边关系的应用是本节课的难点。 四、教法和学法分析 教法:依据以学生为中心的教学理念,结合学校推行的“三分课堂教学模式”,教师的教法重在突出活动的组织与方法的指导,为学生搭建参与、交流的平台。因此,本节课我采用三分课堂教学模式、启发点拨的教学方法。 学法:我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因此在教学过程中我特别重视学法的指导。数学作为基础教育的核心课程之一,转变学生学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。

解三角形应用举例最新衡水中学自用精品教学设计

解三角形应用举例 主标题:解三角形应用举例 副标题:为学生详细的分析解三角形应用举例的高考考点、命题方向以及规律总结。 关键词:距离测量,高度测量,仰角,俯角,方位角,方向角 难度:3 重要程度:5 考点剖析: 能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 命题方向: 1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题. 2.高考对此类问题的考查常有以下两个命题角度: (1)测量问题; (2)行程问题. 规律总结: 1个步骤——解三角形应用题的一般步骤 2种情形——解三角形应用题的两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 2个注意点——解三角形应用题应注意的问题 (1)画出示意图后要注意寻找一些特殊三角形,如等边三角形、直角三角形、等腰三角形等,这样可以优化解题过程. (2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.

知识梳理 1.距离的测量 背景可测元素图形目标及解法 两点均可到达a,b,α 求AB:AB= a2+b2-2ab cos α 只有一点可到达b,α,β 求AB:(1)α+β+B=π; (2) AB sin β= b sin B 两点都不可到达a,α,β, γ,θ 求AB:(1)△ACD中,用 正弦定理求AC; (2)△BCD中,用正弦定理 求BC; (3)△ABC中,用余弦定理 求AB 2.高度的测量 背景可测元素图形目标及解法 底部可 到达 a,α求AB:AB=a tan_α 底部不可到达a,α,β 求AB:(1)在△ACD中用正弦 定理求AD;(2)AB=AD sin_β 3.实际问题中常见的角 (1)仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1).

最新解三角形应用举例练习题

解三角形应用举例练习题 一、选择题 1.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 3 km,那么x的值为() A.3B.2 3 C.23或 3 D.3 2.已知船A在灯塔C北偏东85°且到C的距离为2km,船B在灯塔C西偏北25°且到C的距离为3km,则A,B两船的距离为() A.23km B.32km C.15km D.13km 3.已知△ABC的三边长a=3,b=5,c=6,则△ABC的面积是() A.14 B.214 C.15 D.215 4.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为() A.a km B.3a km C.2a km D.2a km 5.已知△ABC中,a=2、b=3、B=60°,那么角A等于() A.135°B.90° C.45°D.30° 6.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时() A.5海里B.53海里 C.10海里D.103海里 二、填空题 7.(2010~2011·醴陵二中、四中期中)已知A、B两地的距离为10km,BC两地的距离

为20km,经测量∠ABC=120°,则AC两地的距离为________km. 8.如图,为了测量河的宽度,在一岸边选定两点A,B,望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度是__________. 9. (2011·北京朝阳二模)如图,一艘船上午在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距42n mile,则此船的航行速度是________n mile/h. 三、解答题

高中数学人教A版必修5第一章解三角形1.1.2 余弦定理 说课稿

高一数学必修五说课稿 1.2 余弦定理(说课稿) 本节课是高中数学人教A版必修5第一章解三角形的第二节课,主要的教学内容有余弦定理的公式,余弦定理公式的简单应用。下面我将从以下几个方面说课。 一地位与作用 二.学情分析 三.目标与重难点 四.学法指导 五.教学过程 六.板书设计 七.作业布置 具体内容如下: 一地位与作用 本节课是在学习了正弦定理知识之后,也就要求学生类比正弦定理的学习,学会公式的优化选择。学生在证明余弦定理时和向量的数量积产生联系,在应用向量知识的同时,使学生体会三角函数、正弦定理、向量数量积等多处知识之间的联系. 二.学情分析 我们面对的是高一的学生,学生在学习数学的能力还处在比较稚嫩的阶段。不过他们刚学习完正弦定理的知识,知道正弦定理公式的推导是从直角三角形这个特殊三角形到一般三角形的推导,知道正弦定理是应用时解三角形的边角关系,学生可以通过类比的方法来学习余弦定理。 三.目标与重难点 结合本节课的知识内容以及学生的学情,教学目标,重难点如下: 教学目标 1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解解三角形。 2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握

运用余弦定理解三角形。 3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。 重点:余弦定理的应用. 难点:向量法推导余弦定理的过程及其应用。 四.学法指导:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角. 五.设计思想主线: 本节课是一节公式定理课,我设计的主线是:从生活实际出发,让学生知道数学来源于生活,通过向量法推导余弦定理,类比正弦定理的学习,利用余弦定理解三角形,解决解三角形中的常见问题,掌握公式的简单应用。 教学过程: 1、导入:创设情境,将课本中解三角形的实际应用植入到身边的生活背景中, 利用铁路建设中的实际施工问题引入,转化为解三角形,导出课题。激发学生的学习兴趣,让学生体会到数学来源于生活。 导学:利用向量法推导余弦定理,类比正弦定理的作用探究余弦定理可解决哪些三角形问题。 2、新知探究,学生阅读教材,独立完成导学提纲的了解感知和深入学习部分, 包括以下内容。(在书中勾画主要内容,学习的过程中,将问题做记录。) ①.利用向量法推导余弦定理。 ②总结余弦定理的特点,为什么叫余弦定理? ③用余弦定理解决已知两边夹角问题 ④用余弦定理解决已知三边问题 ⑤用余弦定理判断三角形的形状。 ⑥明确余弦定理和勾股定理的关系。 教师巡视,了解学生的学习进度,记录遇到的问题。 预设问题:

解三角形应用举例教学设计

解三角形应用举例(第一课时) 【教材分析】 本节课选自人教A版《必修五》第一章第二节(第一课时),是学习了正弦定理、余弦定理及三角形中的几何计算之后的一节实际应用课,可以说是为正弦定理、余弦定理的应用而设计的,因此本节课的学习具有理论联系实际的重要作用。在本节课的教学中,用方程的思想作支撑,以具体问题具体分析作指导,引领学生认识问题、分析问题并最终解决问题。【学情分析】 本节课的教学对象是高二年级的学生。 1.已有的能力:学生已经学习了正弦定理和余弦定理,能够运用解决一些三角形问题,具有了一定的基础。 2.存在的问题:学生在运用正弦定理和余弦定理解三角形的时候不能将实际问题转化成数学问题的问题,构造模型的能力有待提高。 【课型】 实际应用课 【教学方法】 自主探究,合作探究 【教学准备】 多媒体设备,天宫二号成功发射视频,三封信件 【教学目标】 1.知识与技能:①能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解测量的方法和意义 ②会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法 2.过程与方法:①采用启发与尝试的方法,让学生在解决实际问题中学会正确识图、画图、想图,帮助学生逐步构建知识框架 ②通过解三角形应用的学习,提高解决实际问题的能力;通过解三角形在实际中的应用,体会具体问题可以转化为抽象的数学问题,以及数学知识在生产、生活实际中所发挥的重要作用 3.情感、态度、价值观:①激发学生学习数学的兴趣,并体会数学的应用价值 ②培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力

③进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力 【教学难点】 实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 【教学过程】(含时间分配) 一、创设情境,明确目标(5分钟) 观看视频。提出:“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。 【学生活动】感受生活中的数学,体会了生活中测量距离的现实需要. 【教师活动】通过实例,引导学生体会生活中的数学无处不在,数学对生活的影响无处不在.数学方法是解决实际问题的一大途径。实际问题推动数学发展,数学发展推动科学技术发展。 【设计意图】通过视频,让学生体会解三角形在生活中的广泛应用,激发学生对于本堂课内容的浓厚兴趣. 二、实际问题,建立数学模型(25分钟) 例1、如图所示,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=?51,∠ACB=?75。求A 、B 两点的距离(精确到0.1m) 启发提问1:?ABC 中,根据已知的边和对应角,运用哪个定理比较适当? 启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。 分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。 解:根据正弦定理,得 ACB AB ∠sin =ABC AC ∠sin AB=ABC ACB AC ∠∠sin sin =ABC ACB ∠∠sin sin 55=) 7551180sin(75sin 55?-?-?? =??54sin 75sin 55≈ 65.7(m)

相关文档
最新文档