微波与射频电路仿真报告

微波与射频电路仿真报告
微波与射频电路仿真报告

射频 微波工程师经典参考书[精华]

射频微波工程师经典参考书[精华] 射频微波工程师经典参考书 1.《射频电路设计--理论与应用》『美』 Reinhold Ludwig 著电子工业出版社 个人书评:射频经典著作,建议做RF的人手一本,里面内容比较全面,这本书要反复的看,每读一次都会更深一层理解. 随便提一下,关于看射频书籍看不懂的地方怎么办,我提议先看枝干或结论有个大概印象,实在弄不明白就跳过(当然可问身边同事同学或GOOGLE一下),跳过不是不管它了,而是尽量先看完自己能看懂的,看第二遍的时候再重点抓第一次没有看懂的地方,人的思维是不断升华的,知识的也是一个系统体系,有关联的,当你把每一块砖弄明白了,就自然而然推测出金字塔塔顶是怎么架设出来的。 2. 《射频通信电路设计》『中』刘长军著科学技术出版社 个人书评:有拼凑之嫌(大量引用书1和《微波晶体管放大电路分析与设计》内容),但还是有可取之处,加上作者的理解,比看外文书(或者翻译本)看起来要通俗易懂,毕竟是中国人口韵。值得一看,书上有很多归纳性的经验. 3(《高频电路设计与制作》『日』市川欲一著科学技术出版社 个人书评:本人说实话比较喜欢日本人写书的风格和语言,及其通俗,配上图示,极其深奥的理论看起来明明朗朗,比那些从头到尾只会搬抄公式的某些教授强们多了,本书作者的实践之作,里面都是一些作者的设计作品和设计方法,推荐一看. 4. 《LC滤波器设计与制作》『日』森荣二著科学技术出版社 个人书评:语言及其通俗易懂,完全没有深奥的理论在里面,入门者

看看不错,但是设计方法感觉有点落后,完全手工计算.也感觉内容的太细致,此书一般. 5. 《振荡电路设计与应用》『日』稻叶宝著科学技术出版社 个人书评:这边书还不错,除了学到振荡电路设计,还学到了很多模拟电路的基础应用,唯一缺点书中的内容涉及频率的都不够高(k级,几M,几十,几百M的振荡器),做有源电路的可以看一下,整体感觉还行. 6. 《锁相环电路设计与应用》『日』远坂俊昭著科学技术出版社 个人书评:对PLL原理总是搞不太明白的同学可以参考此书,图形图片很多,让人很直观明白,比起其他PLL书只会千篇一律写公式强千倍。好书,值得收藏~ 7. 《信号完整性分析》『美』 Eric Bogatin 著电子工业出版社 个人书评:前几章用物理的方法看电子,感觉不好理解,写的感觉很拗口,翻译好像也有些不到位,但后面几章写的确实好,尤其是关于传输线的,对你理解信号的传输的实际过程,能建立一个很好的模型,推荐大家看一下,此书还是不错的.(看多了RF的,换换胃口) 8. 《高速数字设计》『美』 Howard Johnson著电子工业出版社 个人书评:刚刚卓越买回来,还没有动“她”呢,随便翻了下目录,做高速电路和PCB Layout的工程师一看要看下,这本书也是经典书喔~ 9.《蓝牙技术原理开发与应用》『中』钱志鸿著北京航空航天大 学出版社 个人书评:当时自己做蓝牙产品买的书,前2年仅有的几本,上面讲了一下蓝牙的基本理论(恰当的说翻译了蓝牙标准),软件,程序的东西占大部分内容. 10.《EMC电磁兼容设计与测试案例分析》『中』郑军奇著电子工业出版社 个人书评:实战性和很强的一本书,本人做产品经常要送去信息产业部电子研究5所做EMC测试,认证.产品认证是产品成功的临门一脚,把这脚球踢好,老板

ADS2009射频电路仿真实验实验报告

低通滤波器的设计与仿真报告 一、实验目的 (1)熟悉ADS2009的使用及操作; (2)运用此软件设计一低通录波器,通过改变C2.L1的值,使低通录波器达到预定的要求(dB值以大于—3.0以上为宜); (3)画出输出仿真曲线并标明截止频率的位置与大小。 二、低通滤波器简介 (1)定义:让某一频率以下的信号分量通过,而对该频率以上的信号分量大大抑制的电容、电感与电阻等器件的组合装置。低通滤波器是容许低于截止频率的信号通过,但高于截止频率的信号不能通过的电子滤波装置。 (2)特点与用途 特点:低损耗高抑制;分割点准确;双铜管保护;频蔽好,防水功能强。 用途:产品用途广泛,使用于很多通讯系统,如 CATV EOC 等系统。并能有效的除掉通频带以外的信号和多余的频段、频率的干扰。 低通滤波器在信号处理中的作用等同于其它领域如金融领域中移动平均数所起的作用;低通滤波器有很多种,其中,最通用的就是巴特沃斯滤波器和切比雪夫滤波器。 三、设计步骤 1,建立新项目 (1)在界面主窗口执行菜单命令【File】/【New Project...】,创建

新项目。在选择保存路径时,在“Name”栏中输入项目的名称“lab1”; (2)单击按钮“确认”,出现电路原理图设计及仿真向导对话框,按照要求进行选择选项。 2,建立一个低通录波器设计 (1)在主界面窗口,单击“New Schematic Window”图标,弹出原理图设计窗口; (2)单击“保存”图标,保存原理图,命名为“lpf1”; (3)在元件模型列表窗口中选择“Lumped-Components”集总参数元件类; (4)在左侧面板中选择电容图标,将其放置到电路图设计窗口中,并进行旋转; (5)用类似的方法将电感放置到电路图设计窗口中,并利用接地图标,把电容器的一端接地,将各个器件连接起来; (6)在元件库列表窗口选择“Simulation-S-Param”项,在该面板中选择S-parameter模拟控制器和端口Term,将其放到原理图中。双击电容“C2”并修改其参数。 低通滤波器原理图如下图1所示: 3,电路仿真 1)设置S参数控件参数 (1)双击S参数控件,打开参数设置窗口,将“Step-size”设置为0.5GHz; (2)选中【Display】选项卡,在此列出了所有可以显示在原理

集成电路设计实验报告

集成电路设计 实验报告 时间:2011年12月

实验一原理图设计 一、实验目的 1.学会使用Unix操作系统 2.学会使用CADENCE的SCHEMA TIC COMPOSOR软件 二:实验内容 使用schematic软件,设计出D触发器,设置好参数。 二、实验步骤 1、在桌面上点击Xstart图标 2、在User name:一栏中填入用户名,在Host:中填入IP地址,在Password:一栏中填入 用户密码,在protocol:中选择telnet类型 3、点击菜单上的Run!,即可进入该用户unix界面 4、系统中用户名为“test9”,密码为test123456 5、在命令行中(提示符后,如:test22>)键入以下命令 icfb&↙(回车键),其中& 表示后台工作,调出Cadence软件。 出现的主窗口所示: 6、建立库(library):窗口分Library和Technology File两部分。Library部分有Name和Directory 两项,分别输入要建立的Library的名称和路径。如果只建立进行SPICE模拟的线路图,Technology部分选择Don’t need a techfile选项。如果在库中要创立掩模版或其它的物理数据(即要建立除了schematic外的一些view),则须选择Compile a new techfile(建立新的techfile)或Attach to an existing techfile(使用原有的techfile)。 7、建立单元文件(cell):在Library Name中选择存放新文件的库,在Cell Name中输 入名称,然后在Tool选项中选择Composer-Schematic工具(进行SPICE模拟),在View Name中就会自动填上相应的View Name—schematic。当然在Tool工具中还有很多别的

射频接收系统的设计与仿真

1 前言 (2) 2 工程概况 (2) 3 正文 (2) 3.1零中频接收系统结构性能和特点 (3) 3.2基于ADS2009对零中频接收系统设计与仿真 (3) 3.3超外差接收系统结构性能和特点 (12) 3.4基于ADS2009对超外差接收系统设计与仿真 (13) 4 有关说明 (16) 5 心得体会 (18) 6 致谢 (18) 7 参考文献 (19)

射频是一种频谱介于75kHz-3000GHz之间的电波,当频谱范围介于20Hz-20kHz之间时,这种低频信号难以直接用天线发射,而是要利用无线电技术先经过转换,调制达到一定的高频范围,才可以借助无线电电波传播。射频技术实质是一种借助电磁波来传播信号的无线电技术。 无线电技术应用最早从18世纪下半段开始,随着应用领域的扩大,世界已经对频谱进行了多次分段波传播。当前,被广泛采用的频谱分段方式是由电气和电子工程师学会所规定的。随着科学技术的不断发展,射频所含频率也不断提高。到目前为止,经过两个多世纪的发展,射频技术也已经在众多领域的到应用。特别是高频电路的应用。其中在通信领域,射频识别是进步最快的重要方面。 工程概况 近年来随着无线通信技术的飞速发展,无线通信系统产品越来越普及,成为当今人类信息社会发展的重要组成部分。射频接收机位于无线通信系统的最前端,其结构和性能直接影响着整个通信系统。优化设计结构和选择合适的制造工艺,以提高系统的性能价格比,是射频工程师追求的方向。由于零中频接收机具有体积小、成本低和易于单片集成的特点,已成为射频接收机中极具竞争力的一种结构,在无线通信领域中受到广泛的关注。本文在介绍超外差结构和零中频结构性能和特点的基础上,对超外差结构和零中频结构进行设计与仿真。 正文 下面设计一个接收机系统,使用行为级的功能模块实现收信机的系统级仿真。

微波电路课程设计报告(DOC)

重庆大学本科学生课程设计指导教师评定成绩表 说明:1、学院、专业、年级均填全称。 2、本表除评语、成绩和签名外均可采用计算机打印。 重庆大学本科学生课程设计任务书

2、本表除签名外均可采用计算机打印。本表不够,可另附页,但应在页脚添加页码。 摘要 本次主要涉及了低通滤波器,功分器,带通滤波器和放大器,用到了AWR,MATHCAD和ADS 软件。

在低通滤波器的设计中,采用了两种方法:第一种是根据设计要求,选择了合适的低通原型,利用了RICHARDS法则用传输线替代电感和电容,然后用Kuroda规则进行微带线串并联互换,反归一化得出各段微带线的特性阻抗,组后在AWR软件中用Txline算出微带线的长宽,画出原理图并仿真,其中包括S参数仿真,Smith圆图仿真和EM板仿真。第二种是利用低通原型,设计了高低阻抗低通滤波器,高低阻抗的长度均由公式算得出。 在功分器的设计中,首先根据要求的工作频率和功率分配比K,利用公式求得各段微带线的特性阻抗1,2,3端口所接电阻的阻抗值,再用AWR软件确定各段微带线的长度和宽度,设计出原理图,然后仿真,为了节省材料,又在原来的基础上设计了弯曲的功分器。同时通过对老师所给论文的学习,掌握到一种大功率比的分配器的设计,其较书上的简单威尔金森功分器有着优越的性能。 对于带通滤波器,首先根据要求选定低通原型,算出耦合传输线的奇模,偶模阻抗,再选定基板,用ADS的LineCalc计算耦合微带线的长和宽,组图后画出原理图并进行仿真。 设计放大器时,一是根据要求,选择合适的管子,需在选定的频率点满足增益,噪声放大系数等要求。二是设计匹配网络,采用了单项化射界和双边放大器设计两种方法。具体是用ADS中的Smith圆图工具SmitChaitUtility来辅助设计,得到了微带显得电长度,再选定基板,用ADS中的LineCalc计算微带线的长和宽。最后在ADS中画出原理图并进行仿真,主要是对S参数的仿真。为了达到所要求的增益,采用两级放大。其中第一级放大为低噪声放大,第二级放大为双共轭匹配放大。 由于在微波领域,很多时候要用经验值,而不是理论值,来达到所要求的元件特性,因此在算出理论值之后,常常需要进行一些调整来达到设计要求。 关键词:低通原型Kuroda规则功率分配比匹配网络微带线 课程设计正文 1.切比雪夫低通滤波器的设计 1.1 设计要求: 五阶微带低通滤波器: 截止频率2.5GHZ 止带频率:5GHZ 通带波纹:0.5dB 止带衰减大于42dB

射频实验报告一

电子科技大学通信射频电路实验报告 学生姓名: 学号: 指导教师:

实验一选频回路 一、实验内容: 1.测试发放的滤波器实验板的通带。记录在不同频率的输入下输出信号的 幅度,并绘出幅频响应曲线。 2.设计带宽为5MHz,中心频率为39MHz,特征阻抗为50欧姆的5阶带 通滤波器。 3.在ADS软件上对设计出的带通滤波器进行仿真。 二、实验结果: (一)低通滤波器数据记录及幅频响应曲线 频率 1.0k 500k 1M 1.5M 2.0M 2.5M 3.0M 3.5M 4..0M 4.5M 5.0M /Hz Vpp/mv 1000 1010 1020 1020 1020 1050 952 890 832 776 736 频率/Hz 5.5M 6.0M 6.2M 6.4M 6.6M 6.8M 7.0M 7.2M 7.4M 7.6M 7.8M Vpp/mv 704 672 656 640 624 592 568 544 512 480 448 频率/Hz 8.0M 8.2M 8.4M 8.6M 8.8M 9.0M 9.2M 9.4M 9.6M 9.8M 10.0M Vpp/mv 416 400 368 376 320 288 272 256 224 208 192

(二)带通滤波器数据记录及幅频响应曲线 频率 /MHz 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Vpp/mv 0.4 0.8 0.4 0.6 0.8 0.6 0.8 0.8 1.4 1.1 6.0 4.0 23. 8 频率 /MHz 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 Vpp/mv 79. 2 72. 8 66. 4 69. 6 77. 6 90. 4 108. 8 137. 6 183. 2 260 364 442 440 频率/MHz 9.6 9.8 10. 10. 2 10. 4 10. 6 10.8 11.0 11.2 11. 4 11. 6 11. 8 12. Vpp/mv 440 403 378 378 406 468 468 548 548 484 412 356 324 频率/MHz 12. 2 12. 4 12. 6 12. 8 13. 13. 2 13.4 13.6 13.8 14.

《集成电路设计》课程设计实验报告

《集成电路设计》课程设计实验报告 (前端设计部分) 课程设计题目:数字频率计 所在专业班级:电子科 作者姓名: 作者学号: 指导老师:

目录 (一)概述 2 2 一、设计要求2 二、设计原理 3 三、参量说明3 四、设计思路3 五、主要模块的功能如下4 六、4 七、程序运行及仿真结果4 八、有关用GW48-PK2中的数码管显示数据的几点说明5(三)方案分析 7 10 11

(一)概述 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得十分重要。测量频率的方法有多种,数字频率计是其中一种。数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,是一种用十进制数字显示被测信号频率的数字测量仪器。数字频率计基本功能是测量诸如方波等其它各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 频率计的基本原理是应用一个频率稳定度高的时基脉冲,对比测量其它信号的频率。时基脉冲的周期越长,得到的频率值就越准确。通常情况下是计算每秒内待测信号的脉冲个数,此时我们称闸门时间是1秒。闸门时间也可以大于或小于1秒,闸门的时间越长,得到的频率值就越准确,但闸门的时间越长则每测一次频率的间隔就越长,闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。 本文内容粗略讲述了我们小组的整个设计过程及我在这个过程中的收获。讲述了数字频率计的工作原理以及各个组成部分,记述了在整个设计过程中对各个部分的设计思路、程序编写、以及对它们的调试、对调试结果的分析。 (二)设计方案 一、设计要求: ⑴设计一个数字频率计,对方波进行频率测量。 ⑵频率测量可以采用计算每秒内待测信号的脉冲个数的方法实现。

射频电路设计与仿真思路分析

射频电路设计与仿真思路分析 发表时间:2020-03-25T06:34:04.616Z 来源:《防护工程》2019年21期作者:曾鸣 [导读] ADS电子设计自动化主要有频域电路仿真、时域电路仿真、三维电磁仿真、通信系统仿真以及数字信号处理仿真设计等. 南宁富桂精密工业有限公司广西南宁 530000 摘要:当前通信技术不断发展,通信设备使用的频率也逐渐提高,射频以及微波电路等被广泛的使用在通信等系统中,高频电路设计在工业领域得到了广泛的关注和重视。新型的半导体器件使高速数字系统和高频模拟系统不断扩张。本文就射频电路设计与仿真进行分析和研究。 关键词:射频电路设计;仿真;思路分析 ADS是当前世界上比较流行的一种微波射频电路、通信系统、RFIC 设计软件,是由美国 Agilent 公司推出的,是微波电路与通信系统的一种仿真软件。这种软件具有丰富的仿真手段,能够实现时域和频域、数字和模拟、线性和非线性等多种仿真功能,科学对设计结果进行分析,促进电路设计频率的提升,是一种比较优秀的微波射频电路,也是当前射频工程人员必备的一种软件。 1 射频电路与ADC分析 1.1 射频电路 射频电路就是一种具有超高频率的无线电波,工作频率比较高的线路,人们一般称作“高频电路”、“微波电路”等。在工程上,一般指的是工作频段的波长为10m-1mm之间的电路,或者是频率为30MHz-300MHz的电路。 当频率不断升高达到射频频段时,一般使用欧姆定律、电压电流或者是基尔霍夫定律对DC和低频电路进行分析,但是已经不够精确。还需要注重分布参数的影响。如果使用电磁场理论方法,虽然能够对全波、分布参数等影响进行分析,但是很难接触到VCO、混频器或者是高频放大器等实用内容。因此射频电路的设计已经成为当前信息技术发展的重要技术。 1.2 ADS ADS电子设计自动化主要有频域电路仿真、时域电路仿真、三维电磁仿真、通信系统仿真以及数字信号处理仿真设计等,被应用通信以及航天中,是当前研究最多的射频电路仿真软件。 2 ADS电子设计自动化的仿真设计方法 ADS软件能够使电路设计者进行模拟、射频微波等电路和通信系统设计,仿真方法主要有时域仿真、频域仿真、系统以及电磁仿真等。 2.1 高频SPICE分析和卷积分析 高频SPICE分析能够对线性以及非线性电路的瞬态效应进行分析,在SPICE仿真器中,对于不能直接使用频域分析模型,比如说微带线带状线等,就可以使用高频SPICE仿真器,仿真过程中,如果高于高频SPICE仿真器,频域分析模型会被拉式变换,然后进入到瞬态分析,并不需要使用者转化。这种高频SPICE不仅能够对低频电路进行瞬态分析,还能够对高频电路的瞬态响应进行分析。此外,还能够进行瞬态噪声的分析,对电路的瞬态噪声进行仿真。卷积分析法是以 SPICE 高频仿真器为基础的一种高级的时域分析的方法,通过卷积分析法能够更加科学的使用时域分析法对频率元件的进行分析。 2.2 线性分析方法 线性分析是一种频域电路仿真分析法,可以对线性、非线性的射频微波电路进行分析,进行线性分析时,软件先对电路中的元件计算需要的线性参数,如电路阻抗、稳定系数、反射系数、噪声以及S、Z、Y参数等,进而对电路进行分析和仿真。 2.3 谐波平衡分析 这种分析方法是对频域、稳定性好,大型号的电路进行分析的仿真方法,能够对多频输入信号的非线性电路进行分析,明确非线性电路的响应,比如谐波失真、噪声等。相比于时域的SPICE 仿真分析反复,这种谐波平衡分析在分析非线性电路时能够提供更加有效并且快速的方法。 SPICE瞬态响应分析、线性S参数分析在分析多频输入信号非线性电路仿真中还存在着一定的不足,而谐波平衡分析方法的出现很好的弥补了这一不足,在当前的高频通信系统中,有很多混频电路结构,谐波平衡分析方法的使用次数也就逐渐增加,重要性也日渐凸显。并

RF电路设计-射频、微波天线技术探微

RF电路设计-射频、微波天线技术探微 RF电路设计-射频、微波天线技术探微 天线在无线电系统里的功能是什么呢?答案是,它是一个「门」、一个接口,透过它,射频能量可以从发射机辐射到外面世界;或从外面世界到达接收机。底下将讨论各种天线系统的技术。 天线特性 天线具有以下的特性和参数: 1. 辐射极场图型(radiation polar pattern):天线会向四周辐射电磁波,以天线为中心,电磁场在各方向的强度可以用图形描绘出来。 2. 指向性(directivity) 3. 效率 4. 增益 5. 等效面积 6. 相互性(reciprocity):也叫作Rayleigh-Carson定理。当电压E作用在A天线上,促使B天线产生电流I。此时,使用相同的电压E作用在B天线上,会在A天线上产生振幅和相位都相同的电流I。 7. 接收的噪声功率 8. 终端阻抗,包括辐射电阻。 9. 接收系统的效益指数(G/T):G是天线的增益,T是噪声温度(noise temperature)。天线的接收灵敏度和G/T值大小有关,若G/T愈高,表示天线对微弱讯号愈敏感,接收效果也愈好。「噪声温度」是很抽象的观念,它的定义应该用数学公式表示。但若要以纯文本描述的话,可以这么说:在一个通讯系统或被测组件里,当频率不变时,被动组件系统的温度会使每单位带宽的噪声功率(noise power)ρ增加,当被动组件系统的ρ值等于此通讯系统的ρ值时,所得到的温度就是「噪声温度」。请注意,被动组件是包含在此通讯系统或被测组件里面,有时此被测组件也被称作「网络的真正终端装置(actual terminals of a network)」。例如:一个单纯电阻的「噪声温度」就是此电阻的真正温度;但是,一颗二极管的「噪声温度」可能是此二极管(真正的终端装置)的真正温度(接脚测量到的温度)之数倍之多。噪声温度是以绝对温度(-273oC)为零度,单位是K(Kelvin )。 天线类型 辨别下列数种分类法有助于为天线分类: *辐射元素 *反射器天线 *辐射元素数组 辐射元素包括:

彩灯控制器电路设计报告

西安科技大学高新学院 毕业设计(论文) 题目彩灯控制器电路设计 院(系、部) 机电信息学院 专业及班级电专1202班 姓名张森 指导教师田晓萍 日期 2015年5月28日

摘要 随着微电子技术的发展,人民的生活水平不断提高,人们对周围环境的美化和照明已不仅限于单调的白炽灯,彩灯已成为时尚的潮流。彩灯控制器的实用价值在日常生产实践,日常生活中的作用也日益突出。基于各种器件的彩灯也都出现,单片机因其价格低廉、使用方便、控制简单而成为控制彩灯的主要器件。 目前市场上更多用全硬件电路实现,电路结构复杂,结构单一,一旦制成成品就只能按固定模式,不能根据不同场合,不同时段调节亮度时间,模式和闪烁频率等动态参数,而且一些电路存在芯片过多,电路复杂,功率损耗大,亮灯样式单调缺乏可操作性等缺点,设计一种新型彩灯已迫不及待。 近年来,彩灯对于美化、亮化城市有着不可轻视的重要作用。因此作为城市装饰的彩灯需求量越来越大,对于彩灯的技术和花样也越来越高。目前市场上各种式样的LED彩灯多半是采用全硬件电路实现,存在电路结构复杂、功能单一等局限性,因此有必要对现有的彩灯控制器进行改进。 关键词:LED彩灯;STC-89C52单片机;彩灯控制器。

目录 1前言 (1) 1.1设计目的 (1) 1.2设计要求 (1) 1.3总体方案设计与选择的论证 (2) 2节日彩灯控制器的设计 (4) 2.1核心芯片及主要元件功能介绍 (4) 2.1.1 AT89S52芯片 (4) 表1 (5) 2.1.2 74HC377芯片 (5) 2.1.3 74HC138芯片 (6) 2.2硬件设计 (7) 2.2.1直流电源电路 (7) 2.2.2按键电路 (8) 2.2.3时钟复位电路 (8) 2.2.4 LED显示电路 (9) 2.2.5硬件调试 (9) 2.3软件设计 (10) 3 总结 (15) 3.1实验方案设计的可行性、有效性 (15) 3.2设计内容的实用性 (15) 3.3心得 (16) 附录 (16) 参考文献 (18) 致谢 (19)

cmos模拟集成电路设计实验报告

北京邮电大学 实验报告 实验题目:cmos模拟集成电路实验 姓名:何明枢 班级:2013211207 班内序号:19 学号:2013211007 指导老师:韩可 日期:2016 年 1 月16 日星期六

目录 实验一:共源级放大器性能分析 (1) 一、实验目的 (1) 二、实验内容 (1) 三、实验结果 (1) 四、实验结果分析 (3) 实验二:差分放大器设计 (4) 一、实验目的 (4) 二、实验要求 (4) 三、实验原理 (4) 四、实验结果 (5) 五、思考题 (6) 实验三:电流源负载差分放大器设计 (7) 一、实验目的 (7) 二、实验内容 (7) 三、差分放大器的设计方法 (7) 四、实验原理 (7) 五、实验结果 (9) 六、实验分析 (10) 实验五:共源共栅电流镜设计 (11) 一、实验目的 (11) 二、实验题目及要求 (11) 三、实验内容 (11) 四、实验原理 (11) 五、实验结果 (14) 六、电路工作状态分析 (15) 实验六:两级运算放大器设计 (17) 一、实验目的 (17) 二、实验要求 (17) 三、实验内容 (17) 四、实验原理 (21) 五、实验结果 (23) 六、思考题 (24) 七、实验结果分析 (24) 实验总结与体会 (26) 一、实验中遇到的的问题 (26) 二、实验体会 (26) 三、对课程的一些建议 (27)

实验一:共源级放大器性能分析 一、实验目的 1、掌握synopsys软件启动和电路原理图(schematic)设计输入方法; 2、掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真; 3、输入共源级放大器电路并对其进行DC、AC分析,绘制曲线; 4、深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响 二、实验内容 1、启动synopsys,建立库及Cellview文件。 2、输入共源级放大器电路图。 3、设置仿真环境。 4、仿真并查看仿真结果,绘制曲线。 三、实验结果 1、实验电路图

射频电路及高速数字电路仿真

微波系统的设计越来越复杂对电路的指标要求越来越高,电路的功能越来越多电路的尺寸要求越做越小而设计周期却越来越短传统的设计方法已经不能满足系统设计的需要。使用微波EDA 软件工具进行微波元器件与微波系统的设计已经成为微波电路设计的必然趋势。随着单片集成电路技术的不断发展GaAs 硅为基础的微波毫米波单片集成电路MIMIC 和超高速单片集成电路VHSIC 都面临着一个崭新的发展阶段,电路的设计与工艺研制日益复杂化,如何进一步提高电路性能降低成本缩短电路的研制周期已经成为电路设计的一个焦点,而E DA 技术是设计的关键EDA 技术的范畴包括电子工程设计师进行产品开发的全过程以及电子产品生产过程中期望由计算机提供的各种辅助功能。一方面EDA 技术可为系统级电路级和物理实现级三个层次上的辅助设计过程; 1.基于矩量法仿真的微波EDA 仿真软件 (1)Agilent ADS(Advanced Design System) Agilent ADS(Advanced Design System)软件是在HP EESOF系列EDA软件基础上发展完善起来的大型综合设计软件。是美国安捷伦公司开发的大型综合设计软件是为系统和电路从电路元件的仿真模式识别的提取新的仿真技术提供了高性能的仿真特性。 它允许工程师定义频率范围材料特性参数的数量和根据用户的需要自动产生关键的无源器件模式,该软件范围涵盖了小至元器件大到系统级的设计和分析,尤其是其强大的仿真设计手段可在时域或频域内实现对数字或模拟线性或非线性电路的综合仿真分析与优化并可对设计结果进行成品率分析与优化。从而大大提高了复杂电路的设计效率使之成为设计人员的有效工具。 (2)Sonnet 仿真软件 Sonnet 是一种基于矩量法的电磁仿真软件提供面向3D 平面高频电路设计系统以及在微波毫米波领域和电磁兼容/电磁干扰设计的EDA 工具。SonnetTM 应用于平面高频电磁场分析频率从1MHz 到几千GHz ,主要的应用有微带匹配网络微带电路微带滤波器带状线电路带状线滤波器过孔层的连接或接地偶合线分析PCB 板电路分析PCB 板干扰分析桥式螺线电感器平面高温超导电路。分析毫米波集成电路,MMIC设计和分析混合匹配的电路分析,H DI LTCC 转换单层或多层传输线的精确分析多层的平面的电路分析单层或多层的平面天线分析平面天线阵分析平面偶合孔的分析等。 (3)IE3D 仿真软件 IE3D 是一个基于矩量法的电磁场仿真工具。可以解决多层介质环境下的三维金属结构的电

RLC串联谐振电路(Multisim仿真实训)

新疆大学 实习(实训)报告 实习(实训)名称: __________ 电工电子实习(EDA __________ 学院: __________________ 专业班级_________________________________ 指导教师______________________ 报告人____________________________ 学号 ______ 时间: 实习主要内容: 1. 运用Multisim仿真软件自行设计一个RLC串联电路,并自选合适的参数。 2. 用调节频率法测量RLC串联谐振电路的谐振频率f 0 ,观测谐振现象。 3. 用波特图示仪观察幅频特性。 4?得出结论并思考本次实验的收获与体会。 主要收获体会与存在的问题: 本次实验用Multisim 仿真软件对RLC串联谐振电路进行分析,设计出了准确的电路模型,也仿真出了正确的结果。通过本次实验加深了自己对RLC振荡电路的理解与应用,更学习熟悉了Multisim 仿真软件,达到了实验的目

的。存在的问题主要表现在一些测量仪器不熟悉,连接时会出现一些错误,但最终都实验成功了。 指导教师意见: 指导教师签字: 年月日 备注: 绪论 Multisim仿真软件的简要介绍 Multisim是In terctive Image Tech no logies公司推出的一个专门用于电子电 路仿真和设计的软件,目前在电路分析、仿真与设计等应用中较为广泛。该软件以图形界面为主,采用菜单栏、工具栏和热键相结合的方式,具有一般Windows 应用软件的界面风格,用户可以根据自己的习惯和熟练程度自如使用。尤其是多种可放置到设计电路中的虚拟仪表,使电路的仿真分析操作更符合工程技术人员的工作习惯。下面主要针对Multisim11.0软件中基本的仿真与分析方法做简单介绍。 EDA就是“ Electronic Design Automation ”的缩写技术已经在电子设计领 域得到广泛应用。发达国家目前已经基本上不存在电子产品的手工设计。一台电子产品的设计过程,从概念的确立,到包括电路原理、PCB版图、单片 机程序、机内结构、FPGA的构建及仿真、外观界面、热稳定分析、电磁兼容分析在内的物理级设计再到PCB钻孔图、自动贴片、焊膏漏印、元器件清 单、总装配图等生产所需资料等等全部在计算机上完成。EDA已经成为集成 电路、印制电路板、电子整机系统设计的主要技术手段。 功能: 1. 直观的图形界面 整个操作界面就像一个电子实验工作台,绘制电路所需的元器件和仿真所需的测试仪器均可直接拖放到屏幕上,轻点鼠标可用导线将它们连接起来,软件仪器的控制面板和操作方式都与实物相似,测量数据、波形和特性曲线如同在真实仪器上看到的;

射频电路设计与仿真论文

射频电路设计与仿真 一:摘要 ADS是美国Agilent公司推出的微波电路和通信系统的仿真软件,是当今世界最流行的微波射频电路,通信系统,RFIC 设计软件,也是国内高校,科研院所和大型IT公司使用最多的软件之一。ADS 的强大,仿真手段丰富,可实现包括时域与频域,数字与模拟,线性与非线性,噪声等多种仿真功能,并可对设计结果进行成品率分析与优化,提高复杂电路的设计效率,是优秀的微波射频电路,系统信号链路的设计工具,是射频工程师必备的工具软件之一。 二:正文 1:ADS软件可以对电路进行模拟,完成射频,微博电路及通信系统的设计,主要包括以下几种分析和仿真方法。 1)高频SPICE分析和卷积分析,高频SPICE分析方法提供如 SPICE仿真器般的瞬态分析,可分析线性或非线性电路的 瞬时效应。 2)线性分析线性分析是频域电路仿真分析方法,可以对线性 或非线性的射频与微波电路做线性分析。 3)谐波平衡分析谐波平衡分析提供频域,稳态,大信号的 电路分析仿真方法。可以用于分析具有多频输入信号的非 线性电路得到非线性电路,得到非线性的电路响应,如噪 声,功率压缩点,谐波失真等。 4)电路包络分析电路包络分析包含时域与频域的分析方

法,使用在包含调频信号的电路或通信系统中。 5)射频系统分析射频系统分析方法给用户提供模拟评估系 统特性,其中系统的电路模型出可以使用行为级模型外, 还可以使用元件电路模型进行响应印证。 6)托勒密分析托勒密分析方法可以同时仿真包括数字信 号,模拟和高频信号的混合模拟系统。ADS分别提供了数 字元件模型及模拟高频元件模型在设计中直接使用。 7)电磁仿真分析 ADS 软件提供了3D平面电磁仿真分析功能 ---Momentum,可以用于仿真微带线,带状线,共面波导等 原件的电磁特性,天线的辐射特性,已经PCB上的寄生, 柔和效应。 2:ADS仿真器的介绍 ADS集成多种仿真软件的优点,仿真手段丰富,功能强大,很快就成为全球内业界流行的EDA设计工具。下面介绍ADS在射频,模拟电路设计中常用的仿真器及其功能。 1)直流仿真直流仿真是所有仿真的基础,它可执行电路的拖扑检查,以及直流工作点的扫描和分析。 2)交流仿真交流仿真能获取小信号传输参数,如电压增益,电流增益,线性噪声电压和电流。 3)S参数仿真微波器件在小信号工作时,被认为工作在线性状态,是一个线性网络:在大信号工作时,被认为工作 在非线性状态,是一个非线性网络。

收音机实验报告..

《高频电子线路》课程设计报告 题目SD-105 七管半导体收音机 学院(部)信息学院 专业通信工程 班级2011240401 学生姓名张静 学号33 指导教师宋蓓蓓,利骏

目录 一、概括……………………………………页码 二、收音机工作原理……………………………………页码 三、各部分设计及原理分析……………………页码 四、实验仿真及结果……………………………页码 五、结论…………………………………………页码 六、心得体会……………………………………页码 七、参考文献……………………………………页码

调幅半导体收音机原理及其调试 一概述:收音机的发明人类自从发现能利用电波传递信息以来,就不断研究出不同的方法来增加通信的可靠性、通信的距离、设备的微形化、省电化、轻巧化等。接收信息所用的接收机,俗称为收音机。目前的无线电接收机不单只能收音,且还有可以接收影像的电视机、数字信息的电报机等。 随着广播技术的发展,收音机也在不断更新换代。自1920年开发了无线电广播的半个多世纪中,收音机经历了电子管收音机、晶体管收音机、集成电路收音机的三代变化,功能日趋增多,质量日益提高。20世纪80年代开始,收音机又朝着电路集成化、显示数字化、声音立体化、功能电脑化、结构小型化等方向发展。 1947年、美国贝尔实验室发明了世界上第一个晶体管,从此以后.开始了收音机的晶体管时代.并且逐步结束了以矿石收音机、电子管收音机为代表的收音机的初级阶段。 调幅收音机:由输入回路、本振回路、混频电路、检波电路、自动增益控制电路(AGC)及音频功率放大电路组成输入回路由天线线圈和可变电容构成,本振回路由本振线圈和可变电容构成,本振信号经内部混频器,与输入信号相混合。混频信号经中周和455kHz陶瓷滤波器构成的中频选择回路得到中频信号。至此,电台的信号就变成了以

数字集成电路设计实验报告

哈尔滨理工大学数字集成电路设计实验报告 学院:应用科学学院 专业班级:电科12 - 1班 学号:32 姓名:周龙 指导教师:刘倩 2015年5月20日

实验一、反相器版图设计 1.实验目的 1)、熟悉mos晶体管版图结构及绘制步骤; 2)、熟悉反相器版图结构及版图仿真; 2. 实验内容 1)绘制PMOS布局图; 2)绘制NMOS布局图; 3)绘制反相器布局图并仿真; 3. 实验步骤 1、绘制PMOS布局图: (1) 绘制N Well图层;(2) 绘制Active图层; (3) 绘制P Select图层; (4) 绘制Poly图层; (5) 绘制Active Contact图层;(6) 绘制Metal1图层; (7) 设计规则检查;(8) 检查错误; (9) 修改错误; (10)截面观察; 2、绘制NMOS布局图: (1) 新增NMOS组件;(2) 编辑NMOS组件;(3) 设计导览; 3、绘制反相器布局图: (1) 取代设定;(2) 编辑组件;(3) 坐标设定;(4) 复制组件;(5) 引用nmos组件;(6) 引用pmos组件;(7) 设计规则检查;(8) 新增PMOS基板节点组件;(9) 编辑PMOS基板节点组件;(10) 新增NMOS基板接触点; (11) 编辑NMOS基板节点组件;(12) 引用Basecontactp组件;(13) 引用Basecontactn 组件;(14) 连接闸极Poly;(15) 连接汲极;(16) 绘制电源线;(17) 标出Vdd 与GND节点;(18) 连接电源与接触点;(19) 加入输入端口;(20) 加入输出端口;(21) 更改组件名称;(22) 将布局图转化成T-Spice文件;(23) T-Spice 模拟; 4. 实验结果 nmos版图

自动控制原理实验报告31418

实验一 典型环节的模拟研究及阶跃响应分析 1、比例环节 可知比例环节的传递函数为一个常数: 当Kp 分别为0.5,1,2时,输入幅值为1.84的 正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。 2、 积分环节 积分环节传递函数为: (1)T=0.1(0.033)时,C=1μf(0.33μf),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033 与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。 3、 惯性环节 i f i o R R U U -=TS 1 CS R 1Z Z U U i i f i 0-=-=-=

惯性环节传递函数为: K = R f /R 1,T = R f C, (1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf , 0.1μf )时的输出波形。利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值较 为接近。 T=0.01时 t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3% 由于ts 较小,所以读数时误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值 较为接近 (2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。 K=1时波形即为(1)中T0.1时波形 K=2时,利用matlab 仿真得到如下结果: 1 TS K )s (R )s (C +-=

CMOS数字集成电路设计_八位加法器实验报告

CMOS数字集成电路设计课程设计报告 学院:****** 专业:****** 班级:****** 姓名:Wang Ke qin 指导老师:****** 学号:****** 日期:2012-5-30

目录 一、设计要求 (1) 二、设计思路 (1) 三、电路设计与验证 (2) (一)1位全加器的电路设计与验证 (2) 1)原理图设计 (2) 2)生成符号图 (2) 3)建立测试激励源 (2) 4)测试电路 (3) 5)波形仿真 (4) (二)4位全加器的电路设计与验证 (4) 1)原理图设计 (4) 2)生成符号图 (5) 3)建立测试激励源 (5) 4)测试电路 (6) 5)波形仿真 (6) (三)8位全加器的电路设计与验证 (7) 1)原理图设计 (7) 2)生成符号图 (7) 3)测试激励源 (8) 4)测试电路 (8) 5)波形仿真 (9) 6)电路参数 (11) 四、版图设计与验证 (13) (一)1位全加器的版图设计与验证 (13) 1)1位全加器的版图设计 (13) 2)1位全加器的DRC规则验证 (14) 3)1位全加器的LVS验证 (14) 4)错误及解决办法 (14) (二)4位全加器的版图设计与验证 (15) 1)4位全加器的版图设计 (15) 2)4位全加器的DRC规则验证 (16) 3)4位全加器的LVS验证 (16) 4)错误及解决办法 (16) (三)8位全加器的版图设计与验证 (17) 1)8位全加器的版图设计 (17) 2)8位全加器的DRC规则验证 (17) 3)8位全加器的LVS验证 (18) 4)错误及解决办法 (18) 五、设计总结 (18)

射频与微波技术原理和应用

射频与微波技术原理及应用培训教材 华东师范大学微波研究所 一、Maxwell(麦克斯韦)方程 Maxwell 方程是经典电磁理论的基本方程,是解决所有电磁问题的基础,它用数学形式概括了宏观电磁场的基本性质。其微分形式为 0 B E t D H J t D B ρ???=- ????=+??=?= (1.1) 对于各向同性介质,有 D E B H J E εμσ=== (1.2) 其中D 为电位移矢量、B 为磁感应强度、J 为电流密度矢量。 电磁场的问题就是通过边界条件求解Maxwell 方程,得到空间任何位置的电场、磁 场分布。对于规则边界条件,Maxwell 方程有严格的解析解。但对于任意形状的边界条件,Maxwell 方程只有近似解,此时应采用数值分析方法求解,如矩量法、有限元法、时域有限差分法等等。目前对应这些数值方法,有很多商业的电磁场仿真软件,如Ansoft 公司的Ensemble 和HFSS 、Agilent 公司的Momentum 和ADS 、CST 公司的Microwave Studio 以及Remcom 公司的XFDTD 等。 由矢量亥姆霍兹方程联立Maxwell 方程就得到矢量波动方程。当0,0J ρ==时,有 222200E k E H k H ?+=?+= (1.3) 其中k 为传播波数,22k ωμε=。 二、传输线理论 传输线理论又称一维分布参数电路理论,是射频、微波电路设计和计算的理论基

础。传输线理论在电路理论与场的理论之间起着桥梁作用,在微波网络分析中也相当重要。 1、微波等效电路法 低频时是利用路的概念和方法,各点有确切的电压、电流概念,以及明确的电阻、电感、电容等,这是集总参数电路。在集总参数电路中,基本电路参数为L、C、R。由于频率低,波长长,电路尺寸与波长相比很小,电磁场随时间变化而不随长度变化,而且电感、电阻、线间电容和电导的作用都可忽略,因此整个电路的电能仅集中于电容中,磁能集中于电感线圈中,损耗集中于电阻中。 射频和微波频段是利用场的概念和方法,主要考虑场的空间分布,测量参数由电压U 、电流I转化为频率f、功率P 、驻波系数等,这是分布参数电路。在分布参数电路中,电磁场不仅随时间变化也随空间变化,相位有明显的滞后效应,线上每点电位都不同,处处有储能和损耗。 由于匀直无限长的传输系统在现实中是不存在的,因此工程上常用微波等效电路法。微波等效电路法的特点是:一定条件下“化场为路”。具体内容包括: (1)、将均匀导波系统等效为具有分布参数的均匀传输线; (2)、将不均匀性等效为集总参数微波网络; (3)、确定均匀导波系统与不均匀区的参考面。 2、传输线方程及其解 传输线方程是传输线理论的基本方程,是描述传输线上的电压、电流的变化规律及其相互关系的微分方程。电路理论和传输线之间的关键不同处在于电尺寸。集总参数电路和分布参数电路的分界线可认为是l/λ≥0.05。 以传输TEM模的均匀传输线作为模型,如图1所示。在线上任取线元dz来分析(dz<<λ),其等效电路如图2所示。终端负载处为坐标起点,向波源方向为正方向。 图1. 均匀传输线模型图2、线元及其等效电路根据等效电路,有

相关文档
最新文档