集合的划分与第二类Stirling数

集合的划分与第二类Stirling数
集合的划分与第二类Stirling数

高一集合及其表示法

教师姓名 学生姓名 上课时间 学 科 数学 年 级 高一 课题名称 1.1集合及其表示法 教学目标 1、集合的概念; 2、集合的表示方法。 教学重难点 集合元素的性质;集合的表示方法。 知识归纳 1. 集合的概念 在现实生活和数学中,我们常常把一些对象放在一起,作为一个整体来研究,例如: (1) 川沙中学高中一年级全体学生; (2) NBA 联赛参球队的全体; (3) 所有的锐角三角形; (4) 2,4,6,8,10; (5) 不等式2x-3>1的解的全体 (6) ………… 我们把能够确切指定的一些对象组成的整体叫做集合,简称集。 集合中的各个对象叫做这个集合的元素,集合的元素具有以下三个特性: (1) 确定性:对于一个给定的集合,集合中的元素是确定的; (2) 互异性:对于一个给定的集合,集合中的元素是各不相同的; (3) 无序性:对于一个给定的集合,集合中的元素的顺序是任意的。 集合常用大写字母A 、B 、C 、……表示,集合中的元素用小写字母a 、b 、c 、……表示。 2. 集合与元素的关系 如果a 是集合A 的元素,就记作a ∈A,读作“a 属于A ”。 如果a 不是集合A 的元素,就记作a ?A ,读作“a 不属于A ”。 3. 常用的数集:自然数集N ;正整数集N+;整数集Z ;有理数集Q ;实数集R ; 4. 集合的分类:(1)有限集:含有有限个元素的集合; (2)无限集:含有无限个元素; (3)空集:不含任何元素,记作。 5.集合的表示方法 (1)列举法:将集合中的元素一一列举出来;如A={1,2,3,4} (2)描述法:在大括号内先写出这个集合元素的一般形式,再划一条竖线,在竖线前面写上集合元素做具有的特性。如A={x|x>2,x ∈R} 典例讲解 [题型一]集合的判断 例1、 “①难解的题目;②方程012 =+x ;③平面直角坐标系内第四象限的一些点;④很多多项式”中,能组成集合的是( )。 A .② B .① ③ C .② ④ D .① ② ④

应用离散数学-集合与关系

集合与关系《应用离散数学》 第3章 21世纪高等教育计算机规划教材

目录 3.1 集合及其运算 3.2 二元关系及其运算3.3 二元关系的性质与闭包3.4 等价关系与划分 3.5 偏序关系与拓扑排序3.6 函 数 3.7 集合的等势与基数3.8 多元关系及其应用

集合是现代数学中最重要的基本概念之一,数学概念的建立由于使用了集合而变得完善并且统一起来。集合论已成为现代各个数学分支的基础,同时还渗透到各个科学技术领域,成为不可缺少的数学工具和表达语言。对于计算机科学工作者来说,集合论也是必备的基础知识,它在开关理论、形式语言、编译原理等领域中有着广泛的应用。 本章首先介绍集合及其运算,然后介绍二元关系及其关系矩阵和关系图,二元关系的运算、二元关系的性质、二元关系的闭包,等价关系与划分、函数,最后介绍多元关系及其在数据库中的应用等。

3.1 集合及其运算 3.1.1 基本概念 集合是数学中最基本的概念之一,如同几何中的点、线、面等概念一样,是不能用其他概念精确定义的原始概念。集合是什么呢?直观地说,把一些东西汇集到一起组成一个整体就叫做集合,而这些东西就是这个集合的元素或叫成员。 例3.1 (1)一个班级里的全体学生构成一个集合。 (2)平面上的所有点构成一个集合。 (3)方程 的实数解构成一个集合。 (4)自然数的全体(包含0)构成一个集合,用N表示。 (5)整数的全体构成一个集合,用Z表示。 (6)有理数的全体构成一个集合,用Q表示。 (7)实数的全体构成一个集合,用R表示。

(8)复数的全体构成一个集合,用C表示。 (9)正整数集合Z+,正有理数集合Q+,正实数集合R+。(10)非零整数集合Z*,非零有理数集合Q*,非零实数集合R*。(11)所有n 阶(n≥2)实矩阵构成一个集合,用M n(R)表示,即

7离散数学(集合的运算)实验报告

大连民族学院 计算机科学与工程学院实验报告 实验题目:集合的运算 课程名称:离散数学 实验类型:□演示性□验证性□操作性□设计性□综合性专业:网络工程班级:网络111班 学生姓名:张山学号:2011083123 实验日期:2013年12月22日实验地点:I区实验机房 实验学时:8小时实验成绩: 指导教师签字:年月日老师评语:

实验题目:集合的运算 实验原理: 1、实验内容与要求: 实验内容:本实验求两个集合间的运算,给定两个集合A、B,求集合A与集合B之间的交集、并集、差集、对称差集和笛卡尔乘积。 实验要求:对于给定的集合A、B。用C++/C语言设计一个程序(本实验采用C++),该程序能够完成两个集合间的各种运算,可根据需要选择输出某种运算结果,也可一次输出所有运算结果。 2、实验算法: 实验算法分为如下几步: (1)、设计整体框架 该程序采取操作、打印分离(求解和输出分开)的思想。即先设计函数求解各部分运算并将相应结果传入数组(所求集合)中,然后根据需要打印运算结果。 (2)、建立一个集合类(Gather) 类体包括的数组a、b、c、d、e、f、g分别存储集合A、B以及所求各种运算的集合。接口(实现操作的函数)包括构造函数,菜单显示函数,求解操作函数,打印各种运算结果等函数。 (3)、设计类体中的接口 构造函数:对对象进行初始化,建立集合A与集合B。 菜单显示函数:设计提示选项,给使用者操作提示。 操作函数:该函数是程序的主题部分,完成对集合的所有运算的求解过程,并将结果弹入(存入)对应数组(集合)中,用于打印。 具体操作如下:

1*求交集:根据集合中交集的定义,将数组a、b中元素挨个比较,把共同元素选出来,并存入数组c(交集集合)中,即求得集合A、B的交集。 2*求并集:根据集合中并集的定义,先将数组a中元素依次存入数组g(并集集合)中,存储集合A中某元素前,先将其与已存入g中的元素依次比较,若相同则存入下一个元素,否则直接存入g中,直到所有A中元素存储完毕。接着把b中元素依次存入数组g(并集集合)中,存储前将b中每个元素依次与已存入数组g中的集合A的元素比较,若数组g中没有与该元素相同的元素,则将该元素存入g(并集集合)中,否则进行下一次比较,直到所有b中元素比较并存储完毕,即求得A与B 的并集。 3*求差集:根据集合中差集的定义知,差集分为两部分,A对B的差集(数组d)和B对A的差集(e)。设计求解A对B的差集,将集合A中元素依次与B中元素比较,若B中无元素与该元素相同,则将其存入数组d中(同时删除d中相同的元素,操作方法与求并集时删除相同元素类似),否则进行下一轮比较,直到A中所有元素比较完毕,即求得A对B的差集(数组d)。求解B对A的差集方法与求解A对B 的差集类似,这里不再重复。 4*求对称差:根据集合中对称差集的定义,将3*中所求两部分差集求并集并存入数组f中即可。操作过程与求并集相似,这里不再重复。 5*求笛卡尔乘积:根据集合中笛卡尔乘积集的定义,分为A*B和B*A。先设计A*B是我算法,将a中元素循环依次与b中元素配对即可。求B*A与求A*B类似,这里不再重复。 实验步骤: 一、分析实验 阅读实验指导书和离散数学课本,充分理解整个实验的实验内容及要求,以便对实验进行科学的设计。然后对整个实验进行“解剖”,即把整个实验系统地分成若干

离散数学集合论练习题

集合论练习题 一、选择题 1.设B = { {2}, 3, 4, 2},那么下列命题中错误的是( ). A .{2}∈ B B .{2, {2}, 3, 4}B C .{2}B D .{2, {2}}B 2.若集合A ={a ,b ,{ 1,2 }},B ={ 1,2},则( ). A . B A ,且BA B .B A ,但BA C .B A ,但BA D .B A ,且BA 3.设集合A = {1, a },则P (A ) = ( ). A .{{1}, {a }} B .{?,{1}, {a }} C .{?,{1}, {a }, {1, a }} D .{{1}, {a }, {1, a }} 4.已知AB ={1,2,3}, AC ={2,3,4},若2 B,则( ) A . 1?C B .2? C C .3?C D .4?C 5. 下列选项中错误的是( ) A . ??? B . ?∈? C . {}??? D .{}?∈? 6. 下列命题中不正确的是( ) A . x {x }-{{x }} B .{}{}{{}}x x x ?- C .{}A x x =?,则xA 且x A ? D . A B A B -=??= 7. A , B 是集合,P (A ),P (B )为其幂集,且A B ?=?,则()()P A P B ?=( ) A . ? B . {}? C . {{}}? D .{,{}}?? 8. 空集?的幂集()P ?的基数是( ) A . 0 B .1 C .3 D .4 9.设集合A = {1,2,3,4,5,6 }上的二元关系R ={a , b ∈A , 且a +b = 8},则R 具有的性质为( ). A .自反的 B .对称的 C .对称和传递的 D .反自反和传递的

奇数和偶数练习题集合教学设计

奇数和偶数练习题集合教学设计 Set teaching design of odd and even exercises

奇数和偶数练习题集合教学设计 前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。本教案根据数学课程标准的要求和针对教学对象是小学生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。便于学习和使用,本文下载后内容可随意修改调整及打印。 教学目标 1、能熟练找出一个数的因数和规定范围内的倍数。 2、能正确区别奇数和偶数、质数和合数。 教学重点 能正确区别奇数和偶数、质数和合数。 教学难点 能熟练找出一个数的因数和规定范围内的倍数; 教学过程 一、复习旧知识 1、什么是奇数?什么是偶数? 2、什么是质数?什么是合数? 3、一个自然数最小的倍数是多少?最大的因数是多少? 二、探索活动 活动一:分一分 把1、10、12、25、37、54、102、417、23、398分成奇数、

偶数、质数、合数四类。 1、先让孩子独立分类 2、同桌再说一说自己是怎样想的 3、全班交流。 1、37、23既是质数,又是奇数;10、1 2、54、102、398既是合数,又是偶数; 25、417既是奇数,又是合数。 活动二:猜一猜 利用质数和合数、奇数和偶数或比大、比小说一句话,让其他同学猜。 1、同桌做猜数的游戏 2、一人利用质数和合数、奇数和偶数或比大、比小说一句话,另一同学猜。然后再交换。 活动三:解决问题 选哪种包装盒能正好把90瓶饮料装完?还有其它的包装方式吗 1、同学讨论还有其它的包装方式吗? 2、你是怎样想的?(90的因数) 活动四:动脑筋 123,234,345,456,567,……它们都是3的倍数。为什么?(四人小组讨论为什么是3的倍数) 活动五:你知道吗?

集合论与图论试卷2

哈工大 2007 年 秋季学期 本试卷满分90分 (06级计算机、信息安全专业、实验学院) 一、判断对错(本题满分10分,每小题各1分) ( 正确画“√”,错误画“×”) 1.对每个集合A ,A A 2}{∈。 (×) 2.对集合Q P ,,若?==Q P Q Q P ,,则P =?。 (√) 3.设,,:X A Y X f ?→若)()(A f x f ∈,则A x ∈。 (×) 4.设,,:Y B Y X f ?→则有B B f f ?-))((1。 (×) 5.若R 是集合X 上的等价关系,则2R 也是集合X 上的等价关系。 (√) 6.若:f X Y →且f 是满射,则只要X 是可数的,那么Y 至多可数的。(√) 7.设G 是有10个顶点的无向图,对于G 中任意两个不邻接的顶点u 和v, 均有9deg deg ≥+v u ,则G 是哈密顿图。 (×) 8.设)(ij a A =是p 个顶点的无向图G 的邻接矩阵,则对于G 的顶点i v , 有∑==p j ij i a v 1deg 成立。 (√) 9. 设G 是一个),(q p 图,若1-≥p q ,则]/2[)(q p G ≤χ。 (×) 10.图G 和1G 同构当且仅当G 和1G 的顶点和边分别存在一一对应关系。(×)

二.填空(本题40分,每空各2分) 1.设}},{,{φφ=S 则=S 2 }}}{,{}},{{},{,{φφφφφ 。 2.设B A ,是任意集合,若B B A =\,则A 与B 关系为 φ==B A 。 3.设1)(,0)()(,:};3,2{},1,0{},,,{===→===c f b f a f Y X f Z Y c b a X , 3)1(,2)0(,:==→g g Z Y g ,则)()(c f g a f g ,分别为 2,3 。 4.设X 和Y 是集合且X m =,Y n =,若n m ≤,则从X 到Y 的单射的 个数为 !m C m n 。 5.设}2,1{},,,2,1{==B n X ,则从X 到Y 的满射的个数为 22-n 。 6.设)}2,4(),1,3(),3,2{()},4,3(),2,2(),2,1{(},4,3,2,1{===S R X ,则 =)(R S R )}2,3(),4,2(),4,1{( 。 7. 设???? ??=???? ??=5123454321,415235432121σσ,则???? ??=235411234521σσ 。 8. 设)},(),,(),,{(},,,,{a c c b b a R d c b a X ==,则 )},(),,(),,(),,(),,(),,(),,(),,(),,{(b c a c a b c b c a b a c c b b a a R =+ 。 9. 设X 为集合且X n =,则X 上不同的自反或对称的二元关系的个数 为 22222222n n n n n n +--+- 。 10.设}}{},{},,{{},,,,{d c b a A d c b a X ==是X 的一个划分,则由A 确定的 X 上的等价关系为 )},(),,(),,(),,(),,(),,{(d d c c a b b a b b a a 。 11.}10,,2,1{ =S ,在偏序关系“整除”下的极大元为 6,7,8,9,10 。 12.给出一个初等函数)(x f ,使得它是从)1,0(到实数集合R 的一一对应, 这个函数为 x ctg π或-x ctg π或)2/(ππ-x tg 。 13. 设G 是),(p p 连通图,则G 的生成树的个数至多为 p 。

离散数学N元集合关系个数计算

Author :ssjs Mail : 看了离散数学中的关系整理了一点关于n 元集合中各种关系的计算,现写下这个方便大家学习交流理解。对文章所致一切后果不负任何责任,请谨慎使用。 如有错误之处请指正。 定义: 1,对称:对于a,b R a b ∈∈∈),b (),a (,A 有如果只要 2,反对称:如果R a b R b a b b ∈∈=∈),(),(a ,A ,a 和时仅当 3,自反:如果对每个元素R ),(A a ∈∈a a 有 4,反自反:如果对于每个R ),(A a ?∈a a 有 5,传递:如果对R ),(,R ),(R ),(,A ,,∈∈∈∈c a c b b a c b a 则且 6,非对称:如果R ),(R ),(?∈a b b a 推出【注】其中是含(a,a)这样的有序对的。 【重要】集合A 的关系是从A 到A 的关系 (也就是说集合A 的关系是A A ?的子集)。 如下结论: N 元集合上的自反关系数为:)1(2 -n n N 元集合上的对称关系数为:2/)1(2+n n N 元集合上的反对称关系数为:2/)1(n 3 2-n n N 元集合上的非对称关系数为:2/)1(3-n n N 元集合上的反自反关系数为:)1(n 2-n N 元集合上的自反和对称关系数为:2/)1(n 2-n N 元集合上的不自反也不反自反关系数为:)1(n n 222 2-?-n 下面是上面结论的计算 1,自反 2A A ,A n n =?=因为也就是说集合A 有n 平方个有序对,由自反定义可知,对R ),(A a ∈∈?a a 有所以n 个有序对()).....3,2,1i X ,X (n i i =其中一定在所求关系中,否则的话此关系就不是自反的了,那么还有n n -2个有序对,所以由集合子集对应二进制串可得自反关系数为)1(n 222--=n n n 下图有助于理解。 (1,1) (2,2).......(n,n) | (1,2) (1,3).........(n-1,n) N n n -2 个有序对

集合的有关概念及运算

第一章集合与简易逻辑 学习札记第一单元集合的有关概念及运算 【背景材料】 康托儿与集合论的产生 现代数学中将研究集合的理论称为集合论,它是数学的一个基本分支,在数学 中占据着极其独特的地位,其基本概念已经渗透到数学的所有领域.如果把现代数 学比作一座无比辉煌的大厦,那么可以说,集合论正是构成这座大厦的基石.集合 论的创始人是19世纪末20世纪初德国伟大的数学家康托儿(德国数学家,集合论 的创始者.1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷),他也以其 集合论的成就被誉为二十世纪数学发展影响最深的学者之一. 17世纪数学中出现了一门新的分支:微积分,并且在以后的一二百年中这一崭 新学科获得了飞速发展并结出了丰硕的成果.由于微积分的快速发展使人们来不及 检查和巩固它的基础理论,在19世纪初,许多迫切问题得到解决后,就出现了一场 重建数学基础的运动.正是在这场运动中,康托儿开始了集合论的研究,1874年, 康托儿给出了“集合”的定义:把若干确定的有区别的事物(无论是具体的或抽象 的)合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.这 和我们今天的集合的概念基本一致,我们会感觉很自然和简单,但是康托儿的研究 道路却布满荆棘,并使他承受了强烈的外界压力和刺激,导致他患上了精神分裂症 并最终因此病逝. 数学与无穷的关系可谓紧密,但如何看待无穷却是数学家们很头疼的问题,他 们始终持怀疑和回避的态度,形象地将“无限”解释为:无限可看作是永远延伸着 的,一种变化着成长着的东西.按照这种解释,无限永远处在构造中,永远完成不 了,是潜在的而不是实在的.这种观念称为潜无限思想.18世纪数学王子高斯(德 国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、 牛顿并列,同享盛名.高斯1777年4月30日生于不伦瑞克,1855年2月23日卒于 格丁根)就持此观点:“我反对将无穷量作为一个实体,这在数学中是从来不允许 的.所谓无穷,只是一种说话方式……”.而康托儿首先把全体自然数看作了一个 集合,称为自然数集,用字母N表示.事实上就是把一个无限的整体作为了一个构 造完成了的东西,进而就肯定了作为一个整体的无穷是可以完成的,这种观念称为 实无限思想.由于潜无限思想已经在微积分的基础重建中取得了全面胜利,康托儿 的实无限思想遭到了一些数学家的强烈批评和攻击,但他没有就此止步,而是继续 正面探讨无穷,在实无限思想观念的基础上,进一步得出一系列的结论,创立了令 人振奋的、意义十分深远的理论.这些理论使人们真正进入了一个难以捉摸的奇特 的无限世界. 最能显示他独创性的是他对无穷集元素个数问题的研究.他在研究过程中关注 了这样一个问题:像自然数集那样的无穷集合与像实数集那样的无穷集合之间存在 着怎样的关系?1873年11月29日,康托儿在给戴德金的信中将上述问题以更明确 的形式提了出来:全体正整数集合N与全体实数集合R能否建立一一对应?这个问 题看起来似乎不成问题,因为N是离散的,R是连续的.但康托儿认为问题也许并 不那么简单,不能过分相信直觉.他把元素间能建立一一对应的集合称为个数相同,

离散数学第三章集合的基本概念和运算知识点总结

集合论部分 第三章、集合的基本概念和运算 3.1 集合的基本概念集合的定义与表示 集合与元素 集合没有精确的数学定义 理解:一些离散个体组成的全体组成集合的个体称为它的元素或成员集合的表示 列元素法A={ a, b, c, d } 谓词表示法B={ x | P(x) } B 由使得P(x) 为真的x构成常用数集 N, Z, Q, R, C 分别表示自然数、整数、有理数、 实数和复数集合,注意0 是自然数. 元素与集合的关系:隶属关系 属于∈,不属于? 实例 A={ x | x∈R∧x2-1=0 }, A={-1,1} 1∈A, 2?A 注意:对于任何集合A 和元素x (可以是集合), x∈A和x?A 两者成立其一,且仅成立其一.

集合之间的关系 包含(子集)A?B??x (x∈A→x∈B) 不包含A?B??x (x∈A∧x?B) 相等A = B?A?B∧B?A 不相等A≠B 真包含A?B?A?B∧A≠B 不真包含A?B 思考:≠和?的定义 注意∈和?是不同层次的问题 空集?不含任何元素的集合 实例{x | x2+1=0∧x∈R} 就是空集 定理空集是任何集合的子集 ??A??x (x∈?→x∈A) ?T 推论空集是惟一的. 证假设存在?1和?2,则?1??2 且?1??2,因此?1=?2全集E 相对性

在给定问题中,全集包含任何集合,即?A (A?E ) 幂集定义P(A) = { x | x?A } 实例 P(?) = {?}, P({?}) = {?,{?}} P({1,{2,3}})={?,{1},{{2,3}},{1,{2,3}}} 计数 如果|A| = n,则|P(A)| = 2n 3.2 集合的基本运算 集合基本运算的定义??-~⊕ 并A?B = { x | x∈A∨x∈B } 交A?B = { x | x∈A∧x∈B } 相对补A-B = { x | x∈A∧x?B } 对称差A⊕B = (A-B)?(B-A) = (A?B)-(A?B) 绝对补~A = E-A 文氏图(John Venn)

集合习题

例题1.1 例1:用符号∈、?填空: (1)0 {0} (2)0 ? (3)0 N (4)0 Z (6) –2 Z 例2:用适当的方法表示下列集合: (1)大于0且不超过6的全体偶数组成的集合A; (2)被3除余2的自然数全体组成的集合B ; (3)直角坐标平面上第二象限的点组成的集合C ; 练习1.1 1、高一某班数学成绩好的学生能否构成一个集合? 2、用适当的方法表示下列集合: ⑴所有偶数组成的集合; ⑵我所在的班级坐在第一排的学生组成的集合; ⑶比1大又比10小的一切有理数整数组成的集合; ⑷使方程220x kx +-=无实数解的实数k 组成的集合。 习题1.1 1、 判断下列各组对象能否组成集合: ① 满足x >2且x <0的实数; ② 绝对值小于0的实数; ③ 很小的数的全体; ④ 我班的高个子学生; 2、 用列举法表示下列各集合: ① 组成中国国旗的颜色名称的集合; ② 上海市各区县名称的集合; ③ {x |24x ∈*N ,x ∈Z } ④ {y |21y x =-,-1<x <3, y ∈Z } 3、 用描述法表示下列各集合: ① 绝对值小于4的所有整数组成的集合; ② 平面直角坐标系中,第一象限内所有点组成的集合; ③ 末位数是3的自然数组成的集合; ④ {2,3,5,7} 4、 集合{(,x y )|xy ≥0, x ∈R, y ∈R}是指:( ) A 、第一象限内的所有点; B 、第三象限内的所有点; C 、第一象限或第三象限内的所有点; D 、不在第二象限、第四象限的所有点; 5、 下列集合中,有限集是:( ) A 、{x |x <10, x ∈N} B 、{x |x <10, x ∈Z} C 、{x |x 2 <10, x ∈Q} D 、{x |x =y+10, x ∈R} 6、 如果M ={(0,1)},那么下列写法正确的是( ) A 、0∈M ; B 、1∈M ; C 、(0,1)∈M ; D 、{0,1}∈M ;

集合及集合的表示方法

教案背景:在小学和初中,数学课中使用的语言主要是自然语言,教学中经常要 把数学中的符号语言翻译为自然语言让学生理解,但自然语言有一定的歧义性,有 时也不够确切。高中数学中使用集合语言,就能简洁准确地表达数学内容,发展学 生运用数学语言进行交流的能力。 教材分析:集合的初步知识是学生学习,掌握和使用数学语言的基础,是高中数 学学习的出发点。集合语言也是现代数学的基本语言,通过学习,使用集合语言,有 利于学生简洁,准确的表达数学内容。 本章的主要内容是集合的概念,表示方法和集合之间的关系与运算。本节首先通过实例,引入集合与集合元素的概念,然后学习集合的表示方法。 教学方法:学生通过阅读教材,自主学习,在教师的指导下思考,交流,讨论和概括,从而更好地完成本节课的教学目标。 教学课题:集合及集合的表示方法。 集合及集合的表示方法 一. 学习目标 1.通过实例,了解集合的概念,会判断元素与集合的关系。 2.了解并记住集合中元素的性质,熟记常用的数集符号。 3.掌握集合的两种表示方法,能够运用集合的两种表示方法表示一些集合。 二. 重点难点: 重点:集合概念的形成,集合的表示方法。 难点:理解集合元素的确定性与互异性,运用集合的特征性质法正确的描述集合。 三.预习检测: 1. 集合的概念是什么? 2.元素与集合之间的关系有几种?如何判断? 3.集合中元素的性质有哪些? 4.常用的数集有哪些?写出各自的记号。 5.集合的两种表示方法是什么?表示集合时需要注意什么问题? 6.下列各项中,不能组成集合的是( ) A.所有正三角形 B.《数学必修1》中所有的习题 C.所有数学难题 D.所有无理数 7. 集合A 中只含有元素a ,则下列各式正确的是( ) A.0A ∈ B.a A ? C.a A ∈ D.a=A 8. 已知集合}31|{≤≤-∈=x N x A ,则集合A 还可以表示为( )

离散数学 集合与关系 函数 习题 测验

一、已知A、B、C是三个集合,证明(A∪B)-C=(A-C)∪(B-C) 证明:因为 x∈(A∪B)-C?x∈(A∪B)-C ?x∈(A∪B)∧x?C ?(x∈A∨x∈B)∧x?C ?(x∈A∧x?C)∨(x∈B∧x?C) ?x∈(A-C)∨x∈(B-C) ?x∈(A-C)∪(B-C) 所以,(A∪B)-C=(A-C)∪(B-C)。 二、设R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R),并作出它们及R的关系图。 解:r(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,<4,2>,<4,3>} R2=R5={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} t(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,1>,<5,4>, <5,5>} 三、证明等价关系 设R是集合A上的一个具有传递和自反性质的关系,T是A上的关系,使得∈T?∈R且∈R,证明T是一个等价关系。 证明因R自反,任意a∈A,有∈R,由T的定义,有∈T,故T自反。 若∈T,即∈R且∈R,也就是∈R且∈R,从而∈T,故T对称。 若∈T,∈T,即∈R且∈R,∈R且∈R,因R 传递,由∈R和∈R可得∈R,由∈R和∈R可得∈R,由∈R和∈R可得∈T,故T传递。 所以,T是A上的等价关系。 四、函数 设A、B、C、D是集合,f是A到B的双射,g是C到D的双射,令h:A×C→B×D且?∈A×C,h()=。证明h是双射。 证明:1)先证h是满射。 ?∈B×D,则b∈B,d∈D,因为f是A到B的双射,g是C到D的双射,所以存在a∈A,c∈C,使得f(a)=b,f(c)=d,亦即存在∈A×C,使得h()=

离散数学(集合地运算)实验报告材料

民族学院 计算机科学与工程学院实验报告 实验题目:集合的运算 课程名称:离散数学 实验类型:□演示性□验证性□操作性□设计性□综合性专业:网络工程班级:网络111班 学生:山学号:2011083123 实验日期:2013年12月22日实验地点:I区实验机房 实验学时:8小时实验成绩: 指导教师签字:年月日老师评语:

实验题目:集合的运算 实验原理: 1、实验容与要求: 实验容:本实验求两个集合间的运算,给定两个集合A、B,求集合A与集合B 之间的交集、并集、差集、对称差集和笛卡尔乘积。 实验要求:对于给定的集合A、B。用C++/C语言设计一个程序(本实验采用C++),该程序能够完成两个集合间的各种运算,可根据需要选择输出某种运算结果,也可一次输出所有运算结果。 2、实验算法: 实验算法分为如下几步: (1)、设计整体框架 该程序采取操作、打印分离(求解和输出分开)的思想。即先设计函数求解各部分运算并将相应结果传入数组(所求集合)中,然后根据需要打印运算结果。 (2)、建立一个集合类(Gather) 类体包括的数组a、b、c、d、e、f、g分别存储集合A、B以及所求各种运算的集合。接口(实现操作的函数)包括构造函数,菜单显示函数,求解操作函数,打印各种运算结果等函数。 (3)、设计类体中的接口 构造函数:对对象进行初始化,建立集合A与集合B。 菜单显示函数:设计提示选项,给使用者操作提示。 操作函数:该函数是程序的主题部分,完成对集合的所有运算的求解过程,并将结果弹入(存入)对应数组(集合)中,用于打印。 具体操作如下:

1*求交集:根据集合集的定义,将数组a、b中元素挨个比较,把共同元素选出来,并存入数组c(交集集合)中,即求得集合A、B的交集。 2*求并集:根据集合中并集的定义,先将数组a中元素依次存入数组g(并集集合)中,存储集合A中某元素前,先将其与已存入g中的元素依次比较,若相同则存入下一个元素,否则直接存入g中,直到所有A中元素存储完毕。接着把b中元素依次存入数组g(并集集合)中,存储前将b中每个元素依次与已存入数组g中的集合A的元素比较,若数组g中没有与该元素相同的元素,则将该元素存入g(并集集合)中,否则进行下一次比较,直到所有b中元素比较并存储完毕,即求得A与B 的并集。 3*求差集:根据集合中差集的定义知,差集分为两部分,A对B的差集(数组d)和B对A的差集(e)。设计求解A对B的差集,将集合A中元素依次与B中元素比较,若B中无元素与该元素相同,则将其存入数组d中(同时删除d中相同的元素,操作方法与求并集时删除相同元素类似),否则进行下一轮比较,直到A中所有元素比较完毕,即求得A对B的差集(数组d)。求解B对A的差集方法与求解A对B 的差集类似,这里不再重复。 4*求对称差:根据集合中对称差集的定义,将3*中所求两部分差集求并集并存入数组f中即可。操作过程与求并集相似,这里不再重复。 5*求笛卡尔乘积:根据集合中笛卡尔乘积集的定义,分为A*B和B* A。先设计A* B是我算法,将a中元素循环依次与b中元素配对即可。求B* A与求A* B类似,这里不再重复。 实验步骤: 一、分析实验 阅读实验指导书和离散数学课本,充分理解整个实验的实验容及要求,以便对实验进行科学的设计。然后对整个实验进行“解剖”,即把整个实验系统地分成若干部

1 第1课时 集合的概念 纯答案

1.1 集合的概念 第1课时 集合的概念答案 答案:(1)× (2)√ (3)√ (4)× (5)√ (6)√ 解析:选C.由“title ”中的字母构成的集合中元素为t ,i ,l ,e ,共4个. 解析:选C.①是正确的,②中10 5 =2∈N *,③中-4=-2?N *,④4=2∈N 是正确的,故①④正确. 解析:由题意知a +1=4,即a =3. 答案:3 集合的概念 【解】 (1)班级中的全体同学是确定的,所以可以构成一个集合. (2)因为“比较高”无法衡量,所以对象不确定,所以不能构成一个集合. (3)因为“身高超过178 cm ”是确定的,所以可以构成一个集合. (4)“比较胖”无法衡量,所以对象不确定,所以不能构成一个集合. (5)“体重超过75 kg ”是确定的,所以可以构成一个集合. (6)“学习成绩比较好”无法衡量,所以对象不确定,所以不能构成一个集合. 1.解析:选C.①“一中高一年级聪明的学生”的标准不确定,因而不能构成集合;②“直角坐标系中横、纵坐标相等的点”的标准确定,能构成集合;③“不小于3的正整数”的标准确定,能构成集合;④“3的近似值”的标准不确定,不能构成集合. 2.解:(1)CBA 的所有队伍是确定的,所以可以构成一个集合. (2)“比较著名”没有衡量的标准,对象不确定,所以不能构成一个集合. (3)“得分前五位”是确定的,所以可以构成一个集合. (4)“比较高”没有衡量的标准,对象不确定,所以不能构成一个集合. 元素与集合的关系 【解析】 (1)12是实数,2是无理数,|-3|=3是非负整数,|-3|=3是无理数. 因此,①②③正确,④错误. (2)因为a ∈A 且4-a ∈A , a ∈N 且4-a ∈N , 若a =0,则4-a =4,

新高中数学《集合》专项测试 (1039)

高中数学《集合》测试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________ 一、选择题 1.设全集为R , 函数()f x =M , 则C M R 为 (A) [-1,1] (B) (-1,1) (C) ,1][1,)(∞-?+∞- (D) ,1)(1,)(∞-?+∞-(2013年高考陕西卷(理)) 2.设整数4n ≥,集合{}1,2,3, ,X n =.令集合 (){} ,,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立, 若 (),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( ) A . (),,y z w S ∈,(),,x y w S ? B.(),,y z w S ∈,(),,x y w S ∈ C. (),,y z w S ?,(),,x y w S ∈ D. (),,y z w S ?,(),,x y w S ∈ (2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))(一)必做题(9~13题) 3.设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于 ( ) (A){1,2} (B) {3,4} (C) {1} (D) {-2,-1,0,1,2}(2004江苏) 4.已知集合{1,1}M =-,11 {| 24,}2 x N x x Z +=<<∈则M N =( )BA . {1,1}- B . {1}- C . {0} D . {1,0}-(2007年高考山东理科2). 5.已知集合11 {|,},{|,}623 n M x x m m Z N y y n Z ==+∈==-∈,则M 和N 之间的关系为 -----( ) A.M =N B.M N C.M N D.不确 6.集合P ={x |x 2-16<0},Q ={x |x =2n ,n ∈Z },则P Q =(C ) A.{-2,2} B.{-2,2,-4,4} C.{-2,0,2} D.{-2,2,0,-4,4}(2006湖北文)

离散数学集合运算C++或C语言实验报告

离散数学实验报告 专业班级:12级计算机本部一班姓名:鲍佳珍 学号:201212201401016 实验成绩: 1.【实验题目】 命题逻辑实验四 2.【实验目的】 掌握用计算机求集合的交、并、差和补运算的方法。 3.【实验内容】 编程实现集合的交、并、差和补运算。 4、【实验要求】 C或C++语言编程实现 5.【算法描述】 (1)用数组A,B,C,E表示集合。假定A={1,3,4,5,6,7,9,10}, B={2,,3,4,7,8,10}, E={1,2,3,4,5,6,7,8,9,10}, 输入数组A,B,E(全集),输入数据时要求检查数据是否重复(集合中的数据要求不重复),要求集合A,B是集合E的子集。 以下每一个运算都要求先将集合C置成空集。 (2)二个集合的交运算:A?B={x|x∈A且x∈B} 把数组A中元素逐一与数组B中的元素进行比较,将相同的元素放在数组C 中,数组C便是集合A和集合B的交。 C语言算法: for(i=0;i

for(j=0;j int main(){

集合与数学方法第七章 人教版

集合与数学方法第七章 湖南省衡南五中 龙诗春 邮编 421101 近世代数、概率论、拓朴学、模糊数学等都以集合为基础,数学无处不隐藏着集合的影子。作为中学的数学方法,它与集合有着什么样的关联呢?请看一个例题: 设P :函数y=ax 2-2x +1在[1,+∞)内单调递增。Q :曲线y=x 2 -2ax +4a +5与x 轴没有交点。如果P 与Q 有且只有一个正确,求a 的取值范围。 分析:P 与Q 有且只有一个正确意味着P 正确但Q 不正确、P 不正确但Q 正确两种情形。从整体来看,P 与Q 还存在两种情况:P 和Q 都正确、P 和Q 都不正确。而P 正确与P 不正确在集合中体现为集合A 与集合C U A 。 解法一:P 正确?a=0或者011a a ?? ?≤??p ?a ≤0。∴P 不正确?a >0 Q 正确??=4a 2 -4(4a +5)<0?-1<a <5。∴Q 不正确?a ≤-1或a ≥5。 则P 正确但Q 不正确?a ≤-1;P 不正确但Q 正确?0<a <5。∴P 与Q 有且只有一个正确? a ≤-1或0<a <5。 解法二:P 正确或Q 正确的a 的取值范围记为集合U ,P 和Q 都正确的a 的取值范围记为集合A ,则P 与Q 有且只有一个正确的a 的取值范围为C U A ,而U={a| a <5 },A={a|-1<a ≤0},∴C U A={a| a ≤-1或0<a <5}。 我们可以感受到:这一问题的解答过程处处闪耀着集合思想的光芒。集合与中学数学方法紧密联系,你中有我,我中有你,下面我们就一一地来欣赏它。 §1、集合与分类讨论 例1.1、设函数f (x )=x 2+|x –a |+1,x ∈R 。 (1)判断函数f (x )的奇偶性; (2)求函数f (x )的最小值。 分析:(1)判断函数f (x )的奇偶性主要是看f (x )与f (–x )的关系,容易观察到当a =0时f (x )为偶函数。当a ≠0时,验证f (x )在互为相反的两个自变量值上函数值的关系来帮助判断。 (2)去绝对值使f (x )向二次函数转化,再考察对称轴与区间的关系求最值。 解:(1)当a =0时,函数f (–x )=(–x )2+|–x |+1=f (x ),此时f (x )为偶函数。 当a ≠0时,f (a )=a 2+1,f (–a )=a 2+2|a |+1,f (–a )≠f (a ),f (–a )≠–f (a ),此时函数f (x )既不是奇函数,也不是偶函数。 (2)①当x ≤a 时,函数f (x )=x 2–x +a +1=(x –21)2+a +4 3。 若a ≤ 21 ,则函数f (x )在(–∞,a ]上单调递减,从而函数f (x )在(–∞,a ]上的最小值为f (a )=a 2+1。 若a >21,则函数f (x )在(–∞,a ]上的最小值为f (21)=43+a ,且f (2 1 )≤f (a )。 ②当x ≥a 时,函数f (x )=x 2+x –a +1=(x +21)2–a +4 3 若a ≤–21,则函数f (x )在[a ,+∞)上的最小值为f (–21)=43–a ,且f (–21 )≤f (a ); 若a >–2 1 ,则函数f (x )在[a ,+∞)单调递增,从而函数f (x )在[a ,+∞)上的最小值为f (a )=a 2+1。 综上,当a ≤–21时,函数f (x )的最小值为4 3 –a ;

离散数学集合运算c语言

离散数学集合运算(第一次作业) C语言写法: #include //求长度的运算 void main() { int i,j,n; float A[]; float B[]; float C[]; \\用于存放A于B的交 float D[]; \\用于存放A与B的并 float E[]; \\用于存放A与B的差 float F[]; \\用于存放A与B的对称差 float G[]; \\用于存放A的幂集 int k; char x; n=strlen(A); for(i=0;i

printf(“\n”); } if(i >=n) { if(G[0]) cout <

相关文档
最新文档