数学建模零件参数的优化设计

数学建模零件参数的优化设计
数学建模零件参数的优化设计

数学建模零件参数的优

化设计

IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

零件参数的优化设计

摘要

本文建立了一个非线性多变量优化模型。已知粒子分离器的参数y由零件参数

)7

2,1 (

=

i

x

i 决定,参数

i

x的容差等级决定了产品的成本。总费用就包括y偏离y0造

成的损失和零件成本。问题是要寻找零件的标定值和容差等级的最佳搭配,使得批量生产中总费用最小。我们将问题的解决分成了两个步骤:1.预先给定容差等级组合,在确定容差等级的情况下,寻找最佳标定值。2.采用穷举法遍历所有容差等级组合,寻找最佳组合,使得在某个标定值下,总费用最小。在第二步中,由于容差等级组合固定为108种,所以只要在第一步的基础上,遍历所有容差等级组合即可。但是,这就要求,在第一步的求解中,需要一个最佳的模型使得求解效率尽可能的要高,只有这样才能尽量节省计算时间。经过对模型以及matlab代码的综合优化,最终程序运行时间仅为秒。最终计算出的各个零件的标定值为:

i

x={,,,,,,},

等级为:B

B

C

C

B

B

B

d,

,

,

,

,

,

=

一台粒子分离器的总费用为:元

与原结果相比较,总费用由(元/个)降低到(元/个),降幅为%,结果是令人满意的。

为了检验结果的正确性,我们用计算机产生随机数的方式对模型的最优解进行模拟检验,模拟结果与模型求解的结果基本吻合。最后,我们还对模型进行了误差分析,给出了改进方向,使得模型更容易推广。

关键字:零件参数非线性规划期望方差

一、问题重述

一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。零件参数包括标定值和容差两部分。进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离其标定值的容许范围。若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3倍。

进行零件参数设计,就是要确定其标定值和容差。这时要考虑两方面因素:一是当各零件组装成产品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏离越大,损失越大;二是零件容差的大小决定了其制造成本,容差设计得越小,成本越高。

试通过如下的具体问题给出一般的零件参数设计方法。

粒子分离器某参数(记作y )由7个零件的参数(记作x 1,x 2,...,x 7)决定,经验公式为:

y 的目标值(记作y 0)为。当y 偏离y 0+时,产品为次品,质量损失为1,000元;当y 偏离y 0+时,产品为废品,损失为9,000元。

零件参数的标定值有一定的容许范围;容差分为A、B、C三个等级,用与标定值的相对值表示,A等为+1%,B等为+5%,C等为+10%。7个零件参数标定值的容许范围,及不同容差等级零件的成本(元)如下表(符号/表示无此等级零件):

现进行成批生产,每批产量1,000个。在原设计中,7个零件参数的标定值为:x 1=,x 2=,x 3=,x 4=,x 5=,x 6=16,x 7=;容差均取最便宜的等级。

请你综合考虑y 偏离y 0造成的损失和零件成本,重新设计零件参数(包括标定值和容差),并与原设计比较,总费用降低了多少?

二、模型假设

1、将各零件参数视为随机变量,且各自服从正态分布;

2、假设组成离子分离器的各零件互不影响,即各零件参数互相独立;

3、假设小概率事件不可能发生,即认为各零件参数只可能出现在容许范围内;

4、在大批量生产过程中,整批零件都处于同一等级,。本题可认为1000各零件都为A 等、B 等或C 等;

5、生产过程中出质量损失外无其他形式的损失;

6、在质量损失计算过程中,认为所有函数都是连续可导的。

三、符号说明

i x :第i 类零件参数的标定值(i=1,2……7);

i x ?:第i 类零件参数的实际值相对目标值的偏差(i=1,2……7);

i r :第i 类零件参数的容差(i=1,2,……7);

i σ:第i 类零件参数的方差(i=1,2,……7);

i i b a ,:标定值i x 的上、下限;

y :离子分离器某参数的实际值;

y:离子分离器该参数的目标值;

y:离子分离器某参数的均值;

y?:离子分离器某参数的实际值y相对平均值y的偏差;

σ:离子分离器某参数的方差;

y

P:一批产品中正品的概率;

1

P:一批产品中次品的概率;

2

P:一批产品中废品的概率;

3

W:一批产品的总费用(包括损失和成本费);

C:第i类零件对应容差等级为j的成本(j=A,B,C)单位:元/个。

ij

四、问题分析

布,联想正态分布的性质——当各变量均服从正态分布时,其线性组合也服从正态分布。题中所给经验公式为一复杂的非线性的公式,无法直接对其分析处理,所以需借助泰勒公式将其展开并作相应处理使其线性化。而对于零件成本,需先确定容差等级才能求得成本费。由容差等级和各类零件的标定值i x 便可知道给类零件的容差i r 。最后,便将问题转化为i x 、i r 关于总目标函数的最优解的问题上。

在进行零件参数设计时,如果零件设计不妥,造成产品参数偏离预先设定值,就会造成质量损失,且偏差越大,损失也越大;零件容差的大小决定了其制造成本,容差设计得越小(即精度越高)零件成本越高。 合理的设计方案应既省费用又能满足产品的预先设定值,设计方向应该如下:

(1)设计的零件参数,要保证由零件组装成的产品参数符合该产品的预先设定值,即使有偏离也应是在满足设计最优下的容许范围。

(2)零件参数(包括标定值和容差等级)的设计应使总费用最小为优。

此外分析零件的成本及产品的质量损失不难发现,质量损失对费用的影响远大于零件成本对费用的影响,因而设计零件参数时,主要考虑提高产品质量来达到减少费用的目的。

五、模型建立

为了确定原设计中标定值(x i i (,,,)=127 的期望值)及已给的容差对产品性能参数影响而导致的总损失W ,即确定y 偏离目标值y 0所造成的损失和零件成本,先列出总损失的数学模型表达如下:

当然,为了确定总损失W ,必须知道1P 、2P 、3P (即正品、次品及废品的概率)。为此,将经验公式用泰勒公式在)72,1( ==i x X i 处展开并略去二次以上高次项后来研究y 的概率分布,设y x f =)(,则

将标定值)72,1( =i x i 带入经验公式即得 所以 i i i

x x f

y y y ???=-=?∑

=7

1 由于在加工零件时,在标定值知道的情况下,加工误差服从正态分布,即 且i x ?相互独立,由正态分布性质可知 由误差传递公式得 227

12

7

12

)()()(i i i i i

i i i y

x x x f x f σσσ∑∑==??=??= (1)

由于容差为均方差的3倍,容差与标定值的比值为容差等级,则 y 的分布密度函数为

y 偏离1.00±y 的概率,即次品的概率为

??+=8

.16

.14

.12

.12)()()()(y d y y d y P ?? (2)

y 偏离3.00±y 的概率,即废品的概率为

??+∞

-+=8

.12

.13)()()()(y d y y d y P ?? (3)

由于y 偏离0y 越远,损失越大,所以在y σ固定时,调整y 使之等于目标值0y 可降低损失。取0y y y -=?即0y y =,则

)(t φ为标准正态分布函数。

综合考虑y 偏离y 0造成的损失和零件成本,设计最优零件参数的模型建立如下: 目标函数

min )90001000(1000327

1P P C W i ij ++?=∑=

. )72,1( =≤≤i a x b i

i i

六、模型求解

初略分析

对于原给定的设计方案,利用matlab编程计算(见附录),计算结果如下:

由于按原设计方案设计的产品正品率过低,损失费过高,显然设计不够合理。进

y=太远,致使损失过大。尽管原设计方案保一步分析发现,参数均值y=偏离目标值

证了正本最低,但由于零件参数的精度过低,导致正品率也过低。所以我们应综合考虑成本费和损失费。

模型的实现过程:

本模型通过matlab进行求解,我们通过理论模型求解和随机模拟的求解过程如下:在给定容差等级的情况下,利用matlab中求解非线性规划的函数fmincon,通过多次迭代求解,最终求得一组最优解。最初,我们设定的fmincon函数的目标函数就是总费用,约束条件为各个标定值的容许范围,以及各零件标定值带入产品参数表达y,即。然而,在迭代过程中我们发现,求解过程十分慢,在给定容差等级的

式应为

确定的情况下,计算最优标定值需要将近400秒,如果在此基础上对108种容错等级进行穷举查找最优组合,将需要大概12小时。显然这是不合理的。因此,我们在仔细对matlab实现代码研究发现,求解过程之所以慢,是因为代码中存在多次调用求偏导和积分的函数,在fmincon的多次迭代中,耗费大量时间。所以,为了提高求解速度,我们首先利用matlab中diff函数对产品参数中的各个表达式进行求偏导,然后得到多个带参表达式,利用int函数对y的概率密度函数进行积分,分别得到出现次品和废品概率的表达式,然后将这些表达式写进程序里,这样在求解过程中就不需要在每一次迭代中都要求偏导和积分了,修改后的程序运行时间大大减少。

程序流程图

模型检验

对设计方案进行动态模拟,由于每种零件参数均服从正态分布,用正态分布随机数发生器在每种零件参数允许范围内产生1000个随机数参与真实值i x 的计算随机模拟

N 次后结果如下:

根据最优解的y =,y σ=画出y 的概率分布图,再对x 随机取样画出y 的概率分布图(见图),由图可知:两组数据所画概率分布图的拟合度相当高,进一步确保了模型的正确性。

图概率分布图对比图

通过以上数据,与原设计方案所得结果相比较,总费用由(元/个)降低到(元/个),降幅为%,结果是令人满意的。

七、误差分析

1、在建模过程中,通过泰勒公式将)(X f y =展开并略去二次及以上项使线性

化,不可避免地产生了截断误差,所以展开后的式子只是原经验公式的近似关系式。但在一般情况下,线性化和求总和在实用上具有足够的精度,所以由于函数线性化而略去的高次项可以忽略不计。在函数关系式较复杂的情况下,将其线性化更具有明显的优势。

2、本模型忽略了小概率事件发生的可能,认为零件的参数只可能出现在允 范围内,即[]i i i i x x σσ3,3+-。现实中,小概率事件仍有发生的可能性,但在大批量生产中,小概率事件的发生对最终结果没有影响,所以可以忽略。

3、该模型对于质量损失的计算,将所有函数都看作连续函数,而这对于每 个零件参数而言是不可能的,所以其中也会产生误差。

八、模型的评价及推广

1.优点

(1)建模过程中,采用泰勒公式将经验公式简化,并假设各零件参数都服从满足大量数据的正态分布,使得整个模型的建立及求解得到大大简化。

(2)本模型运用概率统计与优化知识对零件参数进行优化设计。通过建立一个反映设计要求的数学模型,利用MATLAB 软件,经过编程来实现对设计方案参数的调整,将总费用由(元/个)降低到(元/个),降幅达到%,结果还是令人十分满意的。

(3)本模型在程序运算的过程中,做了适当处理,将每次循环本该由计算机求偏导和积分的提前人为处理,将求偏导和积分后的算式写入程序中,这样大大节约了运算时间,将运行时间由几个小时缩短为。 2.缺点

(1)本模型在模型的求解过程中,对一些可接受范围内的误差直接进行了忽略,因而对于结果的精确性还是会有一定的影响。

(2)本模型是建立在一些假设中的,所有实用性受到了限制,在实际生产中,如果可以把更多的一些因素考虑进去应该会更好。在已假定的条件下,本模型的优化结果是好的。 3推广

此模型有较强的应用价值。工程中往往因为某个零件的选取不当,而影响产品的参数,使可靠性降低,造成了极大的经济损失。所以需综合考虑零件成本和质量,以求获得最大的经济效益。

本模型具有广泛的适用性,很容易加以推广。模型中的设计变量x i i (,,,)

=127 可以推广到n 个的情形,即设计变量x i n R i n (,,,)=∈12 ,其中设计空间R n 是一个n

维空间。本模不仅适用于粒子分离器参数的设计,而且也可用于类似的机构、零部件、工艺设备等的基本参数的设计问题;容差等级同样可推广应用。 参考文献

【1】韩之俊,姚平中,《概率与统计》,国防工业出版社,1985

【2】陈宝林,《最优化理论与算法》,清华大学出版社,1989

【3】裘宗燕,《数学软件系统的应用及程序设计》,北京大学出版社,1994 【4】许波,《Matlab 工程数学应用》,清华大学出版社,2001

附录:matlab代码:

function f=result

%穷举108种容错等级组合求解全局最优解

fval=inf;

tic

%Bmin=[2 3 3 3 3 3 2];

%Xmin

B(1)=2;

B(5)=3;

for i=2:3

B(2)=i;

for j=1:3

B(3)=j;

for t=1:3

B(4)=t;

for g=1:3

B(6)=g;

for m=1:2

B(7)=m;

[fv,x]=getcost(B);

if fv

Xmin=x;

Bmin=B;

fval=fv;

end;

end;

end;

end;

end;

end;

f=fval,Xmin,Bmin,p=getP(Xmin,Bmin)

toc

simulation(Xmin,Bmin);%用随机法和计算的结果进行模拟比较

function f=simulation(MU,B)

%用随机法和计算的结果进行模拟比较

for i=1:10000

y(i)=Yfun(getparaX(MU,B));

end;

[f,xi] = ksdensity(y);

plot(xi,f); % 画经验概率密度曲线

hold on;

y0=Yfun(MU);

fc=getfcY(MU,B);

%{

x = normrnd(y0,fc,1,10000);

[f1,xj] = ksdensity(x);

plot(xj,f1,'r');

%}

x0=min(y)::max(y);

y=((2*pi)^*fc)^(-1)*exp(-(x0-y0).^2/2/fc^2);

plot(x0,y,'r');

%{

x=min(y)::max(y);

yg=gaussmf(x,[fc,y0]);

plot(x,yg,'r');

%}

title('对照图');

gtext('注:蓝线为对x随机取样求得的y分布');

gtext('红线为根据模型计算出的y分布');

xlabel('y');

ylabel('y的概率密度');

hold off;

function [f,x]=getcost(B)

%在给定容差等级的情况下求最优的标定值,使得Y的均值为y0的情况下,方差最小MU=[ 16 ];%给定初始的标定值

options=optimset('LargeScale','off','Display','off');%,'Tolx',;

[x,fval]=fmincon('getfcY',MU,[],[],[],[],[],[],'mycon',options,B);

x,B,f=cost(x,B)

function [c,ceq]=mycon(MU,B)

%求最优标定值时的约束条件

%c为不等式约束

%ceq为等式约束

c(1)=MU(1);

c(2)=(1);

c(3)=MU(2);

c(4)=(2);

c(5)=MU(3);

c(6)=(3);

c(7)=MU(4);

c(8)=(4);

c(9)=MU(5);

c(10)=(5);

c(11)=MU(6)-20;

c(12)=12-MU(6);

c(13)=MU(7);

c(14)=(7);

ceq(1)=Yfun(MU);

function f=cost(MU,B)

%当标定值为MU,容差等级为B时,求费用f=25;

p=getP(MU,B);%求正品、次品、废品的概率if(B(2)==2)

f=f+50;

else

f=f+20;

end;

switch (B(3))

case 1

f=f+200;

case 2

f=f+50;

case 3

f=f+20;

end;

switch (B(4))

case 1

f=f+500;

case 2

f=f+100;

case 3

f=f+50;

end;

f=f+50;

switch (B(6))

case 1

f=f+100;

case 2

f=f+25;

case 3

f=f+10;

end;

if(B(7)==1)

f=f+100;

else

f=f+25;

end;

f=f+p(2)*1000+p(3)*9000;

function f=getfcY(MU,B)

%对于所给的标定值和容差求Y的方差

f=0;

B=int32(B);

for i=1:7

if B(i)==1

sigma(i)=MU(i)*3;

end;

if B(i)==2

sigma(i)=MU(i)*3;

end;

if B(i)==3

sigma(i)=MU(i)*3;

end;

end;

x1=MU(1);x2=MU(2);x3=MU(3);x4=MU(4);x5=MU(5);x6=MU(6);x7=MU(7);

%求Y对各变量的偏导的评分与对应的方差乘积之和

f=(pd1(x1,x2,x3,x4,x5,x6,x7)*sigma(1))^2;f=f+(pd2(x1,x2,x3,x4,x5,x6,x7)*sigma(2))^2;

f=f+(pd3(x1,x2,x3,x4,x5,x6,x7)*sigma(3))^2;f=f+(pd4(x1,x2,x3,x4,x5,x6,x7)*sigma(4))^2; f=f+(pd5(x1,x2,x3,x4,x5,x6,x7)*sigma(5))^2;f=f+(pd6(x1,x2,x3,x4,x5,x6,x7)*sigma(6))^2; f=f+(pd7(x1,x2,x3,x4,x5,x6,x7)*sigma(7))^2;

f=abs(f^;

function f=pd1(x1,x2,x3,x4,x5,x6,x7)

%Y对x1的偏导

f=8721/50/x5*(x3/(x2-x1))^(17/20)*((1-131/50*(1-9/25/...

(x4/x2)^(14/25))^(3/2)*(x4/x2)^(29/25))/x6/x7)^(1/2)+...

148257/1000*x1/x5/(x3/(x2-x1))^(3/20)*((1-131/50*(1-9/25/(x4/x2)...

^(14/25))^(3/2)*(x4/x2)^(29/25))/x6/x7)^(1/2)*x3/(x2-x1)^2;

function f=pd2(x1,x2,x3,x4,x5,x6,x7)

%Y对x2的偏导

f=-148257/1000*x1/x5/(x3/(x2-x1))^...

(3/20)*((1-131/50*(1-9/25/(x4/x2)^(14/25))^(...

3/2)*(x4/x2)^(29/25))/x6/x7)^(1/2)*x3/(x2-x1)^...

2+8721/100*x1/x5*(x3/(x2-x1))^(17/20)/((1-131/50*(1-9/25/...

(x4/x2)^(14/25))^(3/2)*(x4/x2)^(29/25))/x6/x7)^(1/2)*(24759/31250*...

(1-9/25/(x4/x2)^(14/25))^(1/2)/(x4/x2)^(2/5)*x4/x2^2+3799/1250*(1-9/25/...

(x4/x2)^(14/25))^(3/2)*(x4/x2)^(4/25)*x4/x2^2)/x6/x7;

function f=pd3(x1,x2,x3,x4,x5,x6,x7)

%Y对x3的偏导

f=148257/1000*x1/x5/(x3/(x2-x1))^(3/20)*((1-131/50*...

(1-9/25/(x4/x2)^(14/25))^(3/2)*(x4/x2)^(29/25))/x6/x7)^(1/2)/(x2-x1);

function f=pd4(x1,x2,x3,x4,x5,x6,x7)

%Y对x4的偏导

f=8721/100*x1/x5*(x3/(x2-x1))^(17/20)/((1-131/50*(1-9/25/(x4/x2)^(14/25))^...

(3/2)*(x4/x2)^(29/25))/x6/x7)^(1/2)*(-24759/31250*(1-9/25/(x4/x2)^(14/25))^... (1/2)/(x4/x2)^(2/5)/x2-3799/1250*(1-

9/25/(x4/x2)^(14/25))^(3/2)*(x4/x2)^(4/25)/x2)/x6/x7;

function f=pd5(x1,x2,x3,x4,x5,x6,x7)

%Y对x5的偏导

f=-8721/50*x1/x5^2*(x3/(x2-x1))^(17/20)*((1-131/50*(1-

9/25/(x4/x2)^(14/25))^(3/2)*(x4/x2)^(29/25))/x6/x7)^(1/2);

function f=pd6(x1,x2,x3,x4,x5,x6,x7)

%Y对x6的偏导

f=-8721/100*x1/x5*(x3/(x2-x1))^(17/20)/((1-131/50*(1-9/25/(x4/x2)^(14/25))^...

(3/2)*(x4/x2)^(29/25))/x6/x7)^(1/2)*(1-131/50*(1-

9/25/(x4/x2)^(14/25))^(3/2)*(x4/x2)^(29/25))/x6^2/x7;

function f=pd7(x1,x2,x3,x4,x5,x6,x7)

%Y对x7的偏导

f=-8721/100*x1/x5*(x3/(x2-x1))^(17/20)/((1-131/50*(1-9/25/...

(x4/x2)^(14/25))^(3/2)*(x4/x2)^(29/25))/x6/x7)^(1/2)*...

(1-131/50*(1-9/25/(x4/x2)^(14/25))^(3/2)*(x4/x2)^(29/25))/x6/x7^2;

function f=getP(MU,B)

%当标定值为MU,容差等级为B时,求正品、次品、废品的概率

yb=Yfun(MU);

fc=getfcY(MU,B);

%syms x0 u a0;yy=subs(((2*pi)^*a0)^(-1)*exp(-(x0-u)^2/2/a0^2),'u',yb);

%yy=subs(yy,'a0',fc);

%y0=;

f(2)=jf1(yb,fc);

f(3)=jf2(yb,fc);

%f(1)=0;

%f(2)=(cdf('normal',y0+,yb,fc) -cdf('normal',y0+,yb,fc))*2 ;

%f(3)=2*cdf('normal',,yb,fc);

f(1)=1-f(2)-f(3);

f=double(f);

function f=jf1(u,a0)

%通过积分求出现次品的概率

...

erf(1/10*2^(1/2)*(-9+5*u)/a0)*2^(1/2)*pi^(1/2)...

...

...

...

function f=jf2(u,a0)

%通过积分求出现废品的概率

...

...

...

...

function f=Yfun(x)

%Y的表达式

f=*x(1)/x(5)*(x(3)/(x(2)-x(1)))^*...

(**(x(4)/x(2))^)^*...

(x(4)/x(2))^/x(6)/x(7))^;

function f=geteveryP(MU,B,iter)

%利用标定值MU和容错等级B,进行随机取样,取样iter个%求出现正品、次品、废品的概率

f(1)=0;

f(2)=0;

f(3)=0;

for i=1:iter

a=abs(Yfun(getparaX(MU,B));

if a<

f(1)=f(1)+1;

end;

if a< &a>=

f(2)=f(2)+1;

end;

if a>=

f(3)=f(3)+1;

end;

end;

f(1)=f(1)/iter;

f(2)=f(2)/iter;

f(3)=f(3)/iter;

f

function f=getparaX(MU,B)

%利用标定值MU和容错等级B,随机求一组零件的参数

B=int32(B);

for i=1:7

if B(i)==1

sigma0(i)=MU(i)*;

end;

if B(i)==2

sigma0(i)=MU(i)*;

end;

if B(i)==3

sigma0(i)=MU(i)*;

end;

f(i)=normrnd(MU(i),sigma0(i)/3);

% while( ~(f(i)>(MU(i)-sigma0(i)) & f(i)<(MU(i)+sigma0(i)))) %f(i)=normrnd(MU(i),sigma0(i)/3);

%end;

end;

旅游线路的优化设计

2011年第八届苏北数学建模联赛 承诺书 我们仔细阅读了第八届苏北数学建模联赛的竞赛规则。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。 我们的参赛报名号为: 参赛组别(研究生或本科或专科):本科 参赛队员(签名) : 队员1: 队员2: 队员3: 获奖证书邮寄地址:

编号专用页 参赛队伍的参赛号码:(请各个参赛队提前填写好):竞赛统一编号(由竞赛组委会送至评委团前编号): 竞赛评阅编号(由竞赛评委团评阅前进行编号):

题目旅游线路的优化设计 摘要 本文主要研究最佳旅游路线的设计问题。在满足相关约束条件的情况下,花最少的钱游览尽可能多的景点是我们追求的目标。基于对此的研究,建立数学模型,设计出最佳的旅游路线。 第一问放松时间约束,要求游客游遍所有的景点,该问题也就成了典型的货郎担(TSP)问题。使用lingo编程得到最佳旅游路线为:徐州—常州—舟山—黄山—庐山—武汉黄鹤楼—龙门石窟—秦兵马俑—祁县乔家大院—八达岭长城—青岛崂山—徐州。 第二问给定时间约束,要求设计合适的旅游路线。我们建立了一个最优规划模型,在给定游览景点个数的情况下以总费用不限,时间最少为目标。再引入0—1变量表示是否游览某个景点,从而推出交通费用和景点花费的函数表达式,给出相应的约束条件,使用lingo编程对模型求解。推荐方案:徐州—恐龙园—舟山—黄山—庐山—黄鹤楼—秦兵马俑—龙门石窟—乔家大院—八达岭长城—青岛崂山—徐州。 第三问放松时间约束,要求游客在总费用低于2000元的约束下游览最多的景点。在第一问的基础上建立模型,并增加总费用低于2000元的约束。使用lingo编程得到最佳旅行路线为:徐州—常州—武汉—洛阳—西安—祁县—北京—青岛—徐州。 第四问给定时间约束,放松对总费用的约束。我们在第二问的基础上建立一个最优化模型,以时间最少为目标。再引入0—1变量表示是否游览某个景点,从而推出交通费用和景点花费的函数表达式,给出相应的约束条件,使用lingo编程对模型求解。推荐方案:徐州-常州-九江-武汉-洛阳-西安-祁县-北京-徐州。 第五问给定时间、总费用小于2000的双重约束。我们在第三问、第四问的基础上建立模型,以在规定时间内,规定总费用内,以游览最多景点为目标。使用lingo编程对模型求解。推荐方案:徐州-常州-舟山-黄山-九江-武汉-洛阳-西安-徐州 关键词:最佳路线TCP问题景点个数最小费用

实验六PID控制系统参数优化设计

实验六 PID 控制系统参数优化设计 一.实验目的: 综合运用MATLAB 中SIMULINK 仿真工具进行复杂控制系统的综合设计与优化设计,综合检查学生的文献查阅、系统建模、程序设计与仿真的能力。 二.实验原理及预习内容: 1.控制系统优化设计: 所谓优化设计就是在所有可能的设计方案中寻找具有最优目标(或结果)的设计方法。控制系统的优化设计包括两方面的内容:一方面是控制系统参数的最优化问题,即在系统构成确定的情况下选择适当的参数,以使系统的某些性能达到最佳;另一方面是系统控制器结构的最优化问题,即在系统控制对象确定的情况下选择适当的控制规律,以使系统的某种性能达到最佳。 在工程上称为“寻优问题”。优化设计原理是“单纯形法”。MATLAB 中语句格式为:min ('')X f s =函数名,初值。 2.微分方程仿真应用:传染病动力学方程求解 三.实验内容: 1.PID 控制系统参数优化设计: 某过程控制系统如下图所示,试设计PID 调节器参数,使该系统动态性能达到最佳。(习题5-6) 1020.1156s s e s s -+++R e PID Y 2.微分方程仿真应用: 已知某一地区在有病菌传染下的描述三种类型人数变化的动态模型为 11212122232 3(0)620(0)10(0)70X X X X X X X X X X X X ααββ?=-=?=-=??==?

式中,X 1表示可能传染的人数;X 2表示已经得病的人数;X 3表示已经治愈的人数;0.0010.072αβ==;。试用仿真方法求未来20年内三种人人数的动态变化情况。 四.实验程序: 建立optm.m 文件: function ss=optm (x) global kp; global ki; global kd; global i; kp=x (1); ki=x (2); kd=x (3); i=i+1 [tt,xx,yy]=sim('optzwz',50,[]); yylong=length(yy); ss=yy(yylong); 建立tryopt.m 文件: global kp; global ki; global kd; global i; i=1; result=fminsearch('optm',[2 1 1]) 建立optzwz.mdl:

船舶螺旋桨螺距及拱度的优化设计研究

船舶螺旋桨螺距及拱度的优化设计研究 2010年6月11日 摘要 基于螺旋桨水动力性能的升力面理论预报程序,利用iSIGHT软件进行指定负荷分布形式下桨叶螺距及拱度的优化设计研究,并对设计结果进行粘流CFD计算验证。以某集装箱船螺旋桨为母型桨,保持其原有的径向负荷分布形式,指定不同的弦向负荷分布形式,采用上述方法进行螺距及拱度的优化设计(桨叶其它参数与母型桨相同)。CFD计算表明,通过指定适当的负荷弦向分布,可以在保证效率的同时使桨叶表面压力分布更加均匀,从而推迟桨叶空化。 关键词:船舶、舰船工程;螺旋桨;优化;设计;升力面理论;CFD 0引言 随着船舶向大型化、高速化发展,对螺旋桨的综合性能要求日益提高。现代船舶螺旋桨设计在追求高推进效率的同时,还必须在复杂的船尾流场中尽量推迟乃至避免空化的发生,从而降低螺旋桨诱发的船体振动及噪声。为了满足这些相互制约的要求,螺旋桨优化设计方法的研究日益受到船舶工程界的重视。 传统的螺旋桨设计方法分为图谱设计和理论设计两大类,前者无法直接用于适伴流及大侧斜桨的设计,后者可分为升力线、升力面及面元方法等,能够处理伴流及侧斜问题,但对负荷面分布形式的处理比较单一,应用也不够广泛。近年来,优化方法在螺旋桨设计中的应用研究开始出现,性能计算采用系列桨性能试验回归公式或升力面、CFD等数值方法,优化采用遗传算法、序列二次规划法、DOE方法等,优化目标包括推力、效率、激振力或其组合,但尚未形成比较成熟的体系,与工程应用的要求也有较大距离。 Benini开发了基于遗传算法的系列螺旋桨多目标优化方法,采用试验数据的回归公式计算敞水性能。以敞水效率和推力最大化为目标、Keller空泡限界公式为限制条件,对B

数学建模_零件参数的优化设计说明

零件参数的优化设计 摘 要 本文建立了一个非线性多变量优化模型。已知粒子分离器的参数y 由零件参数)72,1( =i x i 决定,参数i x 的容差等级决定了产品的成本。总费用就包括y 偏离y 0造成的损失和零件成本。问题是要寻找零件的标定值和容差等级的最佳搭配,使得批量生产中总费用最小。我们将问题的解决分成了两个步骤:1.预先给定容差等级组合,在确定容差等级的情况下,寻找最佳标定值。2.采用穷举法遍历所有容差等级组合,寻找最佳组合,使得在某个标定值下,总费用最小。在第二步中,由于容差等级组合固定为108种,所以只要在第一步的基础上,遍历所有容差等级组合即可。但是,这就要求,在第一步的求解中,需要一个最佳的模型使得求解效率尽可能的要高,只有这样才能尽量节省计算时间。经过对模型以及matlab 代码的综合优化,最终程序运行时间仅为3.995秒。最终计算出的各个零件的标定值为: i x ={0.0750,0.3750,0.1250,0.1200,1.2919,15.9904,0.5625}, 等级为:B B C C B B B d ,,,,,,= 一台粒子分离器的总费用为:421.7878元 与原结果相比较,总费用由3074.8(元/个)降低到421.7878(元/个),降幅为86.28%,结果是令人满意的。 为了检验结果的正确性,我们用计算机产生随机数的方式对模型的最优解进行模拟检验,模拟结果与模型求解的结果基本吻合。最后,我们还对模型进行了误差分析,给出了改进方向,使得模型更容易推广。

关键字:零件参数 非线性规划 期望 方差 一、问题重述 一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。零件参数包括标定值和容差两部分。进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离其标定值的容许围。若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3倍。 进行零件参数设计,就是要确定其标定值和容差。这时要考虑两方面因素:一是当各零件组装成产品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏离越大,损失越大;二是零件容差的大小决定了其制造成本,容差设计得越小,成本越高。 试通过如下的具体问题给出一般的零件参数设计方法。 粒子分离器某参数(记作y )由7个零件的参数(记作x 1,x 2,...,x 7)决定,经验公式为: 7616 .1242 3 56 .02485 .01235136.0162.2142.174x x x x x x x x x x x Y ??? ? ????? ? ???????? ??--???? ? ??-????? ???=- y 的目标值(记作y 0)为1.50。当y 偏离y 0+0.1时,产品为次品,质量损失为1,000元;当y 偏离y 0+0.3时,产品为废品,损失为9,000元。 零件参数的标定值有一定的容许围;容差分为A、B、C三个等级,用与标定值的相对值表示,A等为+1%,B等为+5%,C等为+10%。7个零件参数标定值的容许围,及不同容差等级零件的成本(元)如下表(符号/表示无此等级零件):

ADAMS VIEW 参数化和优化设计实例详解

ADAMS/VIEW 参数化和优化设计实例详解本例通过小球滑落斜板模型,着重详细说明参数化和优化设计的过程。 第一步,启动adams/view(2014版),设置工作路径,设置名称为incline。 名称 存储路径第二部,为满足模型空间,设置工作网格如图参数。 修改尺寸 第三部创建斜板。点击Bodies选项卡,选择BOX,然后建模区点击鼠标右键,分别设置两个点,坐标为(0,0,0)和(-500,-50,0),创建完模型,然后右键Rename,修改名称为xieban。

右键输入坐标,创建点BOX rename 输入xieban

第四部创建小球。点击Bodies选项卡,选择Sphere,然后建模区点击鼠标右键,分别设置两个点,球心坐标为(-500,50,0)和半径坐标(-450,50,0),创建完模型,然后右键Rename,修改名称为xiaoqiu。 输入两点 Rename,及创建效果 第五部创建圆环。点击Bodies选项卡,选择Torus,然后建模区点击鼠标右键,分别设置两个点,圆环中心坐标为(450,-1000,0)和大径坐标(500,-1000,0),创建完模型,然后右键Rename,修改名称为yuanhuan。完成后效果如下图: 第六部修改小球尺寸及位置。首先修改小球半径为25mm,在小球上右键,选择球体,点击Modify,然后设置如下图;然后修改小球位置,将Y坐标移到25mm处,选择Marker_2点,

右键点击Modify,然后设置坐标位置如下图。 右键编辑球半径 修改半径为25 改后效果 修改球的位置

设置球坐标 完成修改后效果 第七部修改圆环尺寸及位置。将圆环绕X轴旋转90度,选择Marker_3点,右键点击Modify,然后设置坐标位置如下图。修改圆环尺寸,大径为40mm,截面圆环半径为12mm,右键,选择圆环体,点击Modify ,然后设置如下图。至此,模型建立完毕。 修改圆环位置

基于ANSYS的船用螺旋桨模态分析与优化设计

基于ANSYS的船用螺旋桨模态分析与优化设计 利用UG软件对船用螺旋桨模型进行处理,并用ANSYS有限元仿真软件分析其模态振型,首先分析无支撑情况下螺旋桨单叶片的模态振型,提取振幅最大模态。设计支撑方案,确定支撑位置并进行约束模态分析,结果显示螺旋桨单叶片频率有所提高,增加了加工刚度,最后确定优化的支撑方案,显著提高了螺旋桨的刚度,减小各阶模态的振动位移,对实际加工具有重要意义。 标签:ANSYS有限元分析;螺旋桨模态分析;优化设计 Abstract:The model of marine propeller is processed by UG software,and its modal mode is analyzed by ANSYS finite element simulation software. Firstly,the modal mode of single blade of propeller without support is analyzed,and the maximum amplitude mode is extracted. The results show that the frequency of single blade of propeller is increased and the machining stiffness is increased. Finally,the optimized bracing scheme is determined,and the stiffness of propeller is improved significantly. It is of great significance to reduce the vibration displacement of each mode for machining. Keywords:ANSYS finite element analysis;propeller modal analysis;optimal design 螺旋槳是舰船的主动力装置,其设计与制造精度直接决定舰船运行性能。目前,螺旋桨的设计技术我国已达到领先水平,但是加工制造技术还存在较大差距。我国对于船用螺旋桨现阶段的加工一直采用手工打磨的方式,其工作环境差,对工人的身体有很大损伤,并且效率低下,精度也难以控制。为了解决这一问题,我国一些学者正在研究利用机器人进行螺旋桨铣削加工的工艺系统,其具有较多的优势。研究发现,铣削加工中的振动一直是影响加工质量的主要因素,所以,针对螺旋桨的振动模态分析是研究的重点内容。本文主要利用有限元分析软件ANSYS对一种型号的船用螺旋桨进行模态振型分析,通过施加约束条件分析使用支撑时的模态变化,寻找优化的支撑方法。 1 模型处理 利用三维建模软件UG对现有的螺旋桨设计模型进行简单处理,避免在后续有限元分析时遇到的一些问题。如图1所示为螺旋桨的设计模型,直径3300mm,在叶梢位置由于建模方法的原因,存留有没有闭合的曲线,对后续有限元的网格划分会带来影响,所以,利用一直径为3290mm的同心圆柱面截取设计模型,截去叶梢的尖角部分,对模型整体模态的影响可以忽略不计,处理如图2所示。另外,根据螺旋桨的结构特点,靠近桨毂部分结构较复杂,靠近叶梢部分结构简单,所以为了在后续的单元划分时保证较高精度的同时又花费较少时间,在模型处理时将螺旋桨分割为两部分实体,一部分是包含桨毂,另一部分包含叶片。最后将处理完成的模型导出x_t格式文件,以便ANSYS软件导入。

优化设计数学建模

一、问题重述 1、利用优化设计相关理论计算法,对某设计问题做优化设计。要求如下: ①列出优化数学模型; ②选择所用优化算法; ③画出程序框图; ④程序编写; ⑤程序调试运算结果。 现根据以上条件,结合生活实际,准备以铁板为材料设计一鱼缸,为了能使鱼儿有更大的生存空间,要求鱼缸容积最大。 现有边长为5米长的方形铁板,预备在四个角减去四个相等的方形面积,用以制成方形鱼缸,如何减能使鱼缸的容积最大。 二、问题分析 2.1、对于此问题,我采用的数学模型包括三部分,即设计变量、目标函数和约束条件。 模型如下: 其中,设裁去铁块的边长为:x(0

四、程序编写及函数图像 4.1求极值所用程序如下: function q=line_s(a,b) N=10000;r=0.01; a=0;b=1.5; for k=1:N; v=a+0.382*(b-a); u=a+0.618*(b-a); fv=-25*v+20*v^2-4*v^3; fu=-25*u+20*u^2-4*u^3; if fv>fu if b-v<=r u fu break; else a=v;v=u; u=a+0.618*(b-a); end else if u-a<=r v -fv break; else b=u;u=v; v=a+0.382*(b-a); end k=k+1 end end 4.2 函数曲线图程序如下: 如下曲线所得y值为负,前面(1*)已作解释。 x=0:0.1:2.5; y=-25*x+20*x.^2-4*x.^3; plot(x,y); 五、程序调试运行结果 5.1 如图所示: 当k执行5或7或10或12次时,均有x=0.8329时,有最大y=9.2593(函数中已做处理,变负为正,可以对照曲线图)。

优化设计的概念和原理

优化设计的概念和原理 优化设计的概念和原则 概念 1前言 对于任何设计者来说,其目的都是为了制定最优的设计方案,使所设计的产品或工程设施具有最佳的性能和最低的材料消耗和制造成本,以获得最佳的经济效益和社会效益。因此,在实际设计中,科技人员往往会先提出几种不同的方案,并通过比较分析来选择最佳方案。然而,在现实中,由于资金限制,选定的候选方案的数量往往非常有限。因此,迫切需要一种科学有效的数学方法,于是“优化设计”理论应运而生。 优化设计是在计算机广泛应用的基础上发展起来的新技术。这是一种现代设计方法,它根据优化原理和方法将各种因素结合起来,在计算机上以人机合作或“自动探索”的方式进行半自动或自动设计,以选择现有工程条件下的最佳设计方案。其设计原则是优化设计:设计手段是电子计算机和计算程序;设计方法是采用最优化数学方法。本文将简要介绍优化设计中常用的概念,如设计变量、目标函数、约束条件等。 2设计变量 设计变量是独立参数,必须在设计过程的最终选择中确定它们是选择过程中的变量,但是一旦确定了变量,设计对象就完全确定了。优化设计是研究如何合理优化这些设计变量值的现代设计方法。

机械设计中常用的独立参数包括结构的整体构型尺寸、部件的几何尺寸和材料的机械物理性能等。在这些参数中,根据设计要求可以预先给出的不是设计变量,而是设计常数。最简单的设计变量是元件尺寸,例如杆元件的长度、横截面积、弯曲元件的惯性矩、板元件的厚度等。 3目标函数 目标函数是设计中要达到的目标在优化设计中,所追求的设计目标(最优指标)可以用设计变量的函数来表示。这个过程被称为建立目标函数。一般目标函数表示为 f(x)=f(xl,xZ,?,x) 此功能代表设计的最重要特征,如设计组件的性能、质量或体积以及成本。最常见的情况是使用质量作为一个函数,因为质量的大小是最容易量化的价值度量。尽管费用具有更大的实际重要性,但通常需要有足够的数据来构成费用的目标函数。目标函数是设计变量的标量函数。优化设计的过程就是优化设计变量,使目标函数达到最优值或找到目标函数的最小值(或最大值)的过程。在实际工程设计过程中,经常会遇到多目标函数的某些目标之间存在矛盾,这就要求设计者正确处理各目标函数之间的关系目前,对这类多目标函数优化问题的研究还没有单目标函数的研究成熟。有时一个目标函数可以用来表示几个期望目标的加权和,多目标问题可以转化为单目标问题来求解。4约束 设计变量是优化设计中的基本参数。目标函数取决于设计变量。在

极化磁系统参数优化设计方法的研究

极化磁系统参数优化设计 方法的研究 The document was prepared on January 2, 2021

极化磁系统参数优化设计方法的研究 摘要:永磁继电器是一种在国防军事、现代通信、工业自动化、电力系统继电保护等领域中应用面很广的电子元器件,其极化磁系统的参数优化设计是实现永磁继电器产品可靠性设计的前提工作之一。该文采用六因素三水平多目标的正交试验设计方法,分析并研究了极化磁系统的参数优化设计方法。在永磁继电器产品设计满足输出特性指标要求的前提下,给出了输出特性值受加工工艺分散性影响而波动最小的最佳参数水平组合。 1 引言 具有极化磁系统的永磁继电器具有体积小、重量轻、功耗低、灵敏度高、动作速度快等一系列优点,是被广泛应用于航空航天、军舰船舶、现代通信、工业自动化、电力系统继电保护等领域中的主要电子元器件。吸力特性与反力特性的配合技术是电磁继电器产品可靠性设计的关键技术。在机械反力特性及电磁结构已知的情况下,如何对电磁系统进行参数优化设计,使得在保证输出特性值满足稳定性要求的前提下,电磁系统的成本最低,这是继电器可靠性设计必不可少的前提工作之一。

由于极化磁路的非线性及漏磁的影响,使极化磁系统的输出特性值(吸力值)与磁系统各参数水平组合之间存在着非线性函数关系。在各种干扰影响下,各参数存在一定的波动范围。当各参数取不同的水平组合时,参数本身波动所引起的输出特性值的波动亦不相同。由于非线性效应,必定存在一组最优水平组合,使得各参数波动所造成的输出特性值的波动最小,即输出特性的一致性最好。极化磁系统参数优化设计的目的就是要找到各参数的最优水平组合(即方案择优),使得质量输出特性尽可能不受各种干扰的影响,稳定性最好。 影响永磁继电器产品质量使其特性发生波动的主要干扰因素有:①内干扰(内噪声),是不可控因素,如触点磨损、老化等;②外干扰(外噪声),亦是不可控因素,如环境温度、湿度、振动、冲击、加速度等;③可控因素(设计变量)加工工艺的分散性等。其中前两种因素均与产品实际使用环境有关,这里暂不予考虑,本研究只考虑后者对产品质量特性波动的影响。 正交试验设计法是实现参数优化设计的重要手段之一,以往人们在集成电路制造工艺、电火花成型加工工艺、轴承故障诊断等方面得到了很好应用[1-4],但大多是采用单一目标函数的正交试验设计。文献[2]应用正交试验设计法对永磁继电器磁钢尺寸进行了参数优化设计,但没有采用正交试验设计法对永磁继电

船后伴流场预报及考虑空泡性能的螺旋桨优化设计研究

船后伴流场预报及考虑空泡性能的螺旋桨优化设计研究 随着造船、航运业的发展,船舶的安全、节能、环保等性能越来越受到重视。作为目前最常用的推进装置,螺旋桨对船舶性能的影响很重要。 由于伴流场的非均匀性,螺旋桨旋转一周过程中其桨叶会以不同的攻角与来流相遇,容易使桨叶上产生空泡。螺旋桨空泡不仅会对桨叶产生剥蚀作用,还会产生噪声及引起尾部振动。 近年来,一方面船舶不断向大型化发展,而船舶吃水受港口、航道水深的限制,螺旋桨直径不能过分增大,于是导致螺旋桨负荷加重;另一方面,肥大型船得到广泛应用,其伴流场均匀性变差,螺旋桨的工作环境恶化。这两方面的原因使出现空泡、振动现象的可能性大为增加。 因而在现代船舶的螺旋桨设计过程中兼顾效率和空泡、振动等性能非常必要。本文针对螺旋桨水动力性能和空泡性能预报及其优化设计问题,开展了以下三方面的研究工作:一、基于CFD方法的船尾伴流场数值预报。 由于船尾伴流场对螺旋桨性能有重要影响,有必要对伴流场的影响因素进行研究。本文以某集装箱船为研究对象,采用前处理软件GMS进行线型建模,并在NAPA软件中进行线型参数化变换,然后采用CFD软件PARNASSOS求解船舶尾部伴流场,并与船模试验结果相比较以验证计算的准确性。 通过对不同方形系数、船体长宽比和尾部UV度等参数的尾部伴流场的研究,探明这些参数变化对伴流场的影响趋势。二、基于支持向量机和遗传算法的螺旋桨敞水性能优化。 由于图谱法设计螺旋桨简便实用,而且可为理论设计方法提供参考,本文首 先建立基于图谱的螺旋桨敞水性能优化设计方法。以敞水效率为优化目标,空泡

限界线为约束条件,进速系数、螺距比和盘面比为优化变量建立均匀流场中螺旋桨性能优化模型;采用支持向量机预报螺旋桨水动力性能,采用遗传算法求解优化模型。 通过将优化结果与商业软件CSPDP以及文献中的计算结果相比较,验证了本文方法的有效性,为非均匀流场中螺旋桨性能优化打下了基础。三、基于升力面法的非均匀流场中螺旋桨性能优化。 非均匀流场中螺旋桨性能预报的方法有升力线法、升力面法、面元法和计算流体动力学(CFD)方法。虽然CFD方法通常比其他方法的精度要高,但是对计算机硬件的要求也较高,计算效率相对较低,不适用于大量算例的计算。 为了兼顾计算效率和预报精度,本文采用升力面程序ANPRO预报螺旋桨的水动力性能和空泡性能。预报结果与试验观测结果的比较表明升力面法可以预报空泡范围变化的趋势。 在此基础上,分别以螺旋桨效率和空泡范围为优化目标,以不同半径处的螺距和拱度为优化变量,建立了优化模型并采用遗传算法进行求解。优化前后的性能对比表明,本文提出的方法可以在一定的螺旋桨效率下优化空泡性能或者在一定的空泡性能下优化螺旋桨效率。

机械零件的可靠性优化设计

题目:机械零件的可靠性优化设计 课程名称:现代设计理论与方法 机械零件 自从出现机械,就有了相应的机械零件。随着机械工业的发展,新的设计理论和方法、新材料、新工艺的出现,机械零件进入了新的发展阶段。有限元法、断裂力学、弹性流体动压润滑、优化设计、可靠性设计、计算机辅助设计(CAD)、系统分析和设计方法学等理论,已逐渐用于机械零件的研究和设计。更好地实现多种学科的综合,实现宏观与微观相结合,探求新的原理和结构,更多地采用动态设计和精确设计,更有效地利用电子计算机,进一步发展设计理论和方法,是这一学科发展的重要趋向。 机械零件是指直接加工而不经过装配的机器组成单元。机械零件是机械产品或系统的基础,机械产品由若干零件和部件组成。按照零件的应用范围,可将零件分为通用零件和专用零件二类。通用的机械零件包括齿轮、弹簧、轴、滚动轴承、滑动轴承、联轴器、离合器等。 机械零件设计就是确定零件的材料、结构和尺寸参数,使零件满足有关设计和性能方面的要求。机械零件除一般要满足强度、刚度、寿命、稳定性、公差等级等方面的设计性能要求,还要满足材料成本、加工费用等方面的经济性要求。 机械零件优化设计概述 进行机械零件的设计,一般需要确定零件的计算载荷、计算准则及零件尺寸参数。零件计算载荷和计算准则的确定,应当依据机械产品的总体设计方案对零件的工作要求进行载荷等方面的详细分析,在此基础上建立零件的力学模型,考虑影响载荷的各项因素和必要的安全系数,确定零件的计算载荷;对零件工作过程可能出现的失效形式进行分析,确定零件设计或校核计算准则。零件材料和参数的确定,应当依据零件的工作性质和要求,选准适合于零件工作状况的材料;分析零件的应力或变形,根据有关计算准则,计算确定零件的主要尺寸参数,并进行参数的标准化。 所谓机械零件优化设计是将零件设计问题描述为数学优化模型,采用优化方法求解一组零件设计参数。机械零件设计中包含了许多优化问题,例如零件设计方案的优选问题、零件尺寸参数优化问题、零件设计性能优化问题等。国内机械设计领域技术人员针对齿轮、弹簧、滚动轴承、滑动轴承、联轴器、离合器等零件优化设计问题开展了大量的工作,解决了齿轮传动比优化分配、各种齿轮参数优化、各种齿轮减速器优化设计、各种齿轮传动的可靠性优化、齿轮传动和减速

汽车动力传动系参数优化设计

汽车理论Project 第一章汽车动力性与燃油经济性数学模型立 1.汽车动力性与燃油经济性的评价指标 1.1 汽车动力性评价 汽车的动力性是指汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的、所能达到的平均行驶速度。汽车的动力性主要可由以下三方面的指标来评定: (1)最高车速:最高车速是指在水平良好的路面(混凝土或沥青)上汽车能达到的最高行驶速度。它仅仅反映汽车本身具有的极限能力,并不反映汽车实际行驶中的平均车速。 (2)加速能力:汽车的加速能力通过加速时间表示,它对平均行驶车速有着很大影响,特别是轿车,对加速时间更为重视。当今汽车界通常用原地起步加速时间与超车加速时间来表明汽车的加速能力。原地起步加速时间是指汽车由第I挡或第II挡起步,并以最大的加速强度(包括选择适当的换挡时机)逐步换至最高挡后达到某一预定的距离或车速所需要的时间。超车加速时间是指用最高挡或次高挡内某一较低车速全力加速至某一高速所需要的时间。 (3)爬坡能力:汽车的爬坡能力是指汽车满载时用变速器最低挡

在良好路面上能爬上的最大道路爬坡度。 1.2 汽车燃油经济性评价 汽车的燃油经济性是指在保证汽车动力性能的前提下,以尽量少的燃油消耗量行驶的能力。汽车的燃油经济性主要评价指标有以下两方面: (1)等速行驶百公里燃油消耗量:它指汽车在一定载荷(我国标准规定轿车为半载、货车为满载)下,以最高挡在良好水平路面上等速行驶100km的燃油消耗量。行驶的燃油消耗量。 (2)多工况循环行驶百公里燃油消耗量:由于等速行驶工况并不能全面反映汽车的实际运行情况。汽车在行驶时,除了用不同的速度作等速行驶外,还会在不同情况下出现加速、减速和怠速停车等工况,特别是在市区行驶时,上述行驶工况会出现得更加频繁。因此各国都制定了一些符合国情的循环行驶工况试验标准来模拟实际汽车运行 状况,并以百公里燃油消耗量来评价相应行驶工况的燃油经济性。1.3 汽车动力性与燃油经济性的综合评价 由内燃机理论和汽车理论可知,现有的汽车动力性和燃油经济性指标是相互矛盾的,因为动力性好,特别是汽车加速度和爬坡性能好,一般要求汽车稳定行驶的后备功率大;但是对于燃油经济性来说,后备功率增大,必然降低发动机的负荷率,从而使燃油经济性变差。从汽车使用要求来看,既不可脱离汽车燃油经济性来孤立地追求动力性,也不能脱离动力性来孤立地追求燃油经济性,最佳地设计方案是在汽车的动力性与燃料经济性之间取得最佳折中。目前,在进行动力

旅游线路的优化设计

龙源期刊网 https://www.360docs.net/doc/7c7141297.html, 旅游线路的优化设计 作者:陈鑫刘汗青徐常恒 来源:《科教导刊》2011年第28期 摘要本文主要研究最佳旅游路线的设计问题,在满足相关约束条件的情况下,在规定的 时间内花最少的钱游览尽可能多的景点是本设计的理想目标。基于对此的研究,建立数学模型,设计出最佳的旅游路线。 关键词最佳线路 TSP Hamilton圈综合评判 0-1变量 中图分类号:F592文献标识码:A Optimization of Tourism Route CHEN Xin, LIU Hanqing, XU Changheng (College of Mechanical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756) AbstractThis paper studies the problem of optimal design of tourist routes, to meet the constraints related to the case, within the prescribed time to spend the least money to visit as many attractions is the ideal goal of this design. Based on this study, a mathematical model, to design the best tourist routes. Key wordsbest route; TSP Hamilton;comprehensive evaluation; 0-1 variable 随着经济的发展,人们的生活水平不断提高,旅游已成为日常生活中一项重要活动。江苏徐州的一位旅游爱好者打算今年的五月一日早上8点之后出发,到全国十个著名景点旅游,最后再回到徐州。他考虑到跟团旅游受限太大,打算自己作为背包客出游。为了让他能有一个快乐顺利的旅程,我们针对如下的几种情况,为他设计出详细的行程表,该行程表包括具体的交通信息(车次、航班号、起止时间、票价等)、宾馆地点和名称,门票费用,在景点的停留时间等信息。 针对选取在规定时间内花最少钱游览尽可能多的景点,我们分成五个步骤来研究,先研究在时间不限的情况下或者旅游费用不限的情况下,游客将十个景点全游览完,分别至少需要多少旅游费用;再研究游客准备2000元旅游费用或者旅客只有5天的时间,想尽可能多游览景点,分别设计旅游行程表;最后综合以上的研究结果,游客在只有5天的时间和2000元的旅游费用下,想尽可能多游览景点,建立数学模型并设计旅游行程表。

复合材料旋翼结构优化设计技术及应用

复合材料旋翼结构优化设计技术及应用 摘要:简单介绍了几种实用的直升机复合材料旋翼结构优化设计技术及其应用情况,并对相关优化技术研究和应用过程中应注意的问题进行了阐述,同时介绍了优化设计技术在复合材料旋翼结构设计中的应用前景。 关键词:旋翼优化设计配重以往人们在研制旋翼时,往往采用"原准机"设计法进行设计,即在参考样机附近寻找可行结构设计方案。采用"原准机"设计法进行结构设计,尽管较易于获得可行方案,但极大地限制了探索范围,只能形成样机系列,设计质量不可能有突破性的提高。同时以往的事实证明,即使在参考样机方案附近进行探索,要想获得较满意的结构设计方案,一般仍需花费大量的时间和人力财力。 随着人们对旋翼结构设计水平要求的提高,人们已不再满足于一般的可行方案,而是力求获得工程概念的最佳方案;探索的范围不再局限在参考样机附近,而是在一般的结构布局和工艺制造许可条件下,在动力学、强度、重量、对旋翼中心转动惯量等约束下的大范围探索。在更高要求和更大范围内探索最佳旋翼结构设计方案,必须解决两个层次的问题:其一是必须能对要求是否合理或有无可行方案进行快速判别;其二是必须在要求合理的情况下能迅速获得工程概念最佳方案。显然,"原准机"设计法难以解决上述问题,满足不了当代先进复合材料旋翼的结构设计要求。以优化方法为主脉、以高速计算机为主要设计工具的优化设计法及相应的优化设计技术,能从根本上解决上述问题,它们是未来直升机旋翼结构设计方法发展的必然趋势。 一、优化设计技术简介 现代概念的优化设计技术,是指能帮助人们快速获得最佳设计方案的技术,其本质是一种能迅速确定探索方向、生成结构方案、分析结构方案和比较结构方案优劣的技术。任何一种优化设计技术,都主要由优化模型和优化方法(或称优化器)两部分组成。 优化方法可分为直接优化法(如随机射线法、随机投点法、单纯形法等)和间接优化法(如线性规划、二次序列规划等)两大类,二者各有特色。直接优化法的特点如下:不需要推导复杂的目标函数和性能参数对自变量的导数关系,能减少中间理论环节;用直接优化法搜索最佳方案,与以往进行结构设计的过程基本相同且比较直观,但搜索步骤较多(通常的工程结构优化,一般需比较成百上千个方案),优化分析时间较长,需要高速计算机才能完成。间接优化法的特点则基本相反。因此,间接优化法比较适于工程规模较小、理论分析方法较成熟和计算机资源较缺乏的情况,而直接优化法适于工程规模较大、理论分析方法(尤其是上述导数关系不太明了)相对不太成熟、拥有高速计算机资源的情况。因此,从工程实际应用方面分析,在类似旋翼等较大规模的结构优化设计中采用直接优化法将更为适宜。 二、几种实用的复合材料旋翼结构优化设计技术及应用简介 1.复合材料旋翼前沿配重结构优化设计 在直升机复合材料旋翼结构设计过程中,由于稳定性和弦向重心等要求非常苛刻,旋翼桨叶前沿一般都需要布置配重条才能满足。配重条通常由铅等比重较大的金属材料制成,其形状一般为等截面长条结构,在复合材料旋翼桨叶剖面布置中尽量靠前沿;配重条横截面大小由桨叶前沿尺寸等因素综合确定。当配重条的材料、截面尺寸、在复合材料桨叶剖面中的位置确定后,影响旋翼稳定性、动力特性、强度、重量、对旋翼中心转动惯量的因素唯有其展向起止位置。 复合材料旋翼前沿配重结构优化模型如下: 目标函数 在目前的直升机研制中,结构重量的控制仍是设计中极其重要的任务,因此本优化模型

数学建模竞赛-零件参数设计

零件参数设计 例8.5 (零件参数设计) 一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。零件参数包括标定值和容差两部分。进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离其标定值的容许范围。若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3 倍。 粒子分离器某参数(记作y )由7个零件的参数(记作7 2 1 ,,,x x x ?)决定, 经验公式为 7 616 .1242 356 .024 85.012 35136.0162.2142.174x x x x x x x x x x x y ??? ? ????? ???????? ? ??--????? ??-???? ??=- 当各零件组装成产品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏离越大,损失越大。y 的目标值(记作0 y )为1.50.当 y 偏离1.00 ±y 时, 产品为次品, 质量损失为1000(元); 当y 偏离3 .00 ±y 时,产品为废品,损失为9000(元). 问题是要求对于给定的零件参数标定值和容差,计算产品的损失,从而在此基础上进行零件参数最优化设计。 表8.2给定引例中某设计方案7个零件参数标定值及容差。 容差分为A ﹑B ﹑C 三个等级, 用与标定值的相对值表示, A 等为%1±, B 等为%5±, C 等为%15±。求每件产品的平均损失。

表8.2 零件参数标定值及容差 解:在这个问题中,主要的困难是产品的参数值y是一个随机变 量,而由于y与各零件参数间是一个复杂的函数关系,无法解析的得到y的概率分布。我们采用随机模拟的方法计算。这一方法的思路其实很简单:用计算机模拟工厂生产大量"产品"(如10000件),计算产品的总损失,从而得到每件产品的平均损失。可以假设7个零件参数服从正态分布。根据表8.2及标定值和容差的定义,x1~N(0.1, (0.005/3)2), x 2~N(0.3,0.0052), x 3~N(0.1, (0.005/3)2), x4~N(0.1,0.0052), x5~N(1.5,(0.225/3)2), x6~N(16,(0.8/3)2), x ~N(0.75,(0.0375/3)2), 下面的M脚本eg8_5.m产生1000对零件参数7 随机数,通过随机模拟法求得近似解约f=2900元。 %M文件eg8_5.m clear;mu=[.1 .3 .1 .1 1.5 16 .75]; sigma=[.005/3,.005,.005/3,.005,.225/3,.8/3,.0375/3]; for i=1:7 x(:,i)=normrnd(mu(i),sigma(i),1000,1);

高速公路路线的优化设计

高速公路路线的优化设计 1项目优化背景 郑州至民权高速公路郑州境段是河南省高速公路网规划中郑州至民权高速公路的一段。该高速公路的修建,旨在加快区域经济的发展步伐,沟通与开封、商丘等区域的经济联系,推动沿线资源开发利用及经济建设的大力发展,尤其促进我省民航事业的发展。郑州至民权高速公路郑州境段是河南省继连霍高速公路和郑州至开封城市快速通道之后打开的又一条东西连接通道,该项目的实施,既起到了加密区域内通道的作用,又能更好地发挥河南省高速公路的经济效益、构造更合理的路网格局。本项目起点位于中牟县九龙镇黄商附近,京港澳高速公路与郑州西南绕城高速公路交汇处;终点位于中牟县店李口村附近,郑州市和开封市交界处,路线全长32.746km。 根据交通运输部和省交通运输厅关于建设“环保与节约型高速公路”的要求,紧密结合全省高速公路工作会议上的讲话精神(设计单位要将勘察、设计工作做细、做实,保证设计质量;同时要通过优化设计方案、合理选用设计标准等多种措施,有效降低工程造价)及项目建设单位全力争创国家优质工程的核心理念,俯下身去,积极对项目进行设计优化。 2项目优化目标 设计单位对项目路线纵面、路基路面、结构物的跨径、净空、角度、结构及交叉形式、互通、地基处理等方案进行了设计优化,并制定了具体的优化目标: 1)优化局部路段纵断面,降低路基填土高度,减少土方量,节约公路永久占地和取土用地; 2)由于项目设计周期较长,沿线地形、地貌发生了诸多变化,因此本次优化将根据现有被交道路情况,调整部分涵、通道角度、位置和孔径,尽可能方便沿线群众生产生活需要,减轻施工协调难度,从而达到减少后期变更的目的; 3)根据被交道路现有交通状况并结合远期规划优化部分分离式立交结构形式;根据沿线沟渠断面及使用功能优化部分大、中桥结构形式,以达到降低工程造价的目的; 4)充分论证天桥方案,降低了天桥建筑高度及桥长,减少了用地,节约了土方,降低造价; 5)根据沿线地质情况,对每座桥、涵进行详细验算,在保证公路安全性和提高舒适性的前提下,尽可能采用经济适用的方案,达到项目创优的目的。 3项目优化内容

数学建模零件参数的优化设计

数学建模零件参数的优 化设计 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

零件参数的优化设计 摘要 本文建立了一个非线性多变量优化模型。已知粒子分离器的参数y由零件 参数)7 2,1 ( = i x i 决定,参数 i x的容差等级决定了产品的成本。总费用就包括y 偏离y 造成的损失和零件成本。问题是要寻找零件的标定值和容差等级的最佳搭配,使得批量生产中总费用最小。我们将问题的解决分成了两个步骤:1.预先给定容差等级组合,在确定容差等级的情况下,寻找最佳标定值。2.采用穷举法遍历所有容差等级组合,寻找最佳组合,使得在某个标定值下,总费用最小。在第二步中,由于容差等级组合固定为108种,所以只要在第一步的基础上,遍历所有容差等级组合即可。但是,这就要求,在第一步的求解中,需要一个最佳的模型使得求解效率尽可能的要高,只有这样才能尽量节省计算时间。经过对模型以及matlab代码的综合优化,最终程序运行时间仅为秒。最终计算出的各个零件的标定值为: i x={,,,,,,}, 等级为:B B C C B B B d, , , , , , = 一台粒子分离器的总费用为:元 与原结果相比较,总费用由(元/个)降低到(元/个),降幅为%,结果是令人满意的。 为了检验结果的正确性,我们用计算机产生随机数的方式对模型的最优解进行模拟检验,模拟结果与模型求解的结果基本吻合。最后,我们还对模型进行了误差分析,给出了改进方向,使得模型更容易推广。

关键字:零件参数 非线性规划 期望 方差 一、问题重述 一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。零件参数包括标定值和容差两部分。进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离其标定值的容许范围。若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3倍。 进行零件参数设计,就是要确定其标定值和容差。这时要考虑两方面因素:一是当各零件组装成产品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏离越大,损失越大;二是零件容差的大小决定了其制造成本,容差设计得越小,成本越高。 试通过如下的具体问题给出一般的零件参数设计方法。 粒子分离器某参数(记作y )由7个零件的参数(记作x 1,x 2,...,x 7)决定,经验公式为: y 的目标值(记作y 0)为。当y 偏离y 0+时,产品为次品,质量损失为1,000元;当y 偏离y 0+时,产品为废品,损失为9,000元。 零件参数的标定值有一定的容许范围;容差分为A、B、C三个等级,用与标定值的相对值表示,A等为+1%,B等为+5%,C等为+10%。7个零件参数标定值的容许范围,及不同容差等级零件的成本(元)如下表(符号/表示无此等级零件):

相关文档
最新文档