衰老机制及其学说

衰老机制及其学说
衰老机制及其学说

?综 述?

衰老机制及其学说3

童坦君 张宗玉

(北京大学衰老研究中心,北京100083)

摘要 不同物种,同一个体的不同组织和细胞,它们的衰老速度并不相同。究其原因,遗传与环境都能影响衰老的进程。个体的平均寿命和物种的最高寿限可以从不同侧面反映衰老的进程。目前认为平均寿命主要与环境相关,而物种最高寿限与遗传相关。从两者的关系看,不良环境影响是通过对遗传物质或其产物的作用而影响衰老的进程。从遗传因素看,衰老并非由单一基因或单一作用所决定,而是一连串基因激活和阻抑及其通过各自产物相互作用的结果。DNA(特别是线粒体DNA)并不像原先设想的那样稳定,目前业已证明,包括基因在内的遗传控制体系可受内、外环境,特别是氧自由基等损伤因素的影响,从而加速衰老的进程。

关键词 衰老;基因;环境;寿命

中图分类号 Q419;R339.38;R592

M echan is m s of Ag i n g and Its Theor i es T ONG Tan2Jun,ZHANG Z ong2Yu(Peking U niversity R e2 search Center on A g ing,Peking U niversity Health Science Center,Beijing100083,China)

Abstract The vel ocity of aging is rather different in vari ous s pecies,and even in vari ous tissues and cells of the sa me individual.Both genetic and envir on mental fact ors affect aging p r ocess.It is evident that life expectancy mainly relates t o envir on ment,while maxi m u m life2s pan of a s pecies more depends on its genetic backgr ound.Poor envir on ment possibly affects genes or their p r oducts and then influences the p r ocess of hu man senescence.A s as pect of genetic causes,aging is not t otally depends on one gene,but rather on the interacti on of net w orks of activated or rep ressed genes and their p r oducts.DNA(es pecially, m it ochondrial DNA)is not as stable as p revi ously conceived.The stability of genetic substance,including genes,could be affected by stresses fr om external or internal envir onment,which are particularly induced by har mful substances,such as reactive oxygen s pecies,leading t o accelerate aging p r ocess.

Key words aging;l ongevity;genes;envir on ment

衰老(ageing,senescence)又称老化,通常是指在正常状况下生物发育成熟后,随年龄增加,自身机能减退,内环境稳定能力与应激能力下降,结构、组分逐步退行性变,趋向死亡,不可逆转的现象[1]。单细胞生物,如酵母,亦出现衰老倾向[2]。疾病或异常因素可引起病理性衰老(senility),使上述现象提早出现。

衰老过程在整体、组织、细胞,乃至分子水平皆有所体现。随年龄增加,器官、组织的实质细胞数、反应敏感性及功能均逐步下降。但不同器官老化速度及老化方式有所不同。衰老时细胞增殖能力下降,功能细胞数逐渐减少,蛋白酶活性降低,胶原、弹力蛋白、结缔组织充斥其间、互相交联,使脏器萎缩,功能下降。

衰老机理研究可为延缓因老而衰,提供理论和实验依据,并为阐明老年病发病机理提供线索[3]。近年来老年医学基础研究已出现从老年危重病,转向老年慢性、退行性疾病的趋势,衰老机理研究于此更显重要。

一、历史回顾与衰老机制相关学说

关于衰老研究,历史悠久,可追溯公元前。那时

3国家重点基础研究发展规划(2007CB507400)与国家自然科学基金(30671064)资助课题

手段粗糙、原始,着眼于延年益寿。19世纪30年代,始用科学手段进行一般性研究。20世纪初,Na2 scher倡用“Geriatrics”一词以体现老年病学;40年代渐有系统研究,观察衰老变化,先从形态,后从生理功能、物质代谢研究变化规律,探讨衰老原因;20世纪50年代末我国开始衰老机理有关研究。

20世纪80年代前,技术与手段所限,国际上从器官水平,整体水平研究衰老机理多年,但成果寥寥。所举学说繁多:遗传控制说、自由基损伤说、代谢产物交联说、体细胞突变说、差错积累说、免疫紊乱说等不下数百种,各有千秋。众说纷纭,莫衷一是,未能形成共识[4,5]。

二、现代理论的建立

20世纪后期,分子生物学与细胞生物学迅猛发展所得成果渗入医学生物学的方方面面。在老年学研究中引入分子生物学与细胞生物学理论与技术,为衰老机理及老年病防治的基础研究带来了勃勃生机,使医学老年学突飞猛进。研究者试图从根本上逐步弄清衰老过程,注意从细胞水平和分子水平进行基本原理的探讨[6~8],衰老机理的不同学说各执一是的现象有所松动,学说间的取长补短渐成研究的主要倾向。

(一)“工欲善其事,必先利其器” 要深入研究衰老机制,首先要建立理想的实验体系。对人类整体的衰老进行实验性研究,有周期长,取材难,耗时费力,困难重重。蠕虫、果蝇、短寿小鼠等模式生物生命周期短,适于整体研究[7]。但模式生物究竟与人类相距甚远,难以全部体现并反映人体的衰老。细胞是生物体的基本单位,人体细胞不难获得,可以体外培养。体外培养的某些人类细胞的可传代数与供体年龄相关,是一个不可多得的实验工具,可以作为机体衰老的微观模型,但难以全部体现并反映整体的衰老。除模式体系外,还应建立检测衰老程度的客观指标[9]。

1.模式生物的局限性:研究成果可借鉴,但不可照搬。蠕虫、果蝇等模式生物与哺乳类同属有生命物质,他们的遗传密码基本相同,其它相同之处不胜枚举,所得研究结果可借鉴之处不少。模式生物的研究显示:“衰老基因(ger ont ogene)”的丢失或失活可使寿命延长;“长寿基因(l ongevity gene)”突变,可使物种寿命缩短。但低等动物与哺乳类动物究竟相距甚远,不可照搬。从线虫、果蝇等研究成果看,长寿物种常伴有丰富的超氧化物岐化酶(S OD)及过氧化氢酶,Sohal等将超氧化物岐化酶基因与过氧化氢酶基因共同导入果蝇,取得了明显延年益寿的结果。转基因的果蝇不仅平均寿命延长1/3,最高寿限(maxi m um life2s pan)亦有所延长。人的超氧化物岐化酶基因定位于21号染色体q2

2.1,某些先天愚型患者常有三条21号染色体,因此他们的S OD基因比正常人多一个拷贝,但未见其寿命长于常人。如将该基因转入小鼠,转基因鼠并未长寿,反有胸腺过早退化,引起免疫功能低下之嫌。可见,从低等动物所获结果不宜照搬。以致有人认为衰老机制面临的挑战,是把来自模式生物的新发现与人类衰老挂起钩来。即使小鼠与人同属哺乳类,得自小鼠的研究结果也不可与人类混同。例如人类体细胞端区长度随增龄不断缩短[10],故人类体细胞的衰老与端区长度密切相关,端区被称为人类细胞的生物钟。而小鼠染色体末端的端区比人类长10倍左右,且随小鼠增龄难以测得其体细胞端区长度缩短现象,可见其体细胞寿命不依赖于端区。

2.细胞衰老模型的局限性:非整体性与非生理性。体外培养的二倍体细胞可传代数既与物种的最大寿限有关,又与供体年龄相关。小鼠最大寿限约3年,其成纤维细胞在体外只能倍增(populati on doublings)10次左右,Galapagos巨龟的最大寿限超过百年,其成纤维细胞可倍增130次。正常人成纤维细胞的体外增殖次数有限,称为Hayflick极限,亦称为最大分裂次数。人胚成纤维细胞的体外培养可倍增60~80次。供体年龄越大,可传代数越少,所以人胚成纤维细胞的可传代数远高于成年人。这一可传代数还与供体衰老速度有关,例如W erner早老综合征病人,平均寿命短于正常人,其成纤维细胞的可传代数亦低于同龄人。体外培养的人二倍体细胞可以作为机体衰老的微观模型。除成纤维细胞外,也有采用人乳腺上皮细胞、视网膜上皮细胞、黑色素细胞等作为人类衰老模型的报道。利用体外培养的二倍体细胞,在衰老机理研究方面已获得了大量成果。体外培养的人二倍体细胞是研究人体衰老,方便而有效的模型,是目前国际公认研究人体衰老最好的模型之一,已由此获得了大量成果[3,11]。例如,有人证明胰岛再生能力与细胞衰老相关基因p16表达水平有关,p16表达增强是老年人造血功能下降的重要原因,还有人进而发现血液中白细胞中端区长度与人的寿命长短有关。但体外培养的细胞,难以体现并反映体内神经、内分泌、免疫的相互作用,难以体现并反映器官、组织中各种细胞的相互作用。所以其研究成果亦只可借鉴,不可照搬。

总之,以上两个模式系统各有优点,但如何互相印证,彼此促进仍是老年学基础研究中有待解决的重要问题。如要获得可靠结论,有必要从模式生物与人类细胞衰老模型分别入手,将所得结果,加以比较,两相验证。人类细胞体外培养体系与动物实验由此相互补充,也许是一较为理想的方案。

3.分子水平的衰老标志:计算年龄的常用方法是出生后按日历计算,称为日历年龄或时序年龄,也叫实足年龄。同龄个体衰老程度因人而异,所以除日历年龄外,反映其实际衰老程度,人或生物尚有“生物学年龄(或生理学年龄)”。人的生物学年龄可根据其生理和解剖状态进行估算,表示其组织结构和生理功能的实际衰老程度[9,12]。生物学年龄有大致预计未来健康状况与寿命的功能。动物与细胞的生物学年龄或衰老程度如何测定?这就需要确定细胞与分子水平的衰老生物学标志(bi omarker)。衰老生物学标志的确立对衰老研究标准化十分重要。使用衰老生物学标志进行分组,可避免因同龄实验动物老化程度不同造成的误差,解决按日历年龄无法解决的“未老先衰”和“老而不衰”问题。不仅可由此计算衰老速度,且可研究各种因素(如药物、限食、锻炼、心理等)对衰老进程的影响。在临床方面,延缓衰老药物的选择,疗效的评价亦可因其获得科学依据。

Mooradian等(1990)将衰老生物学标志的标准概括如下:(1)该标志与年龄有定量关系,相关性愈强,灵敏度愈高;(2)该标志不因疾病而改变;(3)该标志不因代谢或营养变化而变化;(4)影响衰老进程的因素亦能影响该标志;(5)永生化细胞中不存在该标志的变化。目前已发现某些细胞水平及分子水平的衰老生物学标志。但已知的标志尚不能完全满足所有标准。

染色体端区长度是人类体细胞的计时器,可作为人类体细胞的生物学年龄标志。人胚成纤维细胞每增龄一代,端区长度缩短约50碱基对(bp)。中国人每增一岁,外周血淋巴细胞端区长度约缩短35 bp[10]。端区是染色体末端DNA的特殊结构,有维持染色体稳定的作用。人染色体端区由DNA重复序列TT AGGG组成。生殖细胞与肿瘤细胞具有可催化端区DNA合成的逆转录酶,称为端粒酶(tel om2 erase),无端区缩短现象。小鼠与人不同,其端区不因年龄增加而缩短。因而端区缩短现象,仅在人的正常体细胞中存在,有可能作为衰老的生物学指征。此外,衰老相关β2半乳糖苷酶,DNA损伤修复能力,晚期糖基化终末产物,线粒体DNA片段缺失亦有用作生物学年龄标志者。单项标志,各有局限。总之,分子水平的衰老标志尚需精确量化和综合化,才能客观、准确地体现生物学年龄。

(二)一切生物学关键问题必须在细胞中寻找 20世纪后期,“一切生物学关键问题必须在细胞中寻找”几成生物学家的共识。细胞是生物体的基本单位,也是生物衰老的基本单位。细胞衰老是老年病发病的共同基础。细胞衰老引起的细胞增殖能力下降是器官衰老、萎缩、机能减退的根本原因之一。因而,延缓细胞衰老可为推迟老年带病期,防治老年病带来新机遇[3]。

细胞衰老时细胞体积增大,不均一性增加,染色体畸变及溶酶体增多。生长停滞是细胞衰老的突出表现,也是引起生物衰老诸因素中重要一环。衰老时有功能的细胞数逐渐减少。衰老时,细胞的增殖能力减退,甚至完全停滞,使功能细胞难以更新,脏器萎缩、机能衰退。同时,DNA损伤修复能力下降。近年来从分子生物学角度研究细胞衰老,特别是衰老期间有关基因及其调控变化[2,7],已成衰老机理研究的主要倾向。不少学者还将此与老年病的研究结合起来,以期为推迟老年带病期和老年病的防治作出实际贡献。近年来,研究者已从多个物种找到了与衰老有关的基因[2,3,7]。老年病发病机理与衰老机理的汇合点的研究,将为阐明衰老机理提供新的线索。

(三)遗传与环境是衰老的两大动因 衰老机理复杂,涉及面广。学说虽多,但不外乎遗传与环境两个方面。

1.遗传基因:目前,基因确可影响生物的衰老及寿限,已为大量研究所证明。

20世纪90年代,人类病理性衰老相关基因的研究取得了重大突破(1996)。W erner早老综合征是一种隐性遗传病,病人的DNA损伤修复、转录等都有异常表现,其细胞体外可传代数亦远低于同龄人。现知该综合征是位于8号染色体短臂的一种DNA解旋酶(helicase)基因突变所致[13]。

此前,已有报道人的1,4,7号与X染色体各自存在着与衰老相关的基因。在细胞衰老中,9号染色体短臂的p16基因与染色体端区长度可能起关键作用[11]。

此外,某些老年性疾病的研究亦为阐明人体衰老过程不断演进的物质基础,阐明衰老相关的级联反应指出了方向。衰老时人体机能下降,包括对疾

病的易感性增强[14]。所以从这一角度看,某些老年病相关基因,亦可看作是衰老基因。例如载脂蛋白(apoli pop r otein,AP OE)4水平升高时,发生冠状动脉粥样硬化性心脏病与老年性痴呆(阿尔采末病)的可能性增高,由此影响寿命。

衰老并非单一基因决定。犹如肿瘤发病过程中癌基因与抑癌基因,凋亡过程中促凋亡基因与抑凋亡基因,相互制约一样,衰老相关基因亦应有正(“长寿基因”)、负(“衰老基因”)之分。衰老相关基因很可能是一个基因群[15~17]。已知危害老年人身心健康的阿尔采末病至少与5种基因及其产物相关。鉴于目前尚未获得国际上公认与正常人整体衰老直接相关的基因,因而寻找衰老基因的工作,任重道远,尚需多角度,多途径进行探索。新技术是推进科学发展的原动力。近年利用DNA芯片研究衰老过程基因的表达谱,筛选新基因,为寻找衰老相关基因提供了不少机遇。

2.环境因素:影响人体的环境因素既包括外环境,也包括体液、激素、免疫体系等共同形成的内环境。内、外环境对衰老进程与寿限都有重要影响。同卵孪生子出生时基因表达谱几无差异,50岁时1/ 3的基因表达出现差异,可见环境影响的重要性。环境常常通过损伤、负荷、疾病等方式影响衰老进程。神经系统的稳定性对衰老进程有重要影响,已为老年社会学调查多次证实,但机理不明。环境中氧自由基可损伤蛋白质、DNA、生物膜、线粒体等,加快衰老[5,18]。血糖浓度对衰老进程亦有重要影响。蛋白质和DNA等生物大分子均可与葡萄糖缓慢非酶促结合而糖基化。衰老时多种激素浓度下降,如性成熟后雌激素水平逐步下降[19],停经后下降更快,影响整体,可引起骨质疏松等一系列问题。除激素水平下降外,衰老时细胞对激素的敏感性亦有所降低。

机体除神经、内分泌、免疫系统共同组成整体防御机制外,细胞亦有一套抵御不良环境,维持内环境稳定的应激能力。这套能力包括氧化应激能力, DNA损伤修复能力,以及热休克应答能力等。此种分子水平损伤因素的化解能力及损伤修复能力是细胞存活所必需的,也是决定生物寿命的关键因素之一。

应激能力因衰老而下降,它又可转而影响衰老进程。近来研究显示:高等生物的寿限也许取决于内、外环境对其施加的压力及机体承受此压力的能力。

适度节食可延长动物寿命[20]。原因是降低血糖水平,使非酶糖基化减弱,减少氧自由基产生,降低分子损伤,提高了免疫与应激能力。但快速节食有损智力,过度节食会导致营养不良,免疫力下降,反而有害健康。

三、展望与挑战

“健康与长寿”是生命科学永恒的主题,深入理解衰老本质,了解衰老连锁反应的发生及其根源,改善细胞内生物化学和生物物理过程,将为延缓衰老,健康老龄化及大幅度延长人类寿命作出贡献。展望未来,以下几点值得今后注意:

(一)分析的同时不忘综合,不忘整体。

生物体的衰老过程,包含了整体衰老、器官衰老、细胞衰老,乃至生物大分子的衰老。对衰老机制的深入研究,离不开分子生物学与细胞生物学。新技术是推进科学发展的原动力,现代技术和理念虽然重要,但是分子与细胞究竟只是整体的一部分。分析与综合,分子与细胞,细胞与器官,器官与整体,必须相辅相成。以综合为目的的分析,以分析为基础的综合,方不致偏废。分析的同时,不忘综合;研究分子和细胞的同时,不忘整体,是近代医学基础理论的精髓,也是研究衰老机制必须遵循的原则。

(二)遗传与环境因素,皆应重视,不宜偏废。

环境因素多半是通过基因及其产物来影响衰老进程的,了解哪些基因主导衰老过程,以及这些基因的影响因素,就能有目的地改善内外环境质量,提高延衰效能。

(三)学科融合,借鉴相关学科的理念和技术才能促进发展。

基础研究是科技力量的储备,是发展应用研究的源泉。分子生物学和细胞生物学新技术的融入大大促进了衰老机理研究的深入,多能干细胞作为近年的科学重大发现,具有广阔的应用前景。它在组织修复、器官替换等老年病治疗方面的应用,在衰老机理研究中的作用都值得探讨。

参考文献

1 邹承鲁主编.当代生物学.北京:中国致公出版社.

2000,394~396.

2 Sinclair DA,L in SJ,Guarente L.L ife2s pan extensi on in yeast.Science,2006,312?195~196.

3 O lshansky SJ,Rattan SI S.The bi ol ogy of aging.Mount Si2 nai J Med,2003,70?3~22.

4 赵增翰:概论.见:童坦君、张宗玉主编.医学老年学.

北京:人民卫生出版社,2006.1~13.

5 Frisard M,Ravussin E.Energy metabolis m and oxidative stress2I m pact on the metabolic syndr ome and the aging p r ocess.Endocrine,2006,29?27~32.

6 童坦君,张宗玉.衰老机制及有关老年医学基础理论研究现状和建议.见:陈可冀主编:老龄化中国:问题与对策,中国协和医科大学出版社,2002,129~149.

7 Sinclair DA,Guarente L.Unl ocking the secrets of l ongevity genes.Sci Amer,2006,294?48~57.

8 Tr oen BR.A revoluti on for aging research.B i oger ont ol, 2006,7?269~277.

9 马宏,张宗玉,童坦君.衰老的生物学标志.生理科学进展,2002,33?65~68.

10 张宗玉,范新青,童坦君.中国人外周血白细胞端区长度随增龄缩短.生物化学杂志,1997,13?605~607. 11 Takahashi A,Ohtani N,Ya makoshi K,et al.M it ogenic signalling and the p16(I N K4a)2Rb path way cooperate t o enforce irreversible cellular senescence.Nature Cell B i ol, 2006,8?1291~U63.

12 M a H,L i RZ,Zhang ZY,et al.mRNA level of al pha222 macr ogl obulin as an aging bi omarker of hu man fibr oblasts in culture.Exp Ger ont ol,2004,39?415~421.

13 EllerM S,L iao XD,L iu SY,et al.A r ole f orWRN in te2

l omere2based DNA da mage res ponses.Pr oc Nat Acad Sci US A,2006,103?15073~15078.

14 Beausej our C M,Ca mp isi J.Ageing2Balancing regenera2 ti on and cancer.Nature,2006,443?404~405.

15 韩晓琳,张宗玉,童坦君.衰老过程中原癌基因及抑癌基因的表达谱.生理科学进展,2002,33?126~130.

16 Zhao L,Zhang ZY,Tong TJ.Exp ressi on of the Leo12like domain of rep licative senescence do wn2regulated Leo12like (RDL)p r otein p r omotes senescence of2BS fibr oblasts.

F ASE B J,2005,19?521~532.

17 Guo SZ,Zhang ZY,T ong TJ.Cl oning and characterizati on of cellular senescence2ass ociated genes in hu man fibr oblast cell by supp ressi on subtractive hybridizati on.Exp Cell Res,2004,298?465~472.

18 Bar ouki R.Ageing free radicals and cellular stress.MS2 Med Sci,2006,22?266~272.

19 Hert oghe T.The"Multi p le hor mone deficiency"theory of aging———Is hu man senescence caused mainly by multi p le hor mone deficiencies?Ann Ne w York Acad Sci,2006, 1057?448~465.

20 Frisard M,Ravussin E.Energy metabolis m and oxidative stress———I m pact on the metabolic syndr ome and the ag2 ing p r ocess.Endocrine,2006,29?27~32.

“两方面都可以做到最好”

———通过一个基因既可抑制骨质疏松又可刺激骨骼生长

在2006年12月出版的《Nature Medicine》上,宾西法尼亚大学医学院的病理学系Yong won Choi教授等人发表文章称其找到了一个基因,通过改变它的表达就可同时达到抑制骨质疏松和刺激骨骼形成。

在美国骨质疏松是影响数百万老年人生活质量的一大问题,随着人口老龄化的不断加剧,这个问题变得越来越突出。

随着对骨骼代谢研究的不断深入,现在已经有一些药物用于治理骨质疏松。但是多数药物是用于抑制骨质疏松,仅有一种药物是刺激成骨细胞,促进骨骼构成。联合治理不仅是抑制骨质疏松的发生,也要改善骨质。

骨骼的健康是通过平衡成骨细胞和破骨细胞的活性所维持的。该研究显示,在小鼠体内抑制A t p6v0d2基因的表达,可以抑制有缺陷的破骨细胞导致的溶骨,同时可以促进骨骼的形成。这项发现深化了对骨代谢调节机制的了解,并且表明调节单个基因的表达即可同时抑制破骨和刺激成骨。

Yong won Choi教授称:这项研究为骨质疏松的治疗提供了一个崭新的思路,具有广阔的临床应用前景。为此他们获得了韩国Ho2Am奖,以表彰他们在骨骼代谢研究中做出的贡献。

(Nature Medicine,2006,12?1403~1409)(孙阿萍 宋德懋)

1植物衰老的机理

1植物衰老的机理 1.1植物衰老和细胞的程序性死亡 植物在长期进化和适应环境的基础上有选择性地使某些细胞、组织和器官有序死亡,称之为程序性死亡(programmed celldeath, PCD)[2]。植物PCD是指整个原生质(有细胞壁或无细胞壁)在植物某个生命时期主动撤退、消化过程,它在去除不需要细胞质或整个细胞时主要通过以下机制:自溶、裂解和木质化。植物衰老是涉及PCD的生理过程,两者在发生机制和信号传导上存在较多的共性: (1)植物衰老和PCD都是由基因控制的主动的过程,它们的发生都依赖新基因的转录和蛋白质的合成。(2)PCD和植物衰老都是一程序性事件。(3)植物衰老与PCD 都可以受许多内部发育信号和外部环境信号的影响,从而调节进程的快慢。(4)植物衰老和PCD过程中都存在物质的运转,这在衰老器官中表现为维管束周围组织最后衰老[3]。植物衰老的过程不完全是PCD。完整的植物衰老过程应包括两个阶段:第一阶段为可逆衰老阶段,细胞以活体状态存在;第二阶段为不可逆衰老阶段,细胞器裂解,细胞衰退, PCD发生,其中液泡的裂解和染色质降解形成的DNA片段是PCD开始发生的标志。胞间基质相互作用,为细胞的分化、生长和死亡提供必需的信号。MMP为基质金属蛋白酶(matrix metallopro-tease)可降解基质。Delorme等[4]在黄瓜叶片衰老的后期检测到一种基质金属蛋白酶CS1-MMP,它是一种前体酶,须经过修饰才能活化,其表达早于DNA片段化的出现,但不参与衰老中营养物质的运转,可能与PCD的发生有关。由此认为:PCD可能只在衰老的末期发生,即植物衰老达到一个不可逆的点,这个点的出现标志着PCD的发生。Rao和Davis发现[5]:缺少脱落酸(SA)信号传导途径的拟南芥突变体pad4,其叶片长时间保持黄化状态,细胞死亡速度比野生型慢得多,而野生型拟南芥SA信号传导途径中被诱导表达的一个衰老特异基因SAG12只在衰老晚期的黄化组织中表达,推测植物衰老前期产生的SA信号可诱导下一步的PCD,SAG12可能在衰老后期的PCD过程中起关键作用。 1.2自由基与衰老 植物体内的自由基是指植物代谢过程中产生的O·-2、OH·等活性氧基团或分子,当它们在植物体内引发的氧化性损伤积累到一定程度,植物就出现衰老,甚至死亡。但生物在长期进化过程中在体内形成了一套抗氧化保护系统,通过减少自由基的积累与清除过多的自由基两种机制来保护细胞免受伤害。生物体内的抗氧化剂主要有两大类,一是抗氧化酶类,主要包括超氧化物歧化酶(SOD)、过氧化氢酶(CA T)、过氧化物酶(POX)等;二是非酶类抗氧化剂,主要有维生素E、维生素C、谷胱甘肽(GSH)等。许多研究表明,在缺氧条件下,生物体内SOD、CA T活性下降。对菜豆子叶超氧化物歧化酶活性研究发现,其SOD活性随组织衰老而下降,表明植物组织酶的清除能力随年龄增加而下降[6]。已有的证据显示,自由基、活性氧对植物的损害作用主要表现在生物膜损伤、呼吸链损伤、线粒体DNA损伤等。大多数研究集中在活性氧所引发的膜脂过氧化方面。膜脂过氧化即自由基(O·-2、OH·等)对类脂中不饱和脂肪酸引起的一系列自由基反应。脂氧合酶(lipoxygenase,LOX)是一种氧合酶,专门催化具有顺-1,4戊二烯结构的不饱和脂肪酸的加氧反应,其中间产物自由基和最终产物丙二醛都会严重地损伤生物膜。丙二醛具有强交联性质,能与蛋白质、核酸游离的氨基结合,形成具有荧光的Schif碱,称为类脂褐色素(1ipofuscin-like pigment, LEP),是不溶性化合物,干扰细胞内正常生命活动代谢。同时,丙二醛与生物膜中结构蛋白和酶的交联,破坏它们的结构和催化功能[7]。活性氧、自由基还能直接与核酸分子作用,使碱基羟基化,发生突变,从而改变核酸的结构。用自旋捕集技术和ESR法,通过研究紫外线辐射核黄素产生的超氧阴离子自由基(O·-2)等活性氧与嘧啶碱基及核苷的反应,发现该反应不是直接进行,而是通过羟自由基来实现的。线粒体呼吸链是细胞内自由基的主要发生器之一,它本身易被自由基损伤。在衰老的植物组织中电子传递链的失衡使得部分电子泄露给O2,呼吸链电子传递出现短路,其结果使A TP生成减少,O·-2等活性氧的产生增加,从而影响细胞的功能[8]。

中医衰老学说及抗衰老研究概况_赵蓉

[收稿日期]2006-01-06中医衰老学说及抗衰老研究概况 赵 蓉 (天津市大港区中医医院,天津300270) [中图分类号]R161.7 [文献标识码]B [文章编号]1004-2814(2006)06-384-02 衰老是指机体发育成熟后,组织器官逐步发生退行性改变,并最终走向老化的过程。目前西医和中医对衰老机制及 抗衰老都进行了大量的研究,并取得了不少成果。现就中医衰老学说的研究综述如下。1 中医衰老学说 精气神衰老学说:精、气、神为人之三宝,是生命的根本。中医认为精、气、神三者的状态标志着一个人的健康,如三者虚衰,则是衰老的征象。5太平经6提出/精、气、神0是支配着人体生命的三大元素。5素问#金匮真言论6曰:/夫精者,身之本也。05灵枢#本神篇6记载:/故生之来谓之精,两精相搏谓之神。05灵枢#决气篇6记载:/上焦开发,宣五谷味,熏肤,充身,泽毛,若雾露之溉,是谓气。0历代医家又对此进行不断充实发挥,丰富了学说内容。5黄帝内经素问集注6说:/神气血脉,皆生于精,故精乃生身之本,能藏其精,则血气内固,邪不外侵。0可见历代医家对人体的精、气、神非常重视,精充、气足、神旺即是健康的标志,如精亏、气虚、神萎则是衰老的征象,从精、气、神三方面的表现,完全可以反映出人体衰老的程度。 肾虚衰老学说:5素问#上古天真论6谓:/女子七岁,肾气盛,齿更发长。二七而天癸至,任脉通,太冲脉盛,月事以时下,固有子,,七七,任脉虚;太冲脉衰少,天癸竭,地道不通,故形坏而无子也。丈夫八岁,肾气实,发长齿更。二八,肾气盛,天癸至,精气溢泻,阴阳和,故能有子,,八八,则齿发去。肾者主水,受五脏六腑之精而藏之,故五脏盛,乃能泻,,此其天寿过度,气脉常通,而肾气有余也。0肾为先天之本,人体生长、发育、衰老以至死亡的过程就是肾气逐渐充实、 隆盛、衰少乃至衰竭的过程[1] 。 脾胃虚弱衰老学说:脾胃为后天之本,为气血生化之源。脾胃在人体活动中起着升降枢纽的作用,肾中的先天精气也依赖于脾胃化生的后天水谷精微的充养。李东垣在5脾胃论6中谓脾胃是化生元气的本源,脾胃损伤必然导致元气不足,而产生各种病变,提出/诸病从脾胃而生0,脾虚则/气促憔悴0、/血气虚弱0等观点,认为脾胃虚弱是导致衰老发生的主要原因。脾胃功能强盛则身体健康而长寿,脾胃虚衰则百病丛生而早衰。 阴阳衰老学说:5素问#阴阳应象大论6曰:/阴阳者,天地之道也,万物之纲纪,变化之父母,生杀之本始,,0中医学认为阴阳之间的变化是一切事物运动变化的根据,同时也是生命生长、发育、衰老以至死亡的根本原因。古人认为只有阴阳平衡生命活动才能正常进行,如果阴阳平衡被打破则会导致 机体发生疾病、衰老以至死亡。机体衰老的过程也就是阴阳失去平衡,出现偏盛偏衰或阴阳两虚的结果。若进一步发展,阴阳不能相互为用而分离,人的生命活动也就停止了。5素问#生气通天论6的/阴平阳秘,精神乃治;阴阳离决,精气乃绝0则是对这种学说的概括与总结 [1] 。 脏腑经络衰老学说[2] :5内经6在论述人体衰老的原因时已明确指出,随着年龄的增长五脏虚衰则会导致衰老的发生与发展,并最终引起死亡。5灵枢#天年篇6谓:/五十岁,肝气始衰,肝叶始薄,胆汁始灭,目始不明。六十岁,心气始衰,苦忧悲,血气懈惰,故好卧。七十岁,脾气虚,皮肤枯。八十岁,肺气衰,魄离,故言善谈。九十岁,肾气焦,四脏经脉空虚。百岁,五脏皆虚,神气皆去,形骸独居而终矣。0首先提出了脏腑虚衰是导致人体衰老、死亡的原因。后世医家在此基础之上,对衰老的脏腑虚衰学说又各有发挥,并形成了两种主要观点。 淤血衰老学说:5素问6谓:/使道闭塞不通,,以此养生则殃。0/使道0即血脉,明确指出血脉不通有碍养生长寿。淤血产生后,气血运行受阻,脏腑得不到正常濡养,气化功能受损;同时代谢产物不能排泻,堆积体内,毒害机体,从而形成恶性循环,加速衰老[3] 。2 中医抗衰老研究概况 中药抗衰老研究:1调节免疫功能:研究表明,活血化淤类中药丹参、川芎等能提高大鼠的淋巴细胞转化率,增强小鼠单核巨噬细胞系统的吞噬作用,提高细胞免疫和体液免疫的 功能[4] 。复方参七汤能减缓免疫器官的萎缩,提高IL-2水平,对TNF-A 异常升高有抑制作用 [5] 。钟毅 [6] 等用补肾健 脾活血化痰方药经过临床和动物实验研究显示具有增加机体免疫功能作用。o对抗自由基的研究:杨勇等用四物汤及其各单味药对小鼠自由基代谢及免疫功能影响的比较研究发现四物汤全方通过调节自由基代谢及对免疫功能的影响,而起 到延缓衰老的作用,配伍后表现出较强的药理活性[7] 。?对神经系统的研究:赵伟康 [8] 等研究发现,固真方能明显延缓老 年机体H PTT 轴的功能退化及延缓老年大鼠下丘脑)垂体) 肾上腺)胸腺(H PTQ )轴衰老的作用[9] 。?对生殖系统的研究:生殖功能是反映机体衰老的敏感的指标之一。黄精可显著升高衰老动物脑和性腺组织的端粒酶活性[10] 。杜仲具有一定的抗衰老作用,使生精过程活跃,生精细胞增多,间质细胞增多不明显,生精小管直径改变不明显 [11] 。?对调控衰老基 因的研究:王学美[12] 等观察五子衍宗丸及其拆方对老年肾虚者外周血白细胞线粒体DNA 缺失,减少有缺陷的呼吸链,增强细胞所需的能量,从而达到维持细胞正常生理,延缓衰老的作用。?改善血液流变性的研究:实验表明,人参、黄精、决明子、何首乌、徐长卿、红花均有降血脂或降低血清胆固醇作用。 # 384#

衰老生化复习题

高脂血症:由于体内脂类物质代谢或转运异常使血清中总胆固醇、低密度脂蛋白胆固醇及(或)三酰甘油水平升高超过正常范围高限的一种病症。 血浆所含脂类(脂质)统称血脂(lipids)。 胰岛素:是由胰岛β细胞合成分泌的多肽激素。 高血糖症:是糖代谢紊乱导致血糖浓度高于参考上限的一种异常现象,主要表现为空腹血糖损伤、糖耐量减退或糖尿病。 胰岛素受体是一种位于细胞膜上的糖蛋白,能特异性与胰岛素结合而引起细胞效应。 糖尿病(diabetes mellitus, DM)是一组由于胰岛素分泌不足或/和胰岛素作用低下而引起的糖代谢紊乱性疾病,其特征是高血糖症。 胰岛素抵抗:机体对胰岛素敏感性下降,胰岛素降血糖的能力降低,身体组织对葡萄糖的利用障碍 随着年龄继续增长,中心性肥胖更为明显,胰岛β细胞的增龄性改变使其无法继续维持良好的代偿分泌功能,不足以控制负荷后的血糖水平,进而出现隐性糖尿病 糖化蛋白是指蛋白质中的氨基酸残基与自由糖(主要是葡萄糖)不经酶催化发生结合的产物。 生命:生命是自然界中的一种高度有序的现象 人口普查(census):在国家统一规定的时间内,按照统一的方法、统一的项目、统一的调查表和统一的标准时点,对全国人口普遍地、逐户逐人地进行的一次性调查登记。 由自发的或环境的因素引起DNA一级结构的任何异常的改变称为DNA的损伤(DNA damage),也称为突变(mutation)。 DNA甲基化:S-腺苷甲硫氨酸上的甲基在DNA甲基转移酶的催化下转移至DNA分子中胞嘧啶环第5位碳原子上,形成5-甲基胞嘧啶(5-mC)的过程。 端粒(telomere):位于染色体末端,由端粒 DNA 和端粒相关蛋白组成。 端粒相关蛋白:直接或者间接与端粒相结合的蛋白。 端粒DNA:富含GxTy,由简单重复的非编码序列组成,受特殊蛋白质保护,不被核酸酶水解。 端粒酶(telomerase):是一种核糖核蛋白,是一种逆转录酶,由RNA和蛋白质构成,能识别和结合端粒序列。 辐射、农药、食物添加剂、酒精、吸烟等外来因素引发的自由基称为“外源性自由基”。 在新陈代谢过程中,从大气中吸进的氧气,在肺部,与食物消化后进入血液里的葡萄糖进行化学反应,产生维持生命活动的能量。在正常生化过程中,常有1%左右的氧变成化学性质极其强烈的氧自由基,即人体内生化反应产生的“内源性自由基”。 色斑也称脂褐素,是脂质过氧化的最终产物丙二醛与大分子交联形成的高聚物,呈圆形或椭圆形,直径1μm~1·5μm,难溶于水,不易被排除,在细胞内大量沉积,防碍细胞代谢,加速细胞机能衰退,引起细胞老化,因此,色素斑的形成是皮肤衰老的标志之一,也是自由基联锁反应的结果。 单胺氧化酶(MAO,EC1. 4. 3. 4)全名:单胺∶O2 氧化还原酶,它在大脑和周围神经组织中催化一些生物体产生的胺,氧化脱氨产生过氧化氢。 单胺氧化酶抑制剂(MAOIs)是一类选择性抑制机体内单胺氧化酶活性的药物。 寿命(life span):从出生到死亡的存活时间。 个体寿命:在自然情况(即没有任何意外事故的情况)下,生物体从第一次呼吸到最后一次呼吸的时间。 最长寿命:一个物种的个体所能活到的最长寿命,以已有纪录的最长寿命表示。

《老年护理》第2章老化的相关理论试题及答案

第 2 章老化的相关理论 一、案例分析题 1、张大爷,75岁,反复髋关节、膝关节等关节疼痛5年,常于阴冷天气、下雨时发作或加重,伴有轻度红肿 和晨僵,活动有时可听到关节咔嗒声,X线显示膝关节、髋关节有骨赘改变。实验室检查无特殊发现。 可用于张大爷此病解释的主要发病机制是( E ) A. 遗传基因理论 B. 自身免疫理论 C. 神经内分泌理论 D. 衰老理论 E. 自身免疫理论和衰老理论 2、朴总工程师,女,68岁,患高血压23年,血压最高达到过190/116mmHg —般用药可以控制血压在正常范 围。最近为某项目攻坚加班加点,每日睡眠不足5小时,轻微头痛。今天讨论时突然心前区持续性疼痛半小时入院。体检:P 90次/分,BP 168/100mmHg身高165cm,体重85kg,表情焦虑。 为了协助诊断,首选下列哪项检查( B ) A. 心脏B超 B. 心电图 C. 脑CT D. 心肌酶学检查 3、朴总工程师,女,68岁,患高血压23年,血压最高达到过190/116mmHg 一般用药可以控制血压在正常范 围。最近为某项目攻坚加班加点,每日睡眠不足5小时,轻微头痛。今天讨论时突然心前区持续性疼痛半小时入院。体检:P 90次/分,BP 168/100mmHg身高165cm,体重85kg,表情焦虑。 24小时内最关键的观察是( C ) A. 生命体征 B. 瞳孔大小 C. 心电监护 D. 有无恶心呕吐 4、朴总工程师,女,68岁,患高血压23年,血压最高达到过190/116mmHg 一般用药可以控制血压在正常范 围。最近为某项目攻坚加班加点,每日睡眠不足5小时,轻微头痛。今天讨论时突然心前区持续性疼痛半小时入院。体检:P 90次/分,BP 168/100mmHg身高165cm,体重85kg,表情焦虑。 医生给予扩张血管、溶栓等治疗24小时后, 患者血压正常,头痛、心前区疼痛消失,自我感觉较好,于是想在病床上继续工作,声称工作离不开她,不工作活着没有意义,她这是为了满足( E ) A. 生理需求 B. 安全需求 C. 社交需求 D. 尊重需求 E. 自我实现需求 5、朴总工程师,女,68岁,患高血压23年,血压最高达到过190/116mmHg 一般用药可以控制血压在正常范 围。最近为某项目攻坚加班加点,每日睡眠不足5小时,轻微头痛。今天讨论时突然心前区持续性疼痛半小时入院。体检:P 90次/分,BP 168/100mmHg身高165cm,体重85kg,表情焦虑。 此时护士你应该根据下列哪项心理理论为她服务( C ) A. 人类需求理论中的安全需求更基本 B. 用"自我概念理论”支持她老有所为 C. 用"人格发展理论”理解治疗休养是为了以后更好的工作 D. 病情确实好转可以过渡到追求自我实现 E. 病情虽好转但危险仍在,应先满足生理需求 二、单项选择题 1 、基因程控理论由下列哪位学者提出(A ) A. Hayflick B. Weismann

老年护理老化的相关理论试题及答案

第2章老化的相关理论 一、案例分析题 1、张大爷,75岁,反复髋关节、膝关节等关节疼痛5年,常于阴冷天气、下雨时发作或加重,伴有轻度红肿和晨僵,活动有时可听到关节咔嗒声,X线显示膝关节、髋关节有骨赘改变。实验室检查无特殊发现。 可用于张大爷此病解释的主要发病机制是( E ) A.遗传基因理论 B.自身免疫理论 C.神经内分泌理论 D.衰老理论 E.自身免疫理论和衰老理论 2、朴总工程师,女,68岁,患高血压23年,血压最高达到过190/116mmHg,一般用药可以控制血压在正常范围。最近为某项目攻坚加班加点,每日睡眠不足5小时,轻微头痛。今天讨论时突然心前区持续性疼痛半小时入院。体检:P 90次/分,BP 168/100mmHg,身高165cm,体重85kg,表情焦虑。 为了协助诊断,首选下列哪项检查( B ) A.心脏B超 B.心电图 C.脑CT D.心肌酶学检查 3、朴总工程师,女,68岁,患高血压23年,血压最高达到过190/116mmHg,一般用药可以控制血压在正常范围。最近为某项目攻坚加班加点,每日睡眠不足5小时,轻微头痛。今天讨论时突然心前区持续性疼痛半小时入院。体检:P 90次/分,BP 168/100mmHg,身高165cm,体重85kg,表情焦虑。 24小时内最关键的观察是( C ) A.生命体征 B.瞳孔大小 C.心电监护 D.有无恶心呕吐 4、朴总工程师,女,68岁,患高血压23年,血压最高达到过190/116mmHg,一般用药可以控制血压在正常范围。最近为某项目攻坚加班加点,每日睡眠不足5小时,轻微头痛。今天讨论时突然心前区持续性疼痛半小时入院。体检:P 90次/分,BP 168/100mmHg,身高165cm,体重85kg,表情焦虑。 医生给予扩张血管、溶栓等治疗24小时后,患者血压正常,头痛、心前区疼痛消失,自我感觉较好,于是想在病床上继续工作,声称工作离不开她,不工作活着没有意义,她这是为了满足( E ) A.生理需求 B.安全需求 C.社交需求 D.尊重需求 E.自我实现需求 5、朴总工程师,女,68岁,患高血压23年,血压最高达到过190/116mmHg,一般用药可以控制血压在正常范围。最近为某项目攻坚加班加点,每日睡眠不足5小时,轻微头痛。今天讨论时突

衰老的机制研究进展

衰老的机制研究进展 甘肃医学院赵文俊 摘要: 衰老又称老化, 通常是指在正常状况下生物体发育成熟后, 随年龄增长机体发生的功能性和器质性衰退老化的渐进过程。现代医学对衰老机制的研究涉及到很多方面,从自由基学说看,自由基可形成脂褐素、可造成线粒体DNA(mtDNA)的突变、引起核DNA的受损等;从遗传因素看,衰老是一连串基因激活和阻抑及其通过各自产物相互作用的结果;从免疫功能改变学说看,是由于机体对外来物质免疫反应的下降以及自身免疫反应的增多引起的。 关键词:衰老;自由基;脂褐素;细胞凋亡;线粒体DNA; 遗传基因;免疫系统衰老又称老化,通常是指在正常状况下生物发育成熟后,随年龄增加,自身机能减退,内环境稳定能力与应激能力下降,结构、组分逐步退行性变,趋向死亡的不可逆转的现象。对衰老的研究一直是生命科学领域的最为基本和重要的问题之一,但细节一直知之甚少。衰老是一个持续发展的、动态的、缓慢渐进而复杂的过程。这个过程从生长期结束后逐渐开始,它的影响要到老年期通过人体系统功能失调、器官功能衰退、细胞变性及蛋白质和酶分子结构变化逐渐表现出来。主要表现为机体对环境刺激的适应能力减弱以至丧失,出现多种器官组织功能的衰退并影响健康。影响衰老的因素有很多,各种社会因素、经济、疾病、营养、遗传、生活习惯、环境及精神状态等都起着一定的作用,是很多因素共同作用的结果[1]。目前,随着分子生物学和细胞生物学的研究深入,对衰老机理的研究从整体水平发展到分子水平。有关细胞衰老的学说近年来提出了很多,如细胞损伤学说、生物大分子损伤学说、自由基学说、端粒学说等。对于生物体而言,细胞衰老受到多种因素的影响,有自身遗传因素的影响,也有环境因素的影响,根本的还是受遗传方面的影响。

【课外阅读】有关植物衰老的学说1

有关植物衰老的学说 关于植物衰老发生的原因,主要有以下几种学说。 1.自由基损伤学说自由基有细胞杀手之称。1955年哈曼(Harman)就提出,衰老过程是细胞和组织中不断进行着的自由基损伤反应的总和。近年来,衰老的自由基损伤学说受到重视。衰老过程往往伴随着超氧化物歧化酶(superoxide dismutase,SOD)活性的降低和脂氧合酶(lipoxygenase,LOX,催化膜脂中不饱和脂肪酸加氧,产生自由基)活性的升高,导致生物体内自由基产生与消除的平衡被破坏,以致积累过量的自由基,对细胞膜及许多生物大分子产生破坏作用,如加强酶蛋白质的降解、促进脂质过氧化反应、加速乙烯产生、引起DNA损伤、改变酶的性质等,进而引发衰老。自由基与膜伤害的关系可参照图11-4。 自由基和活性氧自由基(free radical)又称游离基,它是带有未配对电子的原子、离子、分子、基团和化合物等。生物自由基是通过生物体内自身代谢产生的一类自由基。生物自由基包括氧自由基和非含氧自由基,其中氧自由基(oxygen free radical)是最主要的,它又可分为两类:一类是无机氧自由基,如超氧自由基(O 2 ·-)、羟自由基(·OH);另一类是有机氧自由基,如过氧化物自由基(ROO·)、烷氧自由基(RO·)和多聚不饱和脂肪酸自由基(PUFA·)。多数自由基有下述特点:不稳定,寿命短;化学性质活泼,氧化能力强;能持续进行链式反应。活性氧(active oxygen)是化学性质活泼,氧化能力很强的含氧物质的总称。 生物体内的活性氧主要包括氧自由基、单线态氧(1O 2)和H 2 O 2 等,它们能氧化生 物分子,破坏细胞膜的结构与功能,其中O 2 氧化能力特强,它能迅速攻击所有生物分子,包括DNA,引起细胞死亡。 自由基和活性氧两者间的组成关系如下: 非含氧自由基,如:CH 3·(甲自由基);(C 6 H 5 ) 3 C·(三苯甲自由基) 自由基 氧自由基,如:O 2 -·;·OH;ROO· 活性氧 含氧非自由基,如:1O 2;H 2 O 2 正常情况下,由于植物体内存在着活性氧清除系统,细胞内活性氧水平很低,不会引起伤害。植物细胞中活性氧的清除主要是通过有关酶和一些抗氧化物质。细胞的保护酶主要有超氧化物歧化酶(SOD)、过氧化物酶(peroxidase,POD)、过氧化氢酶(catalase,CAT)、谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)、谷胱甘肽还原酶(glutathione reductase,GR)等,其中以SOD 最为重要。对水稻、烟草、菜豆、燕麦等叶片衰老的研究表明,叶片中SOD 活性随衰老而呈下降趋势,O 2 -·等随衰老而增加,脂类过氧化产物丙二醛(MDA)迅速积累(MDA积累速率可代表组织中总的清除自由基能力的大小);而植物处于生长旺盛时期,SOD活性则是随着生长的加速保持比较稳定的水平或有所上升,因此,SOD活性的下降与植物体的衰老是呈正相关的。 增加植物体细胞内活性氧种类浓度的环境因素。 目前已发现有三种不同形式的SOD:(1)CuZn-SOD,分子量为32 000,由两个相同的亚基构成,主要分布于高等植物的细胞质和叶绿体中,是高等植物中主要的SOD;(2)Mn-SOD,主要分布于原核生物及真核生物的线粒体中,是诱导酶

9 第9章 植物的成熟与衰老生理-自测题及参考答案

第 9章 植物的成熟与衰老生理 自测题: 一、名词解释: 1. 单性结实 2. 天然单性结实 3. 刺激性单性结实 4. 假单性结实 5 休眠 6. 硬实 7. 后熟 8. 层积处理 9.呼吸高峰 10. 跃变型果实 11. 非跃变型果实 12 .衰老 13. 老化 14. 脱落 15. 离区与离层 16. 自由基 17. 程序性细胞死亡 二、缩写符号翻译: 1.LOX 2.PCD 3.GR 4.GPX 5.PME 三、填空题: 1.种子成熟过程中,脂肪是由______转化来的。 2.风旱不实的种子中蛋白质的相对含量__________。 3.籽粒成熟期ABA的含量______。 4.北方小麦的蛋白质含量比南方的__________。北方油料种子的含油量比南方的________。 5.温度较低而昼夜温差大时有利于__________脂肪酸的形成。 6.人们认为果实发生呼吸跃变的原因是由于果实中产生______________结果。 7.核果的生长曲线呈__________型。 8.未成熟的柿子之所以有涩味是由于细胞液内含有__________。 9.果实成熟后变甜是由于__________的缘故。 10.用__________破除马铃薯休眠是当前有效的方法。 11. 叶片衰老时, 蛋白质含量下降的原因有两种可能: 一是蛋白质_____________; 二是蛋白质_____________。 12.叶片衰老过程中,光合作用和呼吸作用都__________。 13.一般来说,细胞分裂素可__________叶片衰老,而脱落酸可_____________叶片衰老。 14.叶片和花、果的脱落都是由于______________细胞分离的结果。 15.种子成熟时,累积的磷化合物主要是______。 16.油料种子成熟时,油脂的形成有两个特点:__________________;__________________。 17. 小麦种子成熟过程中, 植物激素最高含量出现顺序是: __________、 __________、 __________、 __________。 18.油料种子成熟过程中,其酸价__________。 19. 果实成熟时酸味的减少是因为______________________、 ______________________、 __________________。 20.将生长素施于叶柄的______________端,有助于有机物从叶片流向其他器官。 21.整株植物最先衰老的器官是______________和__________。 22.在不发生低温伤害的条件下,适度的低温对衰老的影响是______________。 23.种子成熟时最理想的温度条件是______________。 24.在未成熟的柿子中,单宁存在的部位是______________。 25.果实含有丰富的各类维生素主要是______________。 四、 选择题(单项和多项): 1.下列果实中,有呼吸跃变现象的有( )。 A.桃 B.葡萄 C.番茄 D.草莓 2.叶片衰老时,( )。 A.RNA含量上升 B.蛋白质合成能力减弱 C.光合速率下降 D.呼吸速率下降 3.在豌豆种子成熟过程中,种子最先积累的是( )。 A.以蔗糖为主的糖分 B.蛋白质 C.脂肪 D.含氮化合物

衰老学说

衰老学说 有人认为老年病正是衰老的原因;另有人反对说,老年病恰是衰老的结果。那么,究竟衰老的本质是什么呢? (一)氧自由基学说。这是世界上公认的主要衰老学说之一。它认为机体的细胞在氧化、代谢过程中,或受射线照射,服用化学药剂后,都使体内积累大量有害的自由基,这种自由基可是生物膜中多元不饱和脂肪酸发生过氧化作用,最终导致蛋白质交联物渐渐增多,导致细胞功能积累性退化衰老。自由基是使人衰老的罪魁祸首,所以设法消除这种自由基病便可延长人的寿命。美国路易斯维尔大学的生化专家即从植物中提取了一种能消除动物体内自由基的物质,用它喂蚊子,使其寿命从29天延长到45天。一旦能找到适合人服用的这类物质,人的寿命可望大大提高。 (二)细胞突变说。认为细胞分裂次数与寿命成正比。衰老即是由于细胞受损而产生突变。,从而使细胞本身及下一代细胞异常,生理功能下降,分裂次数降低。在实验中,人体细胞只能分裂50次,然后就土崩瓦解;但是在低温下,细胞分裂速度可变慢,这是延长寿命的方法之。与此相似的是生物钟学说,认为人的细胞分裂次数50次是生物钟决定的。例如寿命为30年的鸡,细胞分裂25次;寿命为3年的小白鼠,只分裂12次。有人提出一个推断:人的体温若降低2摄氏度,寿命可延长到200岁,若降低4摄氏度,可活700岁,且生命质量不变。又有人认为合理有益的饥饿,可大大提高人的寿命,这都是减缓细胞分裂速度的原理使然。程序衰老学说认为,人和动物的神经寿命是有特定的遗传程序决定的,不可更改,因此,人的衰老成为必然,这个学说也可以叫做遗传衰老学学说。 (三)免疫功能退化学说。这是为许多人接受的一种衰老学说,也是一个主要的衰老学说。它认为人的免疫功能在中老年后,随着年龄的增长而退化,而人类是处于外部病菌、病毒、内部异常细胞、毒素的包围之中,岁时又受侵害的可能,免疫功能降低就是致病且不易治愈,这就使器官、组织受损或致死。有人把幼儿内分泌腺诸如老人体内能,借此增加老人的米纳一功能,但尚未得到广泛临床应用。淋巴细胞是免疫系统的“主帅”。英国老年保健研究所公布的一项鸭牛结果表明:在一个老人死前3年终,淋巴细胞数量明显下降趋势。这是他们对05个人进行长达30年之久的考察得出的结论。 此外,北京大学大学医学部免疫学研究时发现,白细胞介素随着人的计数年龄的增长而呈明显夏季那个趋势,它在康衰老中参与机体的免疫调节。 (四)自身中毒说。人的大肠细菌等可分泌一种有毒物质,它可以使人衰老。此外,美国洛克菲勒大学的细胞生物学家尤金尼亚还从人体的结缔组织细胞中分离出一种特殊的蛋白质,是老化的、不能分裂的细胞的产物,正是它杀死了细胞。消除这种毒物,可望推迟衰老。 (五)死亡激素说。有人问为老化的关键步骤并非发生在细胞中,而是发生在大脑、神经、内分泌的活动,使机体老化的决定因素。若早期摘除大白鼠垂体腺,并喂食可的松激素,会延长大白鼠寿命。有的学者认为脑垂体腺在大脑中释放一种“死亡激素”,有的说胸线释放这种“死亡激素”但都未得到实验的证实。有人从乌贼鱼的泪腺中发现“死亡激素”。 (六)胶体化学说。捷克的汝兹卡认为衰老是滞后作用的过程,即使由于体内状态的变化。人随着年龄增长,体内进行胶体颗粒的合并过程,于是机体活性酸度下降,呈现衰老状态。

衰老理论和原因

衰老理论和原因 (三)自由基学说(国际学术界公认) 衰老的自由基学说是Denham Harman在1956年提出的,认为衰老过程中的退行性变化是由于细胞正常代谢过程中产生的自由基的有害作用造成的。生物体的衰老过程是机体的组织细胞不断产生的自由基积累结果,自由基可以引起DNA损伤从而导致突变,诱发肿瘤形成。自由基是正常代谢的中间产物,其反应能力很强,可使细胞中的多种物质发生氧化,损害生物膜。还能够使蛋白质、核酸等大分子交联,影响其正常功能。 支持该学说的证据主要来自一些体内和体外实验。包括种间比较、饮食限制、与年龄相关的氧化压力现象测定、给予动物抗氧化饮食和药物处理;体外实验主要包括对体外二倍体成纤维细胞氧压力与代谢作用的观察、氧压力与倍增能力及抗氧化剂对细胞寿命的影响等。该学说的观点可以对一些实验现象加以解释如:自由基抑制剂及抗氧化剂可以延长细胞和动物的寿命。体内自由基防御能力随年龄的增长而减弱。脊椎动物寿命长的,体内的氧自由基产率低。但是,自由基学说尚未提出自由基氧化反应及其产物是引发衰老直接原因的实验依据,也没有说明什么因子导致老年人自由基清除能力下降,为什么转化细胞可以不衰老,生殖细胞何以能世代相传维持种系存在这些问题。而且,自由基是新陈代谢的次级产物,不大可能是衰老的原发性原因。 (四)交联学说 该学说由Bjorksten于1963年提出的,后经Verzar加以发展。其主要论点是:机体中蛋白质,核酸等大分子可以通过共价交叉结合,形成巨大分子。这些巨大分子难以酶解,堆积在细胞内,干扰细胞的正常功能。这种交联反应可发生于细胞核DNA上,也可以发生在细胞外的蛋白胶原纤维中。目前有一些证据支持交联学说。皮肤胶原的可提取性以及胶原酶对其消化作用随增龄降低,而其热稳定性和抗张强度则随年龄的增高而增强了;大鼠尾腱上的条纹数目及所具备的热收缩力随年龄的增高而增加,溶解度却随年龄增高而降低。这些结果表明,在年老时胶原的多肽链发生了交联,并日益增多。该学说与自由基学说有类似之处,亦不能说明衰老发生的根本机制。 (五)差误成灾学说 差误成灾学说是由Orgel明确提出的,认为在DNA复制,转录和翻译中发生误差,这种误差可以不断扩大,造成细胞衰老、死亡。如DNA转录mRNA 的过程发生微小的差异,带有该微小差异的mRNA会翻译出进一步偏离的蛋白质,该蛋白质如果属于DNA聚合酶会合成差异程度更大的DNA,这样的差错经过每一次信息传递都扩大一些,形成恶性循环,使细胞内积累许多差错分子造成灾难,细胞正常功能不能发挥,致使细胞衰老、死亡。 对于这种假说,已有大量的研究和报道,各抒己见,褒贬不一。Lewis 和Tarrant发表了他们认为支持该学说的资料:合成生物大分子所需的酶存在年龄依赖性变化,如小鼠肝DNA多聚酶、人体成纤维细胞DNA多聚酶合成的正确性都随着年龄的增加而降低;同时DNA的修复速度也下降。 然而,与之不符的结果有在亚致死浓度的氨基酸类似物中生长的二倍体细胞寿命并不缩短。假如衰老是因为蛋白质合成时的差错引起的,那么在上

衰老理论和衰老学说

衰老理论和衰老学说 目录 衰老学说概述 衰老学说研究 自然交联学说及其对经典生命难题的解释 生物分子自然交联学说与其他衰老学说 其他衰老学说简介 衰老理论和衰老学说无论是英汉词典还是汉英词典,“理论”和“学说”的英文释义都是“Theory”,这说明理论和学说在英文语境中没有明显的差异。与英文不同,中文语境中理论等同于真理;学说则相等于假设。因此,用中文评价衰老说,就应当区分理论和学说两种类型。本文尝试以理论和学说为两极,理性分析现在流行的各种衰老学说,希望能折射它们在这一直线座标系的相对位置及其到达理论顶点的“距离”。衰老学说概述 自19世纪末应用实验方法研究衰老以来,先后提出的学说不下数十种,有些学说已被否定(如大肠中毒说),近年来比较流行的有代表性的学说大致有:程序衰老说、密码子限制说、DNA修复缺陷说、生物分子自然交联学说、免疫机能退化说、大分子交联说、神经内分泌学说、体细胞突变学说、自由基学说、交联学说、生物钟学说、基因调节学说(细胞分裂速度逐渐减慢最终停止说)、剩余信息学说、衰老的免疫学说、端粒学说、基因阻遏平衡论等十几种。 毫无疑问,这些学说的许多观点是正确的,由于生命过程太过繁杂,研究者的观察角度不同、位置不同以及研究方法的不同,得出的结果就会不同,准确程度也就不同。就象饮水思源,长江的源头在哪里?虽然模糊了几千年,直到1978年才得出至今仍存争议的沱沱河,即使沱沱河就是长江源头,那么汇聚成沱沱河源头的山涧哪一条最长?离长江出口最远的一股泉水出自长江上游的哪一条山沟!至此,我想传统意义的饮水思源到此可以为止了;如果要寻找更深层次的源头,应该还可以追溯到某个山顶的某一颗树,那么这树上的水又是哪里来的呢?于是会追溯到某一团云彩,会追溯到生成这一团云彩的是某某水,会追溯到水的物理循环、水的理化性质。这许多因素中对我们饮水思源最重要的是什么呢?从社会层面说我们应该饮水不忘挖井人,从更深层次我们应该感谢自然界赋予水的自然属性,是水的理化性质和自然环境以及地形地貌、万有引力等多种因素的相互作用,才得以形成清澈的山泉,汇聚成奔腾的长江,周而复始,永不枯竭。虽然我们不希望把衰老的原因描述成一个哲学问题,但是让我们带着哲学的思维方式来探讨这个问题是必须的,在饮水思源的例子中,长江之水永不枯竭的原因有多种,但最核心的原因还是水的自然属性,正所谓外因通过内因起作用。生物的衰老也是如此,有很多种衰老的原因:有内在的原因、也有外在的原因。因此,一切有意义的衰老学说所证明的原因应该也不会超出内因和外因这样两种

11 第11章 植物的成熟与衰老--复习材料+自测题

第 11 章 植物的成熟与衰老 一、教学大纲基本要求 了解花粉的构造、主要成分、花粉萌发和花粉管的生长;掌握被子植物中存在的两种自交不亲和性及其特点, 了解克服不亲和的方法;了解胚和胚乳的发育,以及种子中贮藏物质的积累过程;熟悉果实的生长模式、单性结实 现象和果实成熟时的变化;掌握种子和芽的休眠并了解其调控方法; 熟悉植物衰老时的生理生化变化和引起衰老的 原因、影响衰老的因素;掌握器官脱落的细胞学及生物化学过程,并了解影响脱落的内外因素及调控方法。 二、本章知识要点 果实的生长模式主要有单“ S ”形生长曲线和双“ S ”形生长曲线两类。果实的细胞数目和细胞大小是决 定果实大小的主要因子,尤其是后者。许多果实在成熟过程中发生以下变化:呼吸跃变、淀粉水解成蔗糖、葡萄糖、 果糖等可溶性糖;有机酸含量减少,糖酸比上升;多聚半乳糖醛酸酶 (PG) 等胞壁水解酶活性上升,果实软化;形 成微量挥发性物质,散发出特有的香味;单宁等物质转化,涩味下降;叶绿素含量下降,花色苷和类胡萝卜素等增 加。使果实表现出特有的色、香、味。 休眠是生理或环境因素引起植物生长暂时停止的现象,种子休眠主要是由于胚未成熟、种 ( 果 ) 皮的限制以 及萌发抑制物的存在引起的。解除种子休眠的方法有:机械破损、浸泡冲洗、层积、药剂、激素、光照和 X 射线 等处理。 种子活力是指种子萌发速度、生长能力和对逆境的适应性;种子老化是指种子活力的自然衰退;种子劣变则是 指种子生理机能的恶化。正常性种子通常在干燥低温下可以长期贮藏,而顽拗性种子在贮藏中忌干燥和低温。存在 这种区别的一个重要原因是前者含有较多的 LEA 蛋白,而后者较少。 许多植物或其器官以芽休眠的形式渡过不良条件。短日照、 ABA 等对芽休眠有促进作用。 GA 能有效地解 除芽休眠,而青鲜素等能防止芽萌发。 衰老是植物发育的组成部分,是植物在自然死亡之前的一系列恶化过程。它可以在细胞、组织、器官以及整体 水平上发生。植物衰老时在生理生化上有许多变化,主要表现在光合色素逐渐丧失, DNA 和 RNA 含量下降, 蛋白质水解,光合和呼吸作用下降,促进生长的生长素,细胞分裂素和赤霉素等植物激素含量下降,而诱导衰老和 成熟的激素如 ABA 、乙烯、茉莉酸等含量增加。另外细胞膜降解、细胞器破坏、细胞发生自溶。有关衰老的学 说有:自由基损伤学说、蛋白质水解学说、激素平衡学说等。这些学说都有一定的实验证据,但还不能解释不同器 官的衰老机理。 正常的脱落是衰老引起的,是植物适应环境、保存自己和保证后代繁衍的一种生物学特性。器官脱落可受多种 因子的诱导,如落叶树木叶子的脱落起因于短日照的环境信号。短日照有利于 ABA 的合成, ABA 又刺激乙烯 的合成,而 ABA 和乙烯激活了纤维素酶、果胶酶和过氧化物酶活性,促使离层的溶解。 三、自测题 (一)名词解释: 1.单性结实 2.呼吸跃变 3.休眠 4.后熟作用 5. 层积处理 6.衰老 7.脱落 8.自由基 9.活性氧 10.程序性细胞死亡 (二)写出下列符号的中文名称: 1.LOX 2.PCD 3.GR 4.GPX (三)填空题: 1.种子成熟过程中,脂肪是由______转化来的。 2.风旱不实的种子中蛋白质的相对含量__________。 3.籽粒成熟期ABA的含量______。 4.北方小麦的蛋白质含量比南方的__________。北方油料种子的含油量比南方的________。 5.温度较低而昼夜温差大时有利于__________脂肪酸的形成。 6.人们认为果实发生呼吸跃变的原因是由于果实中产生______________结果。 7.核果的生长曲线呈__________型。 8.未成熟的柿子之所以有涩味是由于细胞液内含有__________。

细胞衰老理论

细胞衰老理论 *氧化功能损伤理论 细胞新陈代谢产生的活性氧类分子(ROSs)如超氧化物阴离子、过氧化氢和羟基化物等对细胞都有积累性损伤。大部分的活性氧类分子都产生于线粒体中,如携带编码抗氧化剂基因的转基因果蝇寿命更长。一般认为谷胱甘肽过氧化物酶和超氧化物歧化酶SOD(SOD)可清除ROSs,但是在某些情况下经诱变的缺乏谷胱甘肽过氧化物酶和超氧化物歧化酶(SOD)SOD1 SOD2和SOD3的鼠并没有明显的衰老现象出现,这些鼠中有些出现了严重的寿命缩短现象。超氧化物歧化酶是一种酶,它使两个超氧阴离子变成过氧化氢和氧气。最近发现缺少编码p66shc蛋白基因的鼠对一些产生氧化损伤的作用物有高度的抗性,这种鼠存活时间延长了30%。p66shc是p52shc/p46shc的异构体,是p52shc/p46shc选择性剪切形成的。p52shc/p46shc 是细胞质内的物质,参与细胞表面受体到Ras的促细胞分裂信号的传导。这些结果表明氧化损伤是引起细胞衰老和老化的一个重要因素。 *基因组不稳定理论 遗传基因改变的积累是衰老的原因,如点突变、DNA重复序列的丢失(核糖体DNA,、染色体缺失或重组)。事实上突变积累已在鼠中发现。在一些研究中,转基因的lacZ报告基因作为标记基因整合入质粒,这种转基因对肝脏(有丝分裂旺盛)的影响比对大脑(有丝分裂较慢)的影响要大,大部分的突变是基因的重组。对鼠的研究证实了DNA损伤对细胞老化的影响。XPD 基因的突变导致细胞的过早衰老和鼠寿命的缩短,这表明基因突变对细胞衰老有重要影响。XPD 基因编码DNA解旋酶,具有DNA修复和转录的功能。这种影响是否由DNA缺陷直接产生的还是由DNA缺陷间接引起的现在仍然不清楚。 出芽酵母出芽后母细胞出现老化,核糖体DNA改变,最初出现100-200个串联拷贝。在细胞生长期里核糖体DNA从染色体上脱离并保持染色体外的环状拷贝(染色体外的rDNA环,ECRs),这些拷贝大多分布在DNA复制后的母细胞中。ECRs数量增多,导致在rDNA转录处的核仁碎片出现。遗传学数据表明ECRs对酵母老化起重要作用。酵母细胞sgs1`基因的突变使ECRs更快地积累,导致细胞生命期的缩短。通过人为的遗传操作产生ECRs也可缩短细胞的生命期。sgs1基因编码DNA解旋酶(解开DNA双链)。人类与sgs1项对应的是Werner's综合征(WS)相关基因,WRN基因突变导致Werner's综合征,其症状与早衰相似。 *染色体外的基因组不稳定理论 线粒体DNA突变的积累可能导致衰老已经引起重视,线粒体DNA的突变率是核DNA突变率的10-20倍,这一事实证明了这种可能性。但是,已证实在人肌肉细胞中基因突变部分必须至少达到50-80%以上才能对细胞产生危害。随着年龄增长线粒体突变的多样性增加,并且个体细胞中DNA相当大一部分都有突变。另外,在线粒体DNA复制的调控区有高频的点突变发生。随年龄增长线粒体电子转运功能也逐渐衰退。骨骼肌纤维细胞缺乏细胞色素C氧化酶导致高水平的线粒体电子转运功能缺失。缺乏电子转运的功能导致一些次级效应,如自由基的积累。 *染色体末端的不完全复制 首次有文献资料证明细胞衰老发生的是染色体复制衰老理论:经过多次分裂后,大多数正常人体细胞其增殖能力逐渐下降。最近又研究表明人体细胞的复制衰老是由于端粒的缩短。端粒是染色体末端帽状重复的DNA序列,可防止染色体的融合并保证基因组的稳定性,是染色体的必须结构。端粒酶可将端粒的重复序列加到端粒末端,在缺少端粒酶的情况下,每一轮的DNA复制都留下50-200bp的未复制的DNA 3'末端。大多体细胞中缺乏端粒酶,DNA合成的这种特点导致细胞的复制衰老理论,当细胞具有一个或多个短的端粒时就导致它的衰老。

人体细胞衰老机理

基因与长寿g J Immunol:阿克巴尔等发现控制白血细胞老化新机制 作者:何屹来源:科技日报2011-8-24 据美国每日科学网站报道,英国研究人员发现了一种可控制白血细胞老化的新机制,可扭转免疫系统衰退,提高老年人的免疫力。 随着年龄的增长,老年人免疫系统的效率开始下降,因而容易感染重症。这对他们的生活健康构成了威胁,也使其生活质量明显下降。 由伦敦大学学院阿恩·阿克巴尔教授领导的研究小组发现,人类免疫系统逐渐衰弱的原因是由于每次感染后会有一定比例的白血细胞失活。虽然这种机制是进化而来,可以起到预防某些癌症的作用,但随着失活的白血细胞的比例不断提高,人体的防御系统也被削弱。 研究表明,白血细胞失活是由一种尚不确定的免疫系统老化机制所导致。此前科学家认为,免疫细胞老化与染色体端粒的长度有关。随着白血细胞的不断增殖,染色体端粒不断缩短,直至最后细胞永久失活。这意味着,免疫细胞有一种内置的寿命机制。随着人类寿命的延长,免疫细胞将无法提供有效的保护。 阿克巴尔教授的研究小组在采集的血液样本中发现,一些失活的白血细胞却有着较长的端粒,这表明白血细胞失活存在其他机制。而更令人兴奋的是,这些有着较长端粒的白血细胞不会处于永久失活状态。 当研究人员阻断在实验室中新确定的白血细胞的某个途径时发现,白血细胞可以被重新激活,而阻断该途径的药物早已被开发出来,用于治疗其他疾病。所以研究人员下一步将研究重新激活老年人的白血细胞会带来什么好处。 研究人员表示,虽然这种方法还不能让人类永葆青春,但它可以提高老年人的免疫力,帮助老年人战胜各种感染性疾病。此外,该研究还深化了人类对细胞生物学的认识,为控制人类的免疫系统开拓出全新的无法预见的未来,对提高人类的生活质量价值重大。 Nature:节食真能使人更长寿? 作者:何嫱来源:生物通2011-5-13 17:50:02分享到: 2 关键词:信号通路节食衰老 众所周知节食在如线虫、酵母、果蝇与啮齿动物等多种模型生物中可以延长寿命,延迟衰老相关疾病发生。虽然在寿命延长中发挥作用的若干关键因素已被识别出来,但人们对于协调生物代谢反应的信号却知之甚少。 近日由美国佛罗里达州斯克里普斯研究院的科学家领导的一个研究小组证实一条调控营养吸收和能量平衡生物信号可影响线虫寿命的长短。这一研究发现在线发布在5月12日的《自

相关文档
最新文档