基于和利时MACSV patch2 V1.1.0控制系统的升级改造

基于和利时MACSV patch2 V1.1.0控制系统的升级改造
基于和利时MACSV patch2 V1.1.0控制系统的升级改造

过程控制系统习题答案

什么是过程控制系统?其基本分类方法有哪几种? 过程控制系统通常是指连续生产过程的自动控制,是自动化技术中最重要的组成部分之一。基本分类方法有:按照设定值的形式不同【定值,随动,程序】;按照系统的结构特点【反馈,前馈,前馈-反馈复合】。 热电偶测量的基本定律是什么?常用的冷端补偿方式有哪些 均质材料定律:由一种均匀介质或半导体介质组成的闭合回路中,不论截面和长度如何以及沿长度方向上的温度分布如何,都不能产生热电动势,因此热电偶必须采用两种不同的导体或半导体组成,其截面和长度大小不影响电动势大小,但须材质均匀; 中间导体定律:在热电偶回路接入中间导体后,只要中间导体两端温度相同,则对热电偶的热电动势没有影响; 中间温度定律:一支热电偶在两接点温度为t 、t0 时的热电势,等于两支同温度特性热电偶在接点温度为t 、ta和ta、t0时的热电势之代数和。只要给出冷端为0℃时的热电势关系,便可求出冷端任意温度时的热电势,即 由于冷端温度受周围环境温度的影响,难以自行保持为某一定值,因此,为减小测量误差,需对热电偶冷端采取补偿措施,使其温度恒定。冷端温度补偿方法有冷端恒温法、冷端补偿器法、冷端温度校正法和补偿导线法。 为什么热电阻常用三线制接法?试画出其接线原理图并加以说明。 电阻测温信号通过电桥转换成电压时,热电阻的接线如用两线接法,接线电阻随温度变化会给电 桥输出带来较大误差,必须用三线接法,以抵消接线电阻随温度变化对电桥的影响。 对于DDZ-Ⅲ型热电偶温度变送器,试回答: 变送器具有哪些主要功能? 变送器的任务就是将各种不同的检测信号转换成标准信号输出。 什么是变送器零点、零点迁移调整和量程调整? 热电偶温度变送器的输入电路主要是在热电偶回路中串接一个电桥电路。电桥的功能是实现热电偶的冷端补偿和测量零点的调整。

全自动控制系统操作说明

全自动控制系统——脱机手柄操作说明1.手柄与控制卡用网线连接好,上电启动,进入启动界面 2.弹出机械回零对话框,按确定或停止取消键进行相应的是否机械回零操作 3.进入主界面: 1. 按回零键:XY轴回零;Z+键:X轴回零;Z-键:Y轴回零 2. X-,X+键:X轴手动运行;Y-,Y+键:Y轴手动运行 3. XY-0键:设置工件原点 4. 高速低速键:手动运行高速低速选择 5. 手动模式键:手动运行连续,点动,距离模式选择 6. 回原点键:回工件原点 7. 菜单键:进入主菜单界面,Y+,Y-菜单选择(其中指令设置 菜单另加说明),选择相应菜单后可以进行相应参数设置,进 入参数设置界面后,按修改键就可以对参数修改 8. 运行键:进入工件界面 4.指令设置与运行: 1. 主界面按运行键进入工件界面,如果是上电后首次进入工件 界面会弹出是否清除上次工件指令,按确定和停止取消键进 行相应的是否操作,之后进入工件界面后不再弹出该对话框 2. 在主菜单界面选择指令设置也可以进入工件界面,如果是上 电首次进入与1相同 3. 进入工件界面后按运行键运行工件指令,按重刻键清除工件 所有指令,按对刀键增加工件指令进入指令增加界面,进行 指令选择后,按确定键进入指令参数设置界面 设置好之后按确定键指令添加到工件指令中,按暂停键和取消停 止键该指令没添加工件指令中,且按暂停键之后返回指令增加界 面,按停止取消键返回主界面,按确定键进入工件指令浏览界 面,按Y-,Y+工件指令选择,按对刀键进入工件指令增加界面, 按重刻键可以删除最后一条指令,进入工件浏览界面后也可以按 运行键运行指令 4. 运行指令:在运行过程中按暂停键暂停加工,按停止取消键 放弃工件加工,弹出是否会工件原点对话框,加工完之后也 会弹出该对话框。 5. 指令设置: 有四种指令:X轴设置,Y轴设置,IO设置,延时设置 轴设置,Y轴设置有两个参数:距离和速度。距离:X轴和Y轴行走的距

自动控制系统分类

1-3自动控制系统的分类 本课程的主要内容是研究按偏差控制的系统。为了更好的了解自动控制系统的特点,介绍一下自动控制系统的分类。分类方法很多,这里主要介绍其中比较重要的几种: 一、按描述系统的微分方程分类 在数学上通常可以用微分方程来描述控制系统的动态特性。按描述系统运动的微分方程可将系统分成两类: 1.线性自动控制系统描述系统运动的微分方程是线性微分方程。如方程的系数为常数,则称为定常线性自动控制系统;相反,如系数不是常数而是时间t的函数,则称为变系数线性自动控制系统。线性系统的特点是可以应用叠加原理,因此数学上较容易处理。 2.非线性自动控制系统描述系统的微分方程是非线性微分方程。非线性系统一般不能应用叠加原理,因此数学上处理比较困难,至今尚没有通用的处理方法。 严格地说,在实践中,理想的线性系统是不存在的,但是如果对于所研究的问题,非线性的影响不很严重时,则可近似地看成线性系统。同样,实际上理想的定常系统也是不存在的,但如果系数变化比较缓慢,也可以近似地看成线性定常系统。 二、按系统中传递信号的性质分类 1.连续系统系统中传递的信号都是时间的连续函数,则称为连续系统。 2.采样系统系统中至少有一处,传递的信号是时间的离散信号,则称为采样系统,或离散系统。 三、按控制信号r(t)的变化规律分类 1.镇定系统() r t为恒值的系统称为镇定系统(图1-2所示系统就是一例)。 2.程序控制系统() r t为事先给定的时间函数的系统称为程序控制系统(图1-11所示系统就是一例)。 3.随动系统() r t为事先未知的时间函数的系统称为随动系统,或跟踪系统,如图1-7所示的位置随动系统及函数记录仪系统。

自动发电控制使用手册

第一章简介 水电厂自动发电控制(AGC)是指按预定条件和要求,以迅速、经济的方式自动控制水电厂有功功率来满足需要的技术。它是在水轮发电机组自动控制的基础上,实现全电厂自动化一种方式。根据水库上游来水量或电力系统的要求,考虑电厂及机组的运行限制条件,在保证电厂安全运行的前提下,以经济运行为原则,确定电厂机组运行台数、运行机组的组合和机组间的负荷分配。在完成这些功能时,要避免由于电力系统负荷短时波动而导致机组的频繁起、停。 水电厂自动电压控制(A VC)是指按预定条件和要求自动控制水电厂母线电压或全电厂无功功率的技术。在保证机组安全运行的条件下,为系统提供可充分利用的无功功率,减少电厂的功率损耗。 采用AGC/A VC可以满足电力系统对安全发电的要求和机组安全运行的要求,同时根据实际需要满足运行人员的一些特殊要求,并且对全厂有功、系统频率、母线电压的变化及一些非常情况作出迅速反应,直接执行或提示,使机组运行在优化工况,并对机组启停做出合理安排。

第二章AGC、A VC原理 2.1 AGC原理 2.1.1 AGC的依据 自动发电控制的依据一般有:①上游来水量,它适用于无调节水库的径流电厂,使电厂最大限度地利用上游来水量,以不弃水或少弃水为原则,尽量保持电厂在较高水头运行。②给定的发电负荷曲线或实时给定的电厂总有功功率。这是在电力系统统一调度下,电厂参加电力系统的有功功率和频率的调节,完成上级调度下达的计划性或随机性的发电任务。③维护电力系统频率在一定水平下运行。根据电力系统的频率瞬时偏差或频率念头的积分值,确定电厂的总出力,直接参加电力的调频任务。④综合因素。诸如按给定功率和电力系统频率偏差,按电力系统对功率的要求和下游用水量的需要等。 2.1.2 AGC设置的全厂有功功率 P AGC=P ACT+K f△f-P AGC AGC分配的有功P AGC可以根据系统频率偏差来设定(调频方式) 也可以按照有功设定曲线值/有功给定值来设定(功率控制方式) P AGC=P SET+P AGC 其中, P ACT:全厂实发总有功 P SET:全厂有功设定值 K f:系统调频系数(可分为第一调频厂系数,第二调频厂系数和紧急调频系数)△f:频率偏差 P AGC:不参加AGC机组的实发有功之和 2.1.3 AGC负荷分配原则 ①与容量成比例原则 这是较为简单的一种负荷分配原则,在水轮机组的某些特性曲线不全或不够精确的前提下,采用该原则比较合理。 P i=P AGC (i=1,2…,n) n ∑Pimax i=1 n:n台参加AGC的机组

电力系统自动发电控制的控制策略

电力系统自动发电控制的控制策略 确定电力系统自动发电控制(AGC)控制策略,是指在特定的电力系统中,如何选择本书第三章、第二节所论述的AGC控制方式。自动发电控制(AGC)控制策略的优劣,对电力系统自动发电控制工作的开展、AGC控制的效率和效益有着重要的影响。一.确定电力系统自动发电控制策略的原则 确定电力系统自动发电控制(AGC)控制策略的原则是: 必须符合电力系统本身的客观规律。 必须在电力系统允许的AGC控制模式中选择控制策略,否则,或不能有效地实现发电功率与负荷的平衡,达到控制电力系统频率的目的;或者会破坏电力系统的稳定运行。 必须与电力系统的调度管理体制相匹配。 AGC控制策略必须符合现行的电力系统调度管理体制,或者现行的电力系统调度管理体制与选定的AGC控制策略存在不一致的地方应是可以调整的,否则该控制策略是无法顺利推行的。 必须具备实施该控制策略的基本的技术条件。 发电厂、相应的控制中心、通信系统的技术条件能满足实施该控制策略的AGC控制、和控制性能评价的要求。 选择符合以上三个原则、经济上最优(即成本、或费用最低)的控制策略。

经济上需要考虑的主要因素是实施该控制策略的建设投资,和运行成本或费用;而实施该控制策略所需的AGC调节容量和调节速率的总和是决定上述经济因素的主要条件。二.电力系统自动发电控制策略的基本模式 (一).集中的频率控制模式 在一个独立的互联(交流互联)电力系统中,由一个控制中心直接控制系统内全部发电机组、或主要的发电机组,实现发电输出功率与负荷的平衡,其AGC控制方式应是集中的定频率(FFC)控制。目前,只是在一些较小的独立电力系统中(如我国独立的省电力系统)采用这种控制策略。 (二).分层的频率控制模式 在一个独立的互联(交流互联)电力系统中,有一个控制中心负责整个电力系统频率控制的协调;但系统内的发电机组由数个分控制中心控制,各分控制中心所控制的地区之间联络线的潮流是允许自由流动的(无联络线交换计划)。在这种情况下,AGC控制方式应是分层的定频率(FFC)控制,即由控制中心根据电力系统频率的变化,采用分层的AGC控制方法,向各分控制中心发出调节发电输出功率的指令,而由分控制中心执行对发电机组的控制。分层AGC控制的具体方法有:1.通过法: 控制中心在本身的EMS中计算出对所有参与AGC调节的发电机组的控制指令,并将其中对分控制中心控制下的机组的指令,发送给各分控

第一章自动控制系统概述

第一章自动控制系统概述 第一节:引言 在工业、农业、交通运输和国防各个方面,凡要求较高的场合,都离不开自动控制。所谓自动控制,就是在没有人直接参与的情况下,利用控制装置,对生产过程、工艺参数、目标要求等进行自动的调节与控制,使之按照预定的方案达到要求的指标。本书将以经典线控制理论中常用的时域分析法和频域分析法为主线,分析常见的自动控制系统的工作原理、自动调节过程,叙述系统数学模型的建立,分析系统的性能。 第二节:开环控制和闭环控制 若通过某种装置将能反映输出量的信号引回来去影响控制信号,这种作用称为“反馈”作用。 设有反馈环节的控制系统,称为闭环控制系统;不设反馈环节的控制系统,则称为开环控制系统。 由于开环系统无反馈环节,一般结构简单,系统稳定性好,成本低。开环控制的优点 当控制过程受到各种扰动因素影响时,将会直接影响输出量,而系统不能进行自动补尝。缺点 因此,在输出量和输入量之间的关系固定,且内部参数或外部负载等扰动因素不大,或这些扰动因素产生的误差可以预计确定并能进行补尝,则应尽量采用开环控制系统。当无法预计的扰动因素使输出量产生偏差超过允许的限度时,则应考虑采用闭环控制系统。 第三节:自动控制系统的组成 一般控制系统包括:给定元件、检测元件、比较环节、放大元件、执行元件、控制对象、反馈环节(含检测、分压、滤波等单元) 第四节:自动控制系统的分类 1、按输入量变化的规律分类: 恒值控制系统——系统的输入量是恒量,并且要求系统的输出量相应地保持恒定。 随动系统——输入量是变化着,并且要求系统的输出量能跟随输入量的变化而作 出相应的变化。 过程控制系统 2、按系统传输信号对时间的关系分类: 连续控制系统——各元件的输入量与输出量都是连续量或模拟量。通常用微分方 程来描述。 离散控制系统——系统中有的信号是脉冲序列或采样数据量或数字量。通常用差 分方程来描述。 3、按系统的输出量和输入量间的关系分类: 线性系统——系统全部由线性元件组成,它的输出量与输入量间的关系用线性微 分方程来描述。重要特性:可应用叠加原理。 非线性系统——系统中存在非线性元件,要用非线性微分方程来描述。 4、按系统中的参数对时间的变化情况分类: 定常系统——系统的全部参数不随时间变化,它用定常微分方程来描述。 时变系统——系统中有的参数是时间T的函数,它随时间变化而改变。

现代控制理论在电力系统及其自动化中的应用

现代控制理论在电力系统自动化中的应用 摘要:本文综述了近年来模糊逻辑控制、神经网络控制、线性最优控制、自适应控制在电力系统稳定,自动发电控制,静止无功补偿及串联补偿控制,燃气轮机控制等方面应用研究的主要成果与方法,并提出若干需要解决的问题。 关键词:电力系统模糊控制神经网络最优控制自适应控制 1 前言 电力系统能否安全稳定运行关系到国计民生,因此电力系统稳定性控制技术的选择变得尤为重要。电力系统是一个越来越大,越来越复杂的动态网络,它具有很强的非线性、时变性且参数不确切可知,并含有大量未建模动态部分。电力系统地域分布广泛,大部分原件具有延迟、磁滞、饱和等等复杂的物理特性,对这样的系统实现有效的控制是极为困难的,国内外因电压不稳导致的停电事故时有发生。这些都使电力系统的稳定性控制问题变得越来越复杂,也正是因为问题的复杂性而使得现代控制理论得以在这一领域充分发挥其巨大的优势。随着越来越先进的电力电子器件的出现和计算机技术的发展,先进的现代控制方法在电力系统领域的应用变的越来越广泛。本文主要介绍了模糊逻辑控制、神经网络控制、最优控制和自适应控制在电力系统中的应用,并提出相关问题的相应解决方法。 2 电力系统的模糊逻辑控制 电力系统的模糊逻辑控制就是利用模糊经验知识来解决电力系统中的一类模型问题,弥补了数值方法的不足。从Zaden L.A.1965年发表了Fuzzy Sets[1]一文以来,模糊控制理论作为一门崭新的学科发展非常迅速,应用非常广泛。目前国内外对电力系统模糊控制的研究成果越来越多,这显示了模糊理论在解决电力系统问题上的潜力。 模糊逻辑控制是从行为上模拟人的模糊推理和决策过程的一种实用的控制方法,它适于解决因过程本身不确定性、不精确性以及噪声而带来的困难。模糊控制常用来描述专家系统,专家系统作为一种人工智能方法,其在电力系统中得到应用,弥补了数值方法的诸多不足。专家系统利用专家知识进行推理,由于系统参数的不确定性,专家知识经常采用模糊描述。 模糊逻辑控制器(FLC)属于知识库系统,它由专家管理控制系统和专家直接控制系统所构成。专家管理控制系统使用模糊逻辑在主循环中调整控制器,例如调整电压控制器的参数。 ?、f?和任意连续非线性函数可以由一系列模糊变量、数值和规则来模拟,这里P

一种机器人寻迹行走控制系统 张江梅,王姮

基金颁发部门:四川省教育厅;项目名称:基于CCD的嵌入式机器视觉系统在移动智能体中的应用研究;编号:2006C027 基金申请人:张江梅 一种机器人寻迹行走控制系统 张江梅,王 姮 四川绵阳西南科技大学 621010 【摘要】:本文介绍了一种机器人寻迹行走控制系统。系统采用了光电检测寻线和直流电机驱动相结合的机器人控制技术,应用AVR单片机为核心控制器,来采集、存储、处理由光电检测寻迹系统输入的数字信号,并通过驱动系统来控制直流电机,使机器人按照预设的路线行走。系统具有自动纠偏、准确可靠、抗干扰能力强等特点,为机器人行走的准确性提供了可靠保证。 【关键字】:机器人;寻迹行走;光电传感器;单片机;直流电机 【中图分类号】:TP242.6+2 【文献标识码】: A 在一种自动行走机器人的应用中,希望机器人能够自动按照地面上的某种白色指示线到达某一标志物上并使机器人停止完成相应动作。若采用步进电机驱动可以满足以上要求,但由于地面的各种因素,比如地面较光滑等,导致机器人在运动过程中出现打滑或丢步,机器人在运动中一旦出现这些现象,就不能准确检测到标志物。本文介绍了一种采用光电检测寻线系统和直流电机驱动相结合的机器人控制系统,可以使机器人非常准确、自动地到达理想的位置并完成相应的动作。 1 光电检测寻线系统 寻线系统即机器人的“眼睛”,在机器人的寻迹行走中起着非常重要的作用,为机器人行走过程中定位的准确性提供了保障。每一套寻线系统由比较电路板和光发射接收板两大部分组成。比较电路板主要是将光发射接收板输入的模拟信号经比较器比较后,转换为数字信号,输入到单片机中。光发射接收板主要功能是完成光的发射、接收和将光信号转换为模拟信号。每一块光发射接收板就是机器人的一个检测点,一般情况每个机器人需安装多个检测点,以保证机器人在运动过程中有较大的偏向检测能力和纠错能力。 本文介绍的机器人寻线系统,其实验场是在地面上放置了白色引导线及高约1cm、直径10cm的白色圆盘来测试机器人的寻线。可以根据两个量来判断机器人是否在白线及圆盘上方。一是接收管检测的模拟量的大小。由于所用的光电管ST178是反射式的,它是根据发射管发射红外线经被测物反射后光的强弱来识别颜色的。所以当光电管到白色上方时,接收管得到信号的值与在其他地上有明显不同,由此来判断光电检测阵列已经在白色检测物上方。二是通过相应的软件模块判断在圆盘上方光电管的数目,如果光电管数目在某一范围内时则表明机器人在圆盘上并使机器人停止完成相应动作。 1.1总体电路图 光电检测阵列的电路框图如图1所示。使用单片机的同步串行口(SPI)将串行数据送入移位寄存器74HC595中。然后在锁存脉冲的作用下将串行数据并行发送。采用SPI方式,串行数据传输的波特率可达2MHz,实际使用中效果并不亚于并口。采用多片74HC595级连可以驱动多个发射管,同时最末端的74HC595为数据选择器提供位选信号和用于显示光电管

自动发电控制(AGC)的基本理论

自动发电控制(AGC)的基本理论 自动发电控(Automatic Generation Control)简称AGC ,作为现代电网控制的一项基本功能,它是通过控制发电机有功出力来跟踪电力系统的负荷变化,从而维持频率等于额定值,同时满足互联电力系统间按计划要求交换功率的一种控制技术。它的投入将提高电网频率质量,提高经济效益和管理水平。 自动发电控制有四个基本目标: (1)使全系统的发电出力和负荷功率相匹配; (2)将电力系统的频率偏差调节到零,保持系统频率为额定值; (3)控制区域问联络线交换功率与计划值相等,实现各区域内有功功率的平衡; (4)在区域内各发电厂间进行负荷的经济分配。 上述第一个目标与所有发电机的调速器有关,即与频率的一次调整有关。第二和第三个目标与频率的二次调整有关,也称为负荷频率控制LFC(Load Frequency Control)。通常所说的AGC 是指前三项目标,包括第四项目标时,往往称为AGC 但DC(经济调度控制,即Economic Dispatching Control),但也有把EDC 功能包括在AGC 功能之中的。 负荷频率控制通过对区域控制偏差(ACE)调整到正常区域或零来实现系统频率和网间的联络线交换功率的调整。ACE 表达式如下: ()()()[]S A T S A S A T T K f f B P P ACE -+---=10 (1.1) 试中:A P ,S P 分别表示实际、预定联络线线功率;A T 、S T 分别表示实际电钟时间和标准时间;A f 、S f 分别表示实际、预定系统频率;B 表示系统频率偏差系数;T K 表示电钟偏差系数。 联络线频率偏差控制方式,TBC(Tie Line Bias Control),ACE 按上式形成;定频控制方式,。CFC(Constant FrequencyControl),ACE 不含(S A P P -);定净交换功率控制方式CNIC(Constant Net Interchange Control),ACE 不含(S A f f -)。 ACE 体现的是电网中电力供需不平衡的程度,即在电网实际运行中,由于系统总的发电水平和负荷水平的不一致,导致系统的频率或(和)联络线交换功率与其额定值(计划值)的偏差。负荷频率控制将ACE 分配给AGC 受控机组,通过调整机组的出力来改变系统总的发电水平,以达到将ACE 减到零的目的。 自动发电控制(AGC)的基本理论 1 自动发电控制(AGC)概述 自动发电控制在当今世界已是普遍应用的一项成熟与综合的技术。它是能量管理系统(Energy Management System ,即EMS)中最重要的控制功能。它的投入将提高电网频率质量,提高经济效益和管理水平。 电力系统频率和有功功率自动控制统称为自动发电控制(AGC)。由于系统发电机组的输出功率不能与系统总负载功率相平衡,引起系统频率变化。在系统紧

过程自动化控制系统

过程自动化控制系统 PCS7在华新水泥生产过程控制系统中的应用[日期:2009-12-14] [字体:大中小] 一、工程概述: 水泥生产过程控制系统在功能分配上同时又是分级式层次 结构,高层次是过程控制级,低层次是基础自动化级。 基础自动化级,主要进行电气自动控制和仪表自动控制,对工艺设备过程信息进行检测、显示、记录及数据初步处理,执行设备运转控制及工艺设备过程自动调节、超限报警。 过程控制级,主要完成生产过程优化控制、操作指导、数据处理和存储,与上级管理计算机及其它计算机之间的数据通信。 在华新水泥,过程自动化控制系统采用4级网络系统:·以太网――批量控制服务器和操作站的数据传输 ·工业以太网――系统总线,操作站和控制器间的数据传输 ·PROFIBUS-DP――系统I/O总线,控制器与I/O站

间的数据传输 ·PROFIBUS-PA――系统与PA智能仪表的数据传输 华新水泥生产过程自动化控制系统依照水泥生产工艺流程,按如下子系统控制站分布(以下WINCC画面截屏,以华新水泥(阳新)公司一期6000T/D熟料生产线为例): 1.石灰石破碎控制站:石灰石破碎及输送; 2.原料磨控制站:原料进厂均化及输送、原料配料、原料粉磨、电收尘、生料入库、水泵房; 3.窑尾控制站:废气处理(高温风机、增湿塔)、生料均化、生料入窑、窑尾塔架(预热器、分解炉)、烧成窑中、空压机站;

4.窑头控制站:熟料冷却(篦冷机)、熟料入库、原煤输送、煤磨、煤粉秤; 5.水泥磨控制站:熟料配料、水泥粉磨、水泥入库、; 6.包装控制站:水泥输送、水泥包装、散装输送、袋装输送、外运码头; 上位机采用WINCC进行组态。人机界面主要设计有以下内容: (1) 系统工艺流程显示:依据设备系统工艺流程图,按照功能组区域划分; (2) 调节系统、调节画面:回路手操站,调节参数与参数趋势的集中显示; (3) 重要参数趋势显示:有实时趋势与历史趋势两种显示; (4) 全局报警显示:系统按照功能区分为若干个报警组,各个报警组的报警窗口分布于相应功能显示窗口的上方,全局报警显示提供集中查看系统所有报警的能力,或按优先级、报

前馈反馈控制系统

目录 一、前馈控制系统设计 1、前馈控制系统选择原则 1.1 扰动量可测不可控原则 (2) 1.2 控制系统精确辨识原则 (2) 1.3被控系统自衡原则 (3) 1.4 优先性原则 (3) 1.5 经济性原则 (4) 2、工程整定 2.1 整定的总体原则 2.1.1 稳定性 (4) 2.1.2快速性 (5) 2.1.3 反馈控制的静差 (5) 3、前馈-反馈复合系统工程整定 (5) 二、实例仿真 (6) 2.1前馈控制系统整定 (7) 2.2反馈控制系统前向通道稳定性分析 (7) 2.3、反馈控制系统整定 (8) 2.4、系统仿真 (9) 三、心得体会 (11) 四、参考文献 (12) 一、前馈控制系统设计

1.1 前馈控制系统选择原则 前馈控制系统的选择主要有一下原则: 1.1.1 扰动量可测不可控原则 扰动量的可测性是补偿的前提条件,不可测的扰动量无法设计前馈补偿器。如果干扰可控,则可通过控制方法消除扰动对系统的影响,而没有必要采用前馈这种迂回的方式,在被控系统“腹中”消除干扰的影响了。 例如在很多过程控制中,温度是一个主要干扰源。温度可以测量(直接测量或间接测量),满足可测条件。而在某些环境如实验室中,温度可以通过空调等进行调节(不满足不可控条件),将温度对控制对象的影响降到最低,这时就没有必要对温度采取前馈控制方式消除影响了。 而在很多现场情况下(如被控对象在室外等),温度不易调节(满足不可控条件),这时应采取前馈控制方式消除由于温度对系统的影响。 1.1.2 控制系统精确辨识原则 控制中的每一个环节的传递特性都应能精确辨识。作为开环控制,构成前馈控制系统中的任何一个环节都应尽可能准确,因为开环控制系统中的任何一环节对系统的控制精确度都有一定影响。相比之下,闭环控制对系统中环节的要求要“松”得多。 1.1.3被控系统自衡原则

风电场自动发电控制、自动电压控制系统(SPWGC-3000)

风电场自动发电控制、自动电压控制系统(SPWGC-3000) 风电场自动发电控制、自动电压控制系统(SPWGC-3000)是国能日新开发的一款对风电场有功功率和无功功率自动控制的系统,系统接收调度主站定期下发的调节目标指令或当地预定的调节目标计算风电场功率需求,选择控制设备并进行功率分配,并将最终控制指令自动下达给被控制设备,最终实现风电场有功功率、并网点电压的监测和控制,达到风电场并网技术要求。 1、总体设计 AGC、AVC系统硬件部署结构如图所示,该系统部署电场安全1区,采用双网结构,系统硬件主要由智能通讯终端、AGC、AVC服务器、操作员工作站、交换机组成。AGC、AVC系统与现场升压站监控系统、风机监控系统、无功补偿装置等设备通讯获取实时运行信息,数据通信采用网络模式,也可采用串口通信模式。并将实时数据通过电力调度数据网上传到主站系统,同时从主站接收有功/无功控制指令,转发给风机监控系统、无功补偿装置等进行远方调节和控制。 AGC、AVC控制系统一体化设计,集中组屏。整个风电场的实时数据仅通过一套AGC、AVC控制管理终端与主站通信,完成数据采集、处理、通信、风机有功、无功自动控制功能。 2、基本功能 有功自动控制(AGC):

1)能够自动接收调度主站系统下发的有功控制指令或调度计划曲线,根据计算的可调裕度,优化分配调节风机的有功功率,使整个风电场的有功出力,不超过调度指令值; 2)具备人工设定、调度控制、预定曲线等不同的运行模式、具备切换功能。正常情况下采用调度控制模式,异常时可按照预先形成的预定曲线进行控制; 3)向调度实时上传当前AGC系统投入状态、增力闭锁、减力闭锁状态、运行模式、电场生产数据等信息; 4)能够对电场出力变化率进行限制,具备1分钟、10分钟调节速率设定能力,具备风机调节上限、调节下限、调节速率、调节时间间隔等约束条件限制,以防止功率变化波动较大时对风电机组和电网的影响; 5)确获取调节裕度、控制策略算法合理、保障风电机组少调、微调。 无功自动控制(AVC): 6)能够自动接收调度主站系统下发的电压控制指令,控制电场电压在调度要求的指标范围内,满足控制及考核指标要求; 7)具备人工设定、调度控制、预定曲线等不同的运行模式、具备切换功能。正常情况下采用调度控制模式,异常时可按照预先形成的预定曲线进行控制; 8)向调度实时上传当前AVC系统投入状态、增闭锁、减闭锁状态、运行模式、电场生产数据等信息; 9)为了保证在事故情况下电场具备快速调节能力,对电场动态无功补偿装置预留一定的调节容量,即电场额定运行时功率因数0.97(超前)~0.97(滞后)所确定的无功功率容量范围。电场的无功电压控制考虑了电场动态无功补偿装置与其他无功源的协调置换; 10)能够对电场无功调节变化率进行限制,具备风电机组、无功补偿装置调节上限、调节下限、调节速率、调节时间间隔等约束条件限制、具备主变压器分接头单次调节档位数、调节范围及调节时间间隔约束限制。 3、系统特点 1)信息安全性高,满足《电力二次系统安全防护规定》、《风电场接入电网技术规定》等相关要求; 2)引入空气动力模分析式分析、保证机组少调、微调诉求;

燃烧过程自动控制系统

燃烧过程自动控制系统 院系能源与动力学院 专业热能与动力工程 班级热动本121 姓名陈伯霖 学号2012101132

第1章前言 1.1课题的背景和意义 锅炉微机控制,是近年来开发的一项新技术,它是微型计算机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的1/3,目前大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。提高热效率,降低耗煤量,降低耗电量,用微机进行控制是一件具有深远意义的。工业控制自动化技术是一种运用控制理论、仪器仪表、计算机和其它信息技术,对工业生产过程实现检测、控制、优化、调度、管理和决策,达到增加产量、提高质量、降低消耗、确保安全等目的的综合性技术,主要解决生产效率与一致性问题。虽然自动化系统本身并不直接创造效益,但它对企业生产过程有明显的提升作用。目前,工业控制自动化技术正在向智能化、网络化和集成化方向发展。 1.2 锅炉控制系统的总体流程 根据设计要求将整个锅炉运行控制的全过程分成多个阶段:运行参数的初始化过程,在这个过程中调用系统启动的函数;燃烧室中燃烧器的控制过程;废液输送泵、酸碱液喷嘴、风机等执行机构的控制;通信过程;故障的处理过程;模拟量信号的采集过程。锅炉燃烧自动控制系统流程图如图1-1所示。 PLC控制锅炉的工艺流程 1.启动:按一定的时间间隔起燃。起燃顺序是:燃油预热---间隔1分钟----送风,子火燃烧,母火燃烧-间隔5秒钟-----子火,母火同时关闭。 2.停止:停止燃烧时,要求:燃油预热关闭,喷油关闭,送风(将废气,杂质吹去)-------间隔20秒----送风停止(清炉停止)。 3.异常状况自动关火:燃油燃烧过程中,当出现异常状况时(即蒸汽压力超过允许值或水位超过上限,或水位低于下限),能自动关火进行清炉;异常状况消失后,又能自动按起燃程序重新点火起燃。即:异常状况----燃油预热关闭,喷油

机组自动发电控制系统设计

辽宁工业大学 电力系统自动化课程设计(论文)题目:机组自动发电控制系统设计(2) 院(系):电气工程学院 专业班级:电气08? 学号: 080303xxx 学生姓名: 指导教师:(签字) 起止时间:2011.12.26—2012.01.06

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气工程及其自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 自动发电控制(AGC)就是通过监视电厂出力和负荷系统之间的差异,来控制调频机组的出力,以满足不断变化的用户电力需要,达到电能的发供平衡,并且使整个系统处于经济的运行状态。 本次课程设计对三台机组并联运行时各自有功率的分配进行设计当某台发电机组负荷改变导致频率改变时,由SCADA发送改变信号通过A/D转换器给单片机89C51,再由单片机89C51通过程序识别信号,再由输出口通过D/A转换器向AGC发送执行指令。最后AGC向发电机组发送改变运行状态指令。 关键词:AGC;89C51;SCADA;经济运行状态

目录 第1章绪论 (1) 1.1自动发电控制概述 (1) 1.2本文主要内容 (1) 第2章机组并联运行有功功率分配计算 (1) 2.1机组有功功率频率控制及自动发电的基本原理 (1) 2.1.1 机组有功功率频率控制 (1) 2.1.2 自动发电的基本原理 (2) 2.2单台机组有功控制的基本方法 (4) 2.3负荷变化时的功率分配计算 (4) 第3章自动发电系统硬件设计 (7) 3.1自动发电系统功能 (7) 3.2自动发电总体设计方案 (7) 3.3单片机最小系统设计 (8) 3.3.1 89C51单片机引脚功能 (8) 3.3.2 复位电路设计 (9) 3.3.3 时钟电路设计 (10) 3.3.4 直流稳压电源设计 (10) 3.3.5 单片机最小系统 (11) 3.4输入输出接口设计 (12) 第4章自动发电系统软件设计 (13) 4.1软件实现功能综述 (13) 4.2流程图设计 (13) 4.3程序清单 (15) 第5章课程设计总结 (17) 参考文献 (18)

调度自动化-自动发电控制(AGC)

自动发电控制(AGC) 1.概述 自动发电控制(AGC)应用是电网调度自动化系统最为基础的应用之一,提供对可调控发电设备的监视、调度和控制。通过控制调度区域内发电机组的有功功率使发电自动跟踪负荷变化,维持系统频率为额定值,维持电网联络线交换功率,监视和调整备用容量,满足电力供需的实时平衡,实现电网的安全、经济、优质运行。 2.设计依据 ?《智能电网调度技术支持系统自动发电控制应用功能规范》 ?DL/T 5003-2005电力系统调度自动化设计技术规程 ?DL/T 516-2006电力调度自动化系统运行管理规程 3.主要功能 (1)负荷频率控制 负荷频率控制是AGC的核心,是采用一定的控制策略计算区域调节需求,并将调节量按分配策略下发机组控制器设定功率,实现AGC闭环调节的过程。 AGC功能模块通过控制调度区域内发电机组的有功功率,使本区域机组发电出力跟踪负荷的变化,并使联络线的交换功率维持在计划值附近,以满足电力供需的实时平衡。 (2)断面有功控制 有效防止断面越限情况的发生,在断面越限后迅速调节断面下相关机组,使断面恢复限值内运行,保障电网安全稳定运行。 (3)特高压控制 根据特高压联络线的特点实现特高压控制所需的功能。主要包括:特高压联络线监视、特高压联络线控制、特高压联络线考核模、特高压联络线人机界面展示等。 (4)风电优先控制 采用风电优先原则进行AGC协调控制,优先调节风电,协调AGC进行电

网调频和调峰,提高电网接纳风电的能力。 4.特色应用 ●2012年,完成河北电网AGC项目, 河北电网的投入AGC机组较多,机组 对电网的调节需求响应快,容易造成区域过调,使区域ACE的方向正负 波动,导致机组来回调节,加入了机组反调节保护策略后,提高了AGC 区域指标,同时减少了机组不必要的功率调节。 ●2012年,完成新疆电网AGC项目, 由于新疆电网频繁出现断面越限的情 况,为了有效防止断面越限,采用断面约束控制策略后,基本杜绝了以 往频繁出现的断面越限情况,提高了电网运行的安全性。 ●2013年,完成辽宁电网AGC项目,针对辽宁工业负荷较多,负荷短期变 化较快,这就导致ACE波动较大,使AGC机组频繁地上下调节。为了有 效地缓解机组的调节压力并保证电网安全,提出全新的AGC机组控制模 式及其相应的考核办法,即单方向调节时当前指令以前一个指令作为基 点,使机组调节方向更加清晰,防止机组频繁上下调节。 ●2014年,完成东北电网AGC项目,针对网调特点,实现AGC多区域控制 策略,支持在本控制区域内部建立多个子控制区域的控制与监视模型。 不同的子控制区域具备不同的控制目标和控制模式,并可在线切换机组 的控制目标和控制模式。 5.产品展示 运行监控界面

《过程控制系统》习题解答

《过程控制系统》习题解答 1-2 与其它自动控制相比,过程控制有哪些优点?为什么说过程控制的控制过程多属慢过程? 过程控制的特点是与其它自动控制系统相比较而言的。 一、连续生产过程的自动控制 连续控制指连续生产过程的自动控制,其被控量需定量控制,而且应是连续可调的。若控制动作在时间上是离散的(如采用控制系统等),但是其被控量需定量控制,也归入过程控制。 二、过程控制系统由过程检测、控制仪表组成 过程控制是通过各种检测仪表、控制仪表和电子计算机等自动化技术工具,对整个生产过程进行自动检测、自动监督和自动控制。一个过程控制系统是由被控过程和检测控制仪表两部分组成。 三、被控过程是多种多样的、非电量的 现代工业生产过程中,工业过程日趋复杂,工艺要求各异,产品多种多样;动态特性具有大惯性、大滞后、非线性特性。有些过程的机理(如发酵等)复杂,很难用目前过程辨识方法建立过程的精确数学模型,因此设计能适应各种过程的控制系统并非易事。 四、过程控制的控制过程多属慢过程,而且多半为参量控制 因为大惯性、大滞后等特性,决定了过程控制的控制过程多属慢过程;在一些特殊工业生产过程中,采用一些物理量和化学量来表征其生产过程状况,故需要对过程参数进行自动检测和自动控制,所以过程控制多半为参量控制。 五、过程控制方案十分丰富 过程控制系统的设计是以被控过程的特性为依据的。 过程特性:多变量、分布参数、大惯性、大滞后和非线性等。 单变量控制系统、多变量控制系统;仪表过程控制系统、计算机集散控制系统;复杂控制系统,满足特定要求的控制系统。 六、定值控制是过程控制的一种常用方式 过程控制的目的:消除或减小外界干扰对被控量的影响,使被控量能稳定控制在给定值上,使工业生产能实现优质、高产和低耗能的目标。 1-3 什么是过程控制系统,其基本分类方法有哪些? 过程控制系统:工业生产过程中自动控制系统的被控量是温度、压力、流量、液位、成分、粘度、湿度和pH等这样一些过程变量的系统。 1、按过程控制系统的结构特点分 1)反馈控制系统:是根据系统被控量的偏差进行工作,偏差值是控制的依据,最后达到消除或减小偏差的目的。 2)前馈控制系统:直接根据扰动量的大小进行工作,扰动是控制的依据。 3、前馈—反馈控制系统(复合控制系统):充分结合两者的有点,大大提高控制质量。 2、按给定值信号的特点来分类 定值控制系统:是指系统被控量的给定值保持在规定值不变,或在小范围附近不变。 2、程序控制系统:是被控量的给定值按预定的时间程序变化工作,目的是使系统被控量按工艺要求规定的程序自动变化。加热升温或逐次降温等。 3、随动控制系统:是一种被控量的给定值随时间任意变化的控制系统,主要作用是克服一切扰动,使控量快速跟随给定值而变化。空气量与燃料量的关系。

自动发电控制(AGC)的原理及应用

自动发电控制(AGC)的原理及应用 编写:黄文伟 贵州电力调度通信局 2005年9月

目录 1. 概述 (3) 1.1.AGC的作用 (3) 1.2.AGC的目的 (3) 1.3.AGC的意义 (4) 1.4.AGC的地位 (4) 2. AGC的基本原理 (4) 2.1.负荷频率特性 (6) 2.2.机组功频特性 (6) 2.3.系统频率特性 (8) 2.4.独立系统调频 (9) 2.5.自动调频方法 (11) 2.6.联合系统调频 (12) 3. AGC的系统体系 (14) 3.1.系统构成 (14) 3.2.控制回路 (15) 3.3.与能量管理系统的关系 (15) 3.4.与其他应用软件的关系 (15) 4. AGC的控制原理 (16) 4.1.控制量测 (16) 4.2.净交换功率计划 (17) 4.3.区域控制偏差 (17) 4.4.区域控制方式 (19) 4.5.ACE滤波、补偿及趋势预测 (19) 4.6.负荷频率控制 (20) 4.7.在线经济调度 (20) 5. AGC的控制方法 (21) 5.1.机组控制方式 (21) 5.2.控制区段与策略 (22) 5.3.区域需求 (23) 5.4.机组功率分配 (24)

5.5.机组期望功率 (25) 5.6.机组控制校验 (27) 5.7.基点功率计划 (28) 5.8.AGC工作流程 (29) 6. AGC的控制性能标准 (30) 6.1.区域控制标准(A/B) (30) 6.2.控制性能标准(CPS) (32) 7. AGC的控制对象 (33) 7.1.电厂控制器 (34) 7.2.机组控制单元 (34) 7.3.RTU控制装置 (35) 7.4.机组运行状态 (35) 7.5.控制器信号接口 (36) 8. AGC的操作与监视 (37) 8.1.运行操作方式 (37) 8.2.运行监视状态 (37) 8.3.备用容量监视 (38) 8.4.控制性能监视 (39) 8.5.运行状态监视及告警 (40) 8.6.人机交互界面 (41)

几个开环与闭环自动控制系统地例子

2-1 试求出图P2-1中各电路的传递函数。 图P2-1 2-2 试求出图P2-2中各有源网络的传递函数。 图P2-2 2-3 求图P2-3所示各机械运动系统的传递函数。 (1)求图(a )的 ()()?=s X s X r c (2)求图(b )的() () ?=s X s X r c (3)求图(c )的 ()()?12=s X s X (4)求图(d )的 () () ?1=s F s X 图P2-3 2-4 图P2-4所示为一齿轮传动机构。设此机构无间隙、无变形,求折算到传动轴上的等效转动惯量、等效粘性摩擦系数和()() () s M s s W 2θ= 。

图P2-4 图P2-5 2-5 图P2-5所示为一磁场控制的直流电动机。设工作时电枢电流不变,控制电压加在励磁绕组上,输出为电机角位移,求传递函数()() () s u s s W r θ=。 2-6 图P2-6所示为一用作放大器的直流发电机,原电机以恒定转速运行。试确定传递函数 () () ()s W s U s U r c =,设不计发电机的电枢电感和电阻。 图P2-6 2-7 已知一系统由如下方程组组成,试绘制系统方框图,并求出闭环传递函数。 ()()()()()()[]()s X s W s W s W s W s X s X c r 87111--= ()()()()()[]s X s W s X s W s X 36122-= ()()()()[]()s W s W s X s X s X c 3523-= ()()()s X s W s X c 34= 2-8 试分别化简图P2-7和图P2-8所示的结构图,并求出相应的传递函数。

中国南方电网自动发电控制(AGC)技术规范(试行)

中国南方电网 自动发电控制(AGC)技术规范 (试行) 中国南方电网电力调度通信中心 2009年4月

目次 前言................................................................... III 1 总则. (1) 1.1 目的意义 (1) 1.2 装备体系 (1) 1.3 适用围 (1) 2 引用文件 (1) 2.1 引用规则 (1) 2.2 引用列表 (2) 3 术语释义 (2) 3.1 远动功能 (2) 3.2 系统装备 (3) 3.3 功能作用 (4) 3.4 技术性能 (5) 3.5 网路拓扑 (5) 4 总体要求 (6) 4.1 基本要求 (6) 4.2 功能要求 (6) 4.3 通信要求 (8) 4.4 区域AGC控制性能评价标准 (9) 5 调度主站 (9) 5.1 总体要求 (9) 5.2 功能要求 (9) 5.3 机组发电控制 (11) 5.4 备用容量监视 (14) 5.5 安全约束控制 (15) 5.6 主站AGC必须的安全措施 (16) 6 水电子站 (17) 6.1 功能要求 (17) 6.2 技术要求 (17) 6.3 远动信息 (18) 6.4 电厂机组的控制 (19) 6.5 电厂控制性能标准 (23) 6.6 水电厂AGC安全措施 (23) 7 火电子站 (24) 7.1 功能要求 (24) 7.2 技术要求 (25) 7.3 远动信息 (26) 7.4 电厂机组的控制 (27) 7.5 电厂控制性能标准 (29) 7.6 火电厂AGC安全措施 (29)

8 电厂AGC测试 (30) 8.1 测试适应情况 (30) 8.2 职责分工 (30) 8.3 总体要求 (30) 8.4 测试流程 (32) 8.5 电厂AGC测试目的和容 (32) 8.6 电厂AGC性能评价 (39) 附录A 频率响应系数的计算 (40) 附录B 控制性能标准 (41) 附录C 扰动控制标准 (43) 附录D 火电厂测试方案 (44) 附录E 水电厂测试方案 (54)

相关文档
最新文档