风电场自动发电控制、自动电压控制系统(SPWGC-3000)

风电场自动发电控制、自动电压控制系统(SPWGC-3000)
风电场自动发电控制、自动电压控制系统(SPWGC-3000)

风电场自动发电控制、自动电压控制系统(SPWGC-3000)

风电场自动发电控制、自动电压控制系统(SPWGC-3000)是国能日新开发的一款对风电场有功功率和无功功率自动控制的系统,系统接收调度主站定期下发的调节目标指令或当地预定的调节目标计算风电场功率需求,选择控制设备并进行功率分配,并将最终控制指令自动下达给被控制设备,最终实现风电场有功功率、并网点电压的监测和控制,达到风电场并网技术要求。

1、总体设计

AGC、AVC系统硬件部署结构如图所示,该系统部署电场安全1区,采用双网结构,系统硬件主要由智能通讯终端、AGC、AVC服务器、操作员工作站、交换机组成。AGC、AVC系统与现场升压站监控系统、风机监控系统、无功补偿装置等设备通讯获取实时运行信息,数据通信采用网络模式,也可采用串口通信模式。并将实时数据通过电力调度数据网上传到主站系统,同时从主站接收有功/无功控制指令,转发给风机监控系统、无功补偿装置等进行远方调节和控制。

AGC、AVC控制系统一体化设计,集中组屏。整个风电场的实时数据仅通过一套AGC、AVC控制管理终端与主站通信,完成数据采集、处理、通信、风机有功、无功自动控制功能。

2、基本功能

有功自动控制(AGC):

1)能够自动接收调度主站系统下发的有功控制指令或调度计划曲线,根据计算的可调裕度,优化分配调节风机的有功功率,使整个风电场的有功出力,不超过调度指令值;

2)具备人工设定、调度控制、预定曲线等不同的运行模式、具备切换功能。正常情况下采用调度控制模式,异常时可按照预先形成的预定曲线进行控制;

3)向调度实时上传当前AGC系统投入状态、增力闭锁、减力闭锁状态、运行模式、电场生产数据等信息;

4)能够对电场出力变化率进行限制,具备1分钟、10分钟调节速率设定能力,具备风机调节上限、调节下限、调节速率、调节时间间隔等约束条件限制,以防止功率变化波动较大时对风电机组和电网的影响;

5)确获取调节裕度、控制策略算法合理、保障风电机组少调、微调。

无功自动控制(AVC):

6)能够自动接收调度主站系统下发的电压控制指令,控制电场电压在调度要求的指标范围内,满足控制及考核指标要求;

7)具备人工设定、调度控制、预定曲线等不同的运行模式、具备切换功能。正常情况下采用调度控制模式,异常时可按照预先形成的预定曲线进行控制;

8)向调度实时上传当前AVC系统投入状态、增闭锁、减闭锁状态、运行模式、电场生产数据等信息;

9)为了保证在事故情况下电场具备快速调节能力,对电场动态无功补偿装置预留一定的调节容量,即电场额定运行时功率因数0.97(超前)~0.97(滞后)所确定的无功功率容量范围。电场的无功电压控制考虑了电场动态无功补偿装置与其他无功源的协调置换;

10)能够对电场无功调节变化率进行限制,具备风电机组、无功补偿装置调节上限、调节下限、调节速率、调节时间间隔等约束条件限制、具备主变压器分接头单次调节档位数、调节范围及调节时间间隔约束限制。

3、系统特点

1)信息安全性高,满足《电力二次系统安全防护规定》、《风电场接入电网技术规定》等相关要求;

2)引入空气动力模分析式分析、保证机组少调、微调诉求;

3) 采用双机冗余化设计,装置为低功耗、无旋转部件的嵌入式设备、EMC性能指标、LINUX系统;

4) 数据采集实时性强、具有数据异常处理、归档压缩功能;

5) 系统支持多种通讯规约(IEC101/102/103/104,ModbusTcp等),自动化程度高;

6) 具有人性化展示界面。

南方电网风电场无功补偿及电压控制技术规范

Q/CSG 中国南方电网有限责任公司企业标准 南方电网风电场无功补偿及电压控制 技术规范 中国南方电网有限责任公司发布

目次 前言.............................................................. 错误!未定义书签。 1 范围............................................................ 错误!未定义书签。 2 规范性引用文件.................................................. 错误!未定义书签。 3 术语和定义...................................................... 错误!未定义书签。 4 电压质量........................................................ 错误!未定义书签。 电压偏差..................................................... 错误!未定义书签。 电压波动与闪变............................................... 错误!未定义书签。 5 无功电源与容量配置.............................................. 错误!未定义书签。 无功电源..................................................... 错误!未定义书签。 无功容量配置................................................. 错误!未定义书签。 6 无功补偿装置.................................................... 错误!未定义书签。 基本要求..................................................... 错误!未定义书签。 运行电压适应性............................................... 错误!未定义书签。 7 电压调节........................................................ 错误!未定义书签。 控制目标..................................................... 错误!未定义书签。 控制模式..................................................... 错误!未定义书签。 8 无功电压控制系统................................................ 错误!未定义书签。 基本要求..................................................... 错误!未定义书签。 功能和性能................................................... 错误!未定义书签。 9 监测与考核...................................................... 错误!未定义书签。 无功和电压考核点............................................. 错误!未定义书签。 无功和电压考核指标........................................... 错误!未定义书签。 无功和电压监测装置........................................... 错误!未定义书签。 10 无功补偿及电压控制并网测试..................................... 错误!未定义书签。 基本要求..................................................... 错误!未定义书签。 检测内容..................................................... 错误!未定义书签。

风电场无功电压控制分析

风电场无功电压控制分析 【摘要】风电发展迅猛,但大量风电机组直接接入电网,是对电网安全运营、电能质量保证的重大挑战。其引起的无功电压问题日益受到关注。风电场有功出力波动较大,风电场电压波动大,难以满足电网的电压要求,而且各风电场间及与风电汇聚站间彼此缺乏协调,严重时还会导致大规模风机脱网。需要有一个自动电压控制系统充分利用风电场的风电机组和动态无功补偿装置来对风电场的电压整体调控。 【关键词】风电场;电压控制;无功补偿;静止无功发生器(SVG);晶闸管控制电抗器(TCR);磁控电抗器(MCR);风力发电机组 引言 近年来,风电行业以一种前所未有的速度迅猛发展。根据国务院《可再生能源中长期发展规划》,至2020年风电装机将达到1.5亿千瓦。风力发电自身固有的间歇性特点使风电场有功出力波动较大,且未来时刻的发电功率具有一定不确定性,给电网运行带来极大挑战,其引起的无功电压问题日益受到关注。根据GB/Z19963—2005《风电场接入电力系统技术规定》的要求,风电场一般均配置一定容量的无功补偿装置,包括可投切电容电抗器、静止无功发生器(SVG)和静止无功补偿器(SVC,其中有晶闸管控制电抗器(TCR)及磁控电抗器(MCR))。 目前风电接入电网出现了两个特点: (1)单个风电场容量增大; (2)接入电网的电压等级更高。 但风电基地一般都地处电网末端,输电距离远,电压等级高,缺乏强大火电支撑,而增加的风电接入容量与更高的电压等级使得电网受风电影响的范围更广,也使风电接入后的电压控制问题更加突出,主要表现在: (1)缺乏就地控制,风电场电压波动大,难以满足电网的电压考核要求。 (2)各自为政,缺乏协调,严重时导致大规模风机脱网。 随着风电的飞速发展,相关的政策、技术标准也随之出台,现摘取《风电场接入电力系统技术规定》有关无功电压方面的一些具体要求。 风电场的无功电源包括风电机组及风电场无功补偿装置。风电场要充分利用风电机组的无功容量及其调节能力。风电场的无功容量应按照分(电压)和分(电)区基本平衡的原则进行配置,并满足检修备用要求。 风电场应配置无功电压控制系统,具备无功功率及电压控制能力。当电网电压处于正常范围内时,风电场应当能风电场并网点电压在额定电压的97%~107%范围内。风电场变电站的主变压器应采用有载调压变压器通过调整变电站主变压器分接头控制场内电压,确保场内风电机组正常运行。 对于风电装机容量占电源总容量比例大于5%的省级电力系统,器电力系统区域内新增运行的风电场应具有低电压穿越能力。 对于总装机容量在百万千瓦以上风电基地内的风电场,在低电压穿越过程中应具有以下动态无功支撑能力:电力系统发生三相短路故障引起电压跌落,当风电场并网点电压处于额定电压的20%~90%区间内,风电场通过注入无功电流支撑电压恢复;自电压跌落出现的时刻起,该动态无功电流控制的响应时间不大于80ms,并能持续600ms。 当风电场并网点电压在额定电压的90%~110%之间时,风电机组应能正常

自动发电控制(AGC)

河北国华定洲发电厂一期工程 #2机组自动发电控制(AGC)试验措施 措施编号: 定电#2机组-RK13 措施编写: 霍刚 措施审核: 措施批准: 河北省电力建设调整试验所 二○○四年四月十六日

目录 1 系统概述 2 编制依据 3 调试目的 4调试应具备的条件 5调试步骤 6质量检查标准 7 调试组织分工 8 安全注意事项 9 工作危险源分析及安全措施

1 系统概述 河北国华定洲发电厂一期工程(2×600MW)#2机组为600MW燃煤机组,机组采用炉、机、电集中控制方式。控制系统采用了SEIMENS公司的TELEPERM XP分散控制系统。设计功能包括协调控制系统,即模拟量控制系统,设计包括AGC功能。 按照与省调通局达成的协议,#2机组DCS与省调的接口信号一共有5个,如表1所示: 表1. #2机组DCS与省调的接口信号一览 2编制依据 2.1《河北国华定洲发电厂一期工程(2×600MW机组)调试大纲》 2.2《火力发电厂基本建设工程启动及竣工验收规程及相关规程》96版 2.3《火电工程调整试运质量检验及评定标准》 2.4《电力建设施工及验收技术规范》96版 2.5《火电工程调整试运质量检验及评定标准》 2.6《电业工作安全规程》 2.7河北省电力勘测设计院定洲电厂工程设计图纸和资料 2.8设备制造厂供货资料及有关设计图纸、说明书 3 试验目的 3.1验证DCS与省调信号的传输正确性。

3.2验证在AGC方式下,协调控制系统及各子自动控制系统响应负荷扰动的能力。 4 调试应具备的条件 机组经过带负荷调试,已具备了满负荷、安全运行的能力,协调系统的各种控制功能经过通过变负荷试验,各模拟量控制系统投入自动运行,调节品质达到《火电工程调整试运质量检验及评定标准》的要求。进行试验之前,要满足以下条件: 4.1 机炉协调控制系统稳定投入自动运行方式,并且模拟量负荷变动试验已经作完并证明了协调控制系统有良好的动态和静态调节品质。各子系统投入自动方式,它们包括:燃烧调节系统、送风调节系统(含氧量校正回路)、炉膛负压调节系统、给水调节系统、汽温调节系统、高加水位调节系统、低加水位调节系统、除氧器水位调节系统。 4.2 中调同协调控制系统之间的信号传输正确无误。 4.3 与中调联系好并确定了试验时间。 5 试验步骤 5.1远动信号的传输 5.1.1 在工程师站上将发给省调的机组有功功率信号20MKA01CE901信号强制,按照0—800MW的量程每20MW输入一个量,观察省调相应数值的变化。 5.1.2 由省调将遥调功率信号20ADS10CS101信号强制,按照400—660MW的量程每20MW输入一个量,观察DCS相应数值的变化。 5.1.3 在操作员站上将AGC功能投入,观察省调是否收到了AGC投入信号。 5.1.4 在工程师站上将发给省调的机组有功功率信号20ADS10CS103信号强制,按照0—800MW的量程每20MW输入一个量,观察省调相应数值的变化。 5.1.5 在工程师站上将发给省调的机组有功功率信号20ADS10CS104信号强制,按照0—800MW的量程每20MW输入一个量,观察省调相应数值的变化。 5.2准备以下参数的实时趋势及历史趋势 5.2.1 机组实际功率 5.2.2 机组负荷指令 5.2.3 主蒸汽压力

风电场自动电压控制(AVC)系统功能及结构介绍

风力发电自动电压控制(AVC)系统 功能及结构介绍 安徽立卓智能电网科技有限公司 2011-4

目录 一,概述3 二,风场一般概况3 三,风电场A VC系统说明5 四,风电场A VC系统技术方案7 1.系统结构7 2.软件功能8 3.风场AVC设备接口描述9 4.控制模式11 5.控制目标11 五,风电场A VC系统规范和标准11 1.应用的标准及规范11 2.一般工况12 3.安装和存放条件13 4.供电电源13 5.接地条件13 6.抗干扰13 7.绝缘性能13 8.电磁兼容性13 9.机械性能14

一,概述 作为一种经济、清洁的可再生新能源,风力发电越来越受到广泛应用。据相关数据统计,2008年我国当年新增风电装机容量超过600万千瓦,累计装机容量达到1200万千瓦以上,2009年新增装机容量达到1300万千瓦,累计装机容量达到2500万千瓦以上。在今后3~5年乃至10年中,预计我国每年新增装机容量将保持在500~800万千瓦。 由于风力发电厂安装地点都离负荷中心较远,一般都是通过220kV或500kV超高压线路与系统相连,加之风力发电的输出功率的随机性较强,因此其公共连接点的无功、电压和网损的控制就显得比较困难。目前风力发电厂为控制高压母线电压在一定波动范围内并对风场所消耗的无功进行补偿,现装有的补偿设备种类有,纯电容补偿,SVC(大部分为MCR)和少量的SVG。 目前各省网公司正在实施所辖电网内风电场的AVC控制,为达到较好的控制效果,减少电压波动提高电压合格率,为电网提供必要无功支撑和降低网损的要求,希望对装机容量占全网发电容量比重越来越大的风力发电场进行无功和电压控制,即在系统需要的时候既可发出无功,又可以吸收网上过剩的无功功率,以达到减少电压波动,控制电压和降低网损的目的。 二,风场一般概况 风机输出电压一般为690V,每台发电机有一箱式变压器将电压升至35kV,几台箱式变串联经35kV开关接与35kV母线。35kV母线接有无功补偿设备。主变压器为有载调压变压器。 风电厂系统一般图示:

阐析风电场无功电压控制

阐析风电场无功电压控制 近年,随着我国对于能源发电的进一步重视,我国的能源发电行业也随之兴盛起来。风能发电就是其中一种。伴随着风能发电的迅猛增长,很大量的风能发电机组也相继地并入到了国家电网系统,这样一来就对我国的电网系统的安全运行和供电质量提出了比较大的挑战。其中的无功电压就成为了外界非议最多的讨论点。风能电场存在着一些缺点,例如风电场在进行有功输出时波动比较厉害,正是这种波动不能满足电网系统关于电压的相关要求,这种情况下,严重的后果是造成风电场的电力输出脱离电网系统。因此,我们在进行风能输出的时候,需要一个自动控制电压的系统来进行风电机组的电压动态补偿对风电机组的电压进行整体的调控。 标签:风电场;无功电压;控制 近些年,由于我国国务院针对能源问题的一系列法律法规的制定,例如:《可再生能源关于中长期的发展规划》。这样的鼓励能源方面的一些举措,使得我国的风能源发电迅速的发展开来,并且按照国务院的相关规划,截止到2020年,我国的风电机组发电要达到1.5亿千瓦时。基于上面的叙述,风力发电的自身的具有间歇性的特点,使得风力发电的有功输出极为被动,给未来的风能发电带来了很大的不确定性,这种不确定性就给国家的电网系统带来了很多的运行中的未知性。根据我国在2005年出台更新的关于风电场并入电网系统的规划,要求我国的风电场必须配备相应容量的无功补偿设备装置。这些装置包括三种主要的设备,第一,具有可以投切性能的电容电抗器,包括了由晶闸管控制的电容电抗器,英文缩写为TCR,由磁控制的电容电抗器,英文缩写为MCR。第二,静止特性的无功发生器,英文缩写为:SVG。第三,静止特性的无功补偿器,英文缩写为SVC。 1 当前的风电发电的主要特点 (1)并入国家电网系统的单个风电场的电容逐渐增大。(2)并入国家电网系统的风电机组的电压的等级也逐渐增高。由于风电场通常处在电网系统的尾端,这样就让风电场的输电送电的距离变远,电源的电压也会变高。在缺乏有效的火电的帮助支撑后,风电场的电源单方面的电容变大,电压变高就导致了国家的电网系统受到风电场的不稳定的影响的范围进一步的扩大了,这样就更突出了并入国家电网系统后的电压控制的问题,这些问题主要的表现是: 第一,由于风电场输电缺乏有效的控制,同时风电场输电的过程中具有波动性,这两种因素就导致了在国家电网系统中的电压考核通过率较低。 第二,由于我国的各地的并入国家电网系统的风电场输电没有统一为一家控制,这样就导致了多家风电场之间没有有效的协调和沟通,会导致国家电网系统出现很多运行障碍,最为严重的就是致使风发电的大规模脱离国家电网系统。

自动电压控制装置在风电场的应用

自动电压控制装置在风电场的应用X 孙庆海1,张 琳2 (1.内蒙古呼和浩特白塔国际机场有限责任公司动力能源保障部;2.内蒙古电力勘测设计院,内蒙古呼和浩特 010010) 摘 要:文章主要论述了风电场自动电压控制系统开发的背景、结构组成、方案实施与应用的意义。 关键词:自动电压控制装置;应用 中图分类号:T M761+.12∶TM614 文献标识码:A 文章编号:1006—7981(2012)03—0031—02 1 风电场自动电压控制装置开发的背景 风力发电近年来在国家的大力扶持下获得了巨大的发展,随着风电并网容量的不断增加,由于风能的随机性、间歇性特点以及风机的运行特性,对电网电压稳定性的影响也越来越显著,尤其在大规模风电接入薄弱的末端电网时电压稳定问题更为突出。风电机组的连接方式、风电的长距离输送以及风电机组无功调节能力差,是风电无功和电压调整困难的主要因素。当风电小出力运行时,风电场接入系统的线路轻载运行,充电功率较大导致系统电压偏高;当风电大出力运行时,无功损耗增加导致风电场和风电场接入点电压又有较大幅度下降。风电场有功出力的增加还会导致风电场无功消耗成平方倍的增加。因此,风电场如果不进行适当的无功补偿,汇集站至风电场升压站的架空线路将会大量传输无功而导致无法满足风电送出要求,同时会增加线路和变压器的损耗。 为解决风电大量入网引起的无功电压问题,电网公司曾多次对风电场的无功动态补偿装置及容量提出要求,但由于目前风电机组和无功动态补偿装置均独立运行,按各自的控制目标和策略进行控制,在调节母线电压方面还未做到协调控制,各自为战,调节效果非常不好,满足不了电网对风电并网点电压波动范围的要求,也会由于无功分布的不合理导致有功损耗的增加。由于存在上述问题,国家电网公司2009年发布的《风电场接入电网技术规定》明确要求风电场应具备协调控制机组和无功补偿装置的能力,能够自动快速调整无功总功率。因此在风电场建设自动电压控制系统,对风机、无功补偿装置、有载调压变压器进行统一协调控制,实现风电场并网点电压和无功功率的自动调控,合理协调和优化风电场无功分布,对保证电网安全稳定运行、提高电压质量、减少有功损耗和提高风电场经济效益具有重要意义。风电场自动电压控制装置正是在此背景下开发的,是为实现风电场自动电压控制而研制的专用系统和设备。它与风机监控系统、无功补偿装置、升压站综自系统配合,根据调度中心主站下发的电压控制指令,通过对风机无功功率、无功补偿装置无功功率、有载调压变压器分接头的统一协调控制,实现风电场并网点电压的闭环控制。 2 装置组成 风电场自动电压控制装置采用上、下位机结构,上位机实现核心功能是根据调度下发的电压指令,考虑风电场内各机组和母线的实时数据,结合各种约束条件,分析计算合理分配风电场内各类无功电源的无功出力和主变分接头位置,并根据计算将结果下发至下位机,由下位机输出各类控制信号进行调节,实现调度主站和风电场子站间的自动闭环控制,满足调度端高压母线电压要求。其他应包括数据存储、数据管理和浏览,以及WEB发布等功能。下位机可实现数据采集(电气参数、机组状态等)、各类控制信号输出(无功指令信号,有功指令信号(该功能可暂时保留不实现)),报警输出和闭锁等功能。上、下位机通信采用现场485总线方式,抗干扰能力强,传输距离远。 3 风电场实施方案 3.1 整体方案 风电场的自动电压控制装置,以根据调度下发的母线电压指令为目标,以风场风机机组无功、动态无功补偿装置和主变分头为调节手段,实现整个风电场与调度自动电压控制主站系统的整体闭环调节。风场内各可控设备以风机无功为优先控制,动态无功补偿装置其次,主变分接头再次。 3.2 装置实施 风电场自动电压控制装置配置主机一台,作为整个系统的分析运算核心,通过风机信息终端接收中调下发的母线电压增量指令、通过升压站监控系统获取系统电气量信息、通过全场风机监控系统获 31  2012年第3期 内蒙古石油化工X收稿日期5 :2011-12-1

自动发电控制使用手册

第一章简介 水电厂自动发电控制(AGC)是指按预定条件和要求,以迅速、经济的方式自动控制水电厂有功功率来满足需要的技术。它是在水轮发电机组自动控制的基础上,实现全电厂自动化一种方式。根据水库上游来水量或电力系统的要求,考虑电厂及机组的运行限制条件,在保证电厂安全运行的前提下,以经济运行为原则,确定电厂机组运行台数、运行机组的组合和机组间的负荷分配。在完成这些功能时,要避免由于电力系统负荷短时波动而导致机组的频繁起、停。 水电厂自动电压控制(A VC)是指按预定条件和要求自动控制水电厂母线电压或全电厂无功功率的技术。在保证机组安全运行的条件下,为系统提供可充分利用的无功功率,减少电厂的功率损耗。 采用AGC/A VC可以满足电力系统对安全发电的要求和机组安全运行的要求,同时根据实际需要满足运行人员的一些特殊要求,并且对全厂有功、系统频率、母线电压的变化及一些非常情况作出迅速反应,直接执行或提示,使机组运行在优化工况,并对机组启停做出合理安排。

第二章AGC、A VC原理 2.1 AGC原理 2.1.1 AGC的依据 自动发电控制的依据一般有:①上游来水量,它适用于无调节水库的径流电厂,使电厂最大限度地利用上游来水量,以不弃水或少弃水为原则,尽量保持电厂在较高水头运行。②给定的发电负荷曲线或实时给定的电厂总有功功率。这是在电力系统统一调度下,电厂参加电力系统的有功功率和频率的调节,完成上级调度下达的计划性或随机性的发电任务。③维护电力系统频率在一定水平下运行。根据电力系统的频率瞬时偏差或频率念头的积分值,确定电厂的总出力,直接参加电力的调频任务。④综合因素。诸如按给定功率和电力系统频率偏差,按电力系统对功率的要求和下游用水量的需要等。 2.1.2 AGC设置的全厂有功功率 P AGC=P ACT+K f△f-P AGC AGC分配的有功P AGC可以根据系统频率偏差来设定(调频方式) 也可以按照有功设定曲线值/有功给定值来设定(功率控制方式) P AGC=P SET+P AGC 其中, P ACT:全厂实发总有功 P SET:全厂有功设定值 K f:系统调频系数(可分为第一调频厂系数,第二调频厂系数和紧急调频系数)△f:频率偏差 P AGC:不参加AGC机组的实发有功之和 2.1.3 AGC负荷分配原则 ①与容量成比例原则 这是较为简单的一种负荷分配原则,在水轮机组的某些特性曲线不全或不够精确的前提下,采用该原则比较合理。 P i=P AGC (i=1,2…,n) n ∑Pimax i=1 n:n台参加AGC的机组

风力发电机组主控制系统

密级:公司秘密 东方汽轮机有限公司 DONGFANG TURBINE Co., Ltd. 2.0MW108C型风力发电机组主控制系统 说明书 编号KF20-001000DSM 版本号 A 2014年7 月

编制 <**设计签字**> <**设计签字日期**> 校对 <**校对签字**> <**校对签字日期**> 审核 <**审核签字**> <**审核签字日期**> 会签 <**标准化签字**> <**标准化签字日期**> <**会二签字**> <**会二签字日期**> <**会三签字**> <**会三签字日期**> <**会四签字**> <**会四签字日期**> <**会五签字**> <**会五签字日期**> <**会六签字**> <**会六签字日期**> <**会七签字**> <**会七签字日期**> <**会八签字**> <**会八签字日期**> <**会九签字**> <**会九签字日期**> 审定 <**审批签字**> <**审批签字日期**> 批准 <**批准签字**> <**批准签字日期**> 编号

换版记录

目录 序号章 节名称页数备注 1 0-1 概述 1 2 0-2 系统简介 1 3 0-3 系统硬件11 4 0-4 系统功能 5 5 0-5 主控制系统软件说明12 6 0-6 故障及其处理说明64

0-1概述 风能是一种清洁环保的可再生能源,取之不尽,用之不竭。随着地球生态保护和人类生存发展的需要,风能的开发利用越来越受到重视。 风力发电机就是利用风能产生电能,水平轴3叶片风力发电机是目前最成熟的机型,它主要是由叶片、轮毂、齿轮箱、发电机、机舱、变频器、偏航装置、刹车装置、控制系统、塔架等组成。 风力发电机的控制技术和伺服传动技术是其核心和关键技术,这与一般工业控制方式不同。风力发电机组控制系统是一个综合性的控制系统,主要由机舱主控系统、变桨系统、变频控制系统三部分组成,通过现场总线以及以太网连接在一起,各个模块都有独立的控制单元,可独立完成与自身相关的功能(图0-1-1)。目的是保证机组的安全可靠运行、获取最大风能和向电网提供优质的电能。 图0-1-1

电力系统自动发电控制的控制策略

电力系统自动发电控制的控制策略 确定电力系统自动发电控制(AGC)控制策略,是指在特定的电力系统中,如何选择本书第三章、第二节所论述的AGC控制方式。自动发电控制(AGC)控制策略的优劣,对电力系统自动发电控制工作的开展、AGC控制的效率和效益有着重要的影响。一.确定电力系统自动发电控制策略的原则 确定电力系统自动发电控制(AGC)控制策略的原则是: 必须符合电力系统本身的客观规律。 必须在电力系统允许的AGC控制模式中选择控制策略,否则,或不能有效地实现发电功率与负荷的平衡,达到控制电力系统频率的目的;或者会破坏电力系统的稳定运行。 必须与电力系统的调度管理体制相匹配。 AGC控制策略必须符合现行的电力系统调度管理体制,或者现行的电力系统调度管理体制与选定的AGC控制策略存在不一致的地方应是可以调整的,否则该控制策略是无法顺利推行的。 必须具备实施该控制策略的基本的技术条件。 发电厂、相应的控制中心、通信系统的技术条件能满足实施该控制策略的AGC控制、和控制性能评价的要求。 选择符合以上三个原则、经济上最优(即成本、或费用最低)的控制策略。

经济上需要考虑的主要因素是实施该控制策略的建设投资,和运行成本或费用;而实施该控制策略所需的AGC调节容量和调节速率的总和是决定上述经济因素的主要条件。二.电力系统自动发电控制策略的基本模式 (一).集中的频率控制模式 在一个独立的互联(交流互联)电力系统中,由一个控制中心直接控制系统内全部发电机组、或主要的发电机组,实现发电输出功率与负荷的平衡,其AGC控制方式应是集中的定频率(FFC)控制。目前,只是在一些较小的独立电力系统中(如我国独立的省电力系统)采用这种控制策略。 (二).分层的频率控制模式 在一个独立的互联(交流互联)电力系统中,有一个控制中心负责整个电力系统频率控制的协调;但系统内的发电机组由数个分控制中心控制,各分控制中心所控制的地区之间联络线的潮流是允许自由流动的(无联络线交换计划)。在这种情况下,AGC控制方式应是分层的定频率(FFC)控制,即由控制中心根据电力系统频率的变化,采用分层的AGC控制方法,向各分控制中心发出调节发电输出功率的指令,而由分控制中心执行对发电机组的控制。分层AGC控制的具体方法有:1.通过法: 控制中心在本身的EMS中计算出对所有参与AGC调节的发电机组的控制指令,并将其中对分控制中心控制下的机组的指令,发送给各分控

国家电网风电场接入电网技术规定

国家电网风电场接入电网技术规定(试行) 1范围 本规定提出了风电场接入电网的技术要求。 本规定适用于国家电网公司经营区域内通过110(66)千伏及以上电压等级与电网连接的新建或扩建风电场。 对于通过其他电压等级与电网连接的风电场,也可参照本规定。 2规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规定;凡是不注日期的引用文件,其最新版本适用范围于本规定。 GB 12326-2000 电能质量电压波动和闪变 GB/T 14549-1993 电能质量公用电网谐波 GB/T 12325-2003 电能质量供电电压允许偏差 GB/T 15945-1995 电能质量电力系统频率允许偏差 DL 755-2001 电力系统安全稳定导则 SD 325-1989 电力系统电压和无功技术导则 国务院令第115号电网调度管理条例(1993) 3 电网接纳风电能力 (1)风电场宜以分散方式接入系统。在风电场接入系统设计之前,要根据地区风电发展规划,对该地区电网接纳风电能力进行专题研究,使风电开发与电网建设协调发展。 (2)在研究电网接纳风电的能力时,必须考虑下列影响因素: a)电网规模 b)电网中不同类型电源的比例及其调节特性 c)负荷水平及其变化特性 d)风电场的地域分布、可预测性与可控制性 (3)在进行风电场可行性研究和接入系统设计时,应充分考虑电网接纳风电能力专题研究的结论。为便于运行管理和控制,简化系统接线,风电场到系统第一落点送出线路可不必满足“N-1”要求。 4 风电场有功功率 (1)基本要求 在下列特定情况下,风电场应根据电力调度部门的指令来控制其输出的有功功率。 1)电网故障或特殊运行方式下要求降低风电场有功功率,以防止输电线路发生过载,确保电力系统稳定性。 2)当电网频率过高时,如果常规调频电厂容量不足,可降低风电场有功功率。 (2)最大功率变化率 最大功率变化率包括1min功率变化率和10min功率变化率,具体限值可参

内蒙古电网风电场(光伏电站)自动电压控制系统(avc)管理规定(正式版)

内蒙古电网风电场(光伏电站)自动电压控制系统(AVC)管理规定为保证内蒙古电网电压稳定运行,规范风电场(光伏电站)自动电压控制系统管理工作,特制订本办法。 1总体要求 1.1接入内蒙古电网的风电场(光伏电站)应按照接入电网技术要求配备AVC 子站装置,接受调控中心(地区调度)AVC主站系统的实时闭环控制,风电场(光伏电站)所有无功电源(包括无功补偿装置、风力发电机组/光伏逆变器)及接入电网的主变压器分接头均应参与电网无功电压自动控制。 1.2新建风电场(光伏电站)投产时要同步具备AVC功能;已投产风电场(光伏电站),要逐步改造具备AVC功能。新建风电场(光伏电站)并网前应完成AVC 子站设备与调控中心(地区调度)AVC主站系统的信号对调工作,并网后一个月内应完成与调控中心(地区调度)AVC主站系统的闭环联调工作,并向调控中心(地区调度)上报联调报告,经审核满足要求后投入闭环运行。 1.3风电场(光伏电站)应建立AVC子站设备技术档案,包括产品使用和维护说明书、图纸、出厂检验记录和合格证、安装调试检验报告、现场调试报告、闭环联调报告、设备定值清单和运行维护记录等,并报调控中心(地区调度)备案。 2 接入划分及专业管理分工 2.1升压站高压侧母线为220kV及以上电压等级的风电场(光伏电站),其AVC 子站接入调控中心AVC主站并闭环运行;升压站高压侧母线为110kV及以下电压等级的风电场(光伏电站),其AVC子站接入地区调度AVC主站并闭环运行。 2.2调控中心(地区调度)系统运行专业是风电场(光伏电站)AVC系统的运行管理部门,负责指导和督促风电场(光伏电站)落实AVC工作,对AVC运行结果进行分析、考核,对运行参数和定值进行审核。调控中心(地区调度)自动化专业负责与AVC子站的调试试验和运行维护工作,并对子站设备进行考核工作。 3 AVC子站定值管理 AVC子站定值由风电场(光伏电站)在满足调度和装置性能要求的前提下自行制定并报调控中心(地区调度)备案。AVC子站的涉网参数设定值须经调控中心(地区调度)审核后执行,包括高压侧母线电压有效值上下限,高压侧母线电压闭锁值上下限,风电机组/光伏逆变器无功出力有效值上下限,风电机组/光伏逆变

风电场自动发电控制、自动电压控制系统(SPWGC-3000)

风电场自动发电控制、自动电压控制系统(SPWGC-3000) 风电场自动发电控制、自动电压控制系统(SPWGC-3000)是国能日新开发的一款对风电场有功功率和无功功率自动控制的系统,系统接收调度主站定期下发的调节目标指令或当地预定的调节目标计算风电场功率需求,选择控制设备并进行功率分配,并将最终控制指令自动下达给被控制设备,最终实现风电场有功功率、并网点电压的监测和控制,达到风电场并网技术要求。 1、总体设计 AGC、AVC系统硬件部署结构如图所示,该系统部署电场安全1区,采用双网结构,系统硬件主要由智能通讯终端、AGC、AVC服务器、操作员工作站、交换机组成。AGC、AVC系统与现场升压站监控系统、风机监控系统、无功补偿装置等设备通讯获取实时运行信息,数据通信采用网络模式,也可采用串口通信模式。并将实时数据通过电力调度数据网上传到主站系统,同时从主站接收有功/无功控制指令,转发给风机监控系统、无功补偿装置等进行远方调节和控制。 AGC、AVC控制系统一体化设计,集中组屏。整个风电场的实时数据仅通过一套AGC、AVC控制管理终端与主站通信,完成数据采集、处理、通信、风机有功、无功自动控制功能。 2、基本功能 有功自动控制(AGC):

1)能够自动接收调度主站系统下发的有功控制指令或调度计划曲线,根据计算的可调裕度,优化分配调节风机的有功功率,使整个风电场的有功出力,不超过调度指令值; 2)具备人工设定、调度控制、预定曲线等不同的运行模式、具备切换功能。正常情况下采用调度控制模式,异常时可按照预先形成的预定曲线进行控制; 3)向调度实时上传当前AGC系统投入状态、增力闭锁、减力闭锁状态、运行模式、电场生产数据等信息; 4)能够对电场出力变化率进行限制,具备1分钟、10分钟调节速率设定能力,具备风机调节上限、调节下限、调节速率、调节时间间隔等约束条件限制,以防止功率变化波动较大时对风电机组和电网的影响; 5)确获取调节裕度、控制策略算法合理、保障风电机组少调、微调。 无功自动控制(AVC): 6)能够自动接收调度主站系统下发的电压控制指令,控制电场电压在调度要求的指标范围内,满足控制及考核指标要求; 7)具备人工设定、调度控制、预定曲线等不同的运行模式、具备切换功能。正常情况下采用调度控制模式,异常时可按照预先形成的预定曲线进行控制; 8)向调度实时上传当前AVC系统投入状态、增闭锁、减闭锁状态、运行模式、电场生产数据等信息; 9)为了保证在事故情况下电场具备快速调节能力,对电场动态无功补偿装置预留一定的调节容量,即电场额定运行时功率因数0.97(超前)~0.97(滞后)所确定的无功功率容量范围。电场的无功电压控制考虑了电场动态无功补偿装置与其他无功源的协调置换; 10)能够对电场无功调节变化率进行限制,具备风电机组、无功补偿装置调节上限、调节下限、调节速率、调节时间间隔等约束条件限制、具备主变压器分接头单次调节档位数、调节范围及调节时间间隔约束限制。 3、系统特点 1)信息安全性高,满足《电力二次系统安全防护规定》、《风电场接入电网技术规定》等相关要求; 2)引入空气动力模分析式分析、保证机组少调、微调诉求;

现代控制理论在电力系统及其自动化中的应用

现代控制理论在电力系统自动化中的应用 摘要:本文综述了近年来模糊逻辑控制、神经网络控制、线性最优控制、自适应控制在电力系统稳定,自动发电控制,静止无功补偿及串联补偿控制,燃气轮机控制等方面应用研究的主要成果与方法,并提出若干需要解决的问题。 关键词:电力系统模糊控制神经网络最优控制自适应控制 1 前言 电力系统能否安全稳定运行关系到国计民生,因此电力系统稳定性控制技术的选择变得尤为重要。电力系统是一个越来越大,越来越复杂的动态网络,它具有很强的非线性、时变性且参数不确切可知,并含有大量未建模动态部分。电力系统地域分布广泛,大部分原件具有延迟、磁滞、饱和等等复杂的物理特性,对这样的系统实现有效的控制是极为困难的,国内外因电压不稳导致的停电事故时有发生。这些都使电力系统的稳定性控制问题变得越来越复杂,也正是因为问题的复杂性而使得现代控制理论得以在这一领域充分发挥其巨大的优势。随着越来越先进的电力电子器件的出现和计算机技术的发展,先进的现代控制方法在电力系统领域的应用变的越来越广泛。本文主要介绍了模糊逻辑控制、神经网络控制、最优控制和自适应控制在电力系统中的应用,并提出相关问题的相应解决方法。 2 电力系统的模糊逻辑控制 电力系统的模糊逻辑控制就是利用模糊经验知识来解决电力系统中的一类模型问题,弥补了数值方法的不足。从Zaden L.A.1965年发表了Fuzzy Sets[1]一文以来,模糊控制理论作为一门崭新的学科发展非常迅速,应用非常广泛。目前国内外对电力系统模糊控制的研究成果越来越多,这显示了模糊理论在解决电力系统问题上的潜力。 模糊逻辑控制是从行为上模拟人的模糊推理和决策过程的一种实用的控制方法,它适于解决因过程本身不确定性、不精确性以及噪声而带来的困难。模糊控制常用来描述专家系统,专家系统作为一种人工智能方法,其在电力系统中得到应用,弥补了数值方法的诸多不足。专家系统利用专家知识进行推理,由于系统参数的不确定性,专家知识经常采用模糊描述。 模糊逻辑控制器(FLC)属于知识库系统,它由专家管理控制系统和专家直接控制系统所构成。专家管理控制系统使用模糊逻辑在主循环中调整控制器,例如调整电压控制器的参数。 ?、f?和任意连续非线性函数可以由一系列模糊变量、数值和规则来模拟,这里P

柴油发电机组自动并机并网系统方案

东莞团诚自动化设备有限公司柴油发电机组自动并机并网系统方案发电机充电器、发电机控制器、发电机调压板(电压调节器)、数字AVR、电子调速器等发电机配件厂家 柴油发电机组自动并机并网系统方案 一、环境条件与系统参数 1.极限最高温度:70摄氏度IEC60068-2-1 2.极限最低温度:-25摄氏度IEC60068-2-2 3.相对湿度:25摄氏度时≤95% 4.海拔高度:2000米内 5.抗震能力:地震烈度8度 6.输入电压:40VAC-600V AC 7.输入电流:<5A 8.最大输入电流: 4倍额定电流长期20倍额定电流10秒 9.编程继电器:8A250V 10.工作电源:8-36VDC25W 11.测量精确度:1.0IEC60688 12.防护等级:面板IP52整体IP20IEC/EN60529 二、功能描述 1.并机系统概述 并机系统用于柴油发电机组的自动化并联和并网运行,

配合主控柜可实现无人值守运行方式,满足自动启动、自动并联和并网输出的功能,总共4台10KV1800KW发电机组独立运行或者并联于气机母排运行。主控制柜可延伸监测和控制范围,包括自动加油系统工作状态、液位、故障信号、进排风系统、远置冷却系统、断路器状态、断路器告警,具有第3方通信接口,提供Modbus通信协议或者TCP/IP通信,远距离传输采用光纤通信模组。 本方案为独立电站设计,无电网电压情况下,可根据主发电机运行情况、电力参数等外部因素来调整发电机组的运行状态,当紧急情况或需要发电机组运行时并机系统自动投入运行,可实现系统内任意1台或者多台发电机组并网使用,主控柜实现并联系统集中监测和运行逻辑处理,共同完成自动投入,自动负载均分,自动撤出,支持加载斜坡和卸载斜坡功能,和自动冷却停止的控制,系统时间和定时器时间可根据使用情况和项目要求随意设定。 如原理图所示,发电机组运行于独立的母排,通过两端的母联开关与1号、2号气机母排连接,当所有气机都停止运行后,发电机组做孤岛运行,独立为母排供电;当任意一台气机投入运行,并网系统自动判断并网运行,母排上的10KV 发电机组,可同时或者部分并联于母排上运行,共同分担母线的负荷;目前提供4台机组,预留1台发电机组接口,包括并机柜控制回路、主控柜连接回路、高压开关柜控制及母

南方电网风电场无功补偿及电压控制技术规范QCSG1211004

. Q/CSG 中国南方电网有限责任公司企业标准 南方电网风电场无功补偿及电压控制 技术规范

目次 前言............................................................................. II 1 范围 (3) 2 规范性引用文件 (3) 3 术语和定义 (3) 4 电压质量 (5) 4.1 电压偏差 (5) 4.2 电压波动与闪变 (5) 5 无功电源与容量配置 (5) 5.1 无功电源 (5) 5.2 无功容量配置 (5) 6 无功补偿装置 (5) 6.1 基本要求 (5) 6.2 运行电压适应性 (6) 7 电压调节 (6) 7.1 控制目标 (6) 7.2 控制模式 (6) 8 无功电压控制系统 (6) 8.1 基本要求 (6) 8.2 功能和性能 (6) 9 监测与考核 (7) 9.1 无功和电压考核点 (7) 9.2 无功和电压考核指标 (7) 9.3 无功和电压监测装置 (7) 10 无功补偿及电压控制并网测试 (7) 10.1 基本要求 (7) 10.2 检测内容 (7)

前言 本标准按照GB/T 1.1-2009给出的规则起草。 本规定由中国南方电网有限责任公司系统运行部提出、归口并负责解释。 本标准起草单位:中国南方电网有限责任公司系统运行部,广东电网有限责任公司电力科学研究院本标准主要起草人:吴俊、曾杰、苏寅生、盛超、陈晓科、宋兴光、李金、杨林、刘正富、王钤、刘梦娜

南方电网风电场无功补偿及电压控制技术规范 1 范围 本标准规定了风电场接入电力系统无功补偿及电压控制的一般原则和技术要求。 本标准适用于通过35kV及以上电压等级输电线路与电力系统连接的风电场,通过其他电压等级集中接入电网的风电场可参照执行。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 12325 电能质量供电电压偏差 GB/T 12326 电能质量电压波动和闪变 GB/T 19963 风电场接入电力系统技术规定 GB/T 20297 静止无功补偿装置(SVC)现场试验 GB/T 20298 静止无功补偿装置(SVC)功能特性 SD 325 电力系统电压和无功电力技术导则(试行) DL/T 1215.1 链式静止同步补偿器第1部分:功能规范导则 DL/T 1215.4 链式静止同步补偿器第4部分:现场试验 Q/CSG110008 南方电网风电场接入电网技术规范 Q/CSG 110014 南方电网电能质量监测系统技术规范 Q/CSG 1101011 静止同步补偿器(STA TCOM)技术规范 3 术语和定义 下列术语和定义适用于本标准。 3.1 风电机组wind turbine generator system; WTGS 将风的动能转换为电能的系统。 3.2 风电场wind farm;wind power plant 由一批风电机组或风电机组群(包括机组单元变压器)、汇集线路、主变压器及其他设备组成的发电站。 3.3 风电场并网点point of interconnection of wind farm 风电场升压站高压侧母线或节点。 3.4 公共连接点point of common coupling 风电场接入公用电网的连接处。

自动发电控制(AGC)的基本理论

自动发电控制(AGC)的基本理论 自动发电控(Automatic Generation Control)简称AGC ,作为现代电网控制的一项基本功能,它是通过控制发电机有功出力来跟踪电力系统的负荷变化,从而维持频率等于额定值,同时满足互联电力系统间按计划要求交换功率的一种控制技术。它的投入将提高电网频率质量,提高经济效益和管理水平。 自动发电控制有四个基本目标: (1)使全系统的发电出力和负荷功率相匹配; (2)将电力系统的频率偏差调节到零,保持系统频率为额定值; (3)控制区域问联络线交换功率与计划值相等,实现各区域内有功功率的平衡; (4)在区域内各发电厂间进行负荷的经济分配。 上述第一个目标与所有发电机的调速器有关,即与频率的一次调整有关。第二和第三个目标与频率的二次调整有关,也称为负荷频率控制LFC(Load Frequency Control)。通常所说的AGC 是指前三项目标,包括第四项目标时,往往称为AGC 但DC(经济调度控制,即Economic Dispatching Control),但也有把EDC 功能包括在AGC 功能之中的。 负荷频率控制通过对区域控制偏差(ACE)调整到正常区域或零来实现系统频率和网间的联络线交换功率的调整。ACE 表达式如下: ()()()[]S A T S A S A T T K f f B P P ACE -+---=10 (1.1) 试中:A P ,S P 分别表示实际、预定联络线线功率;A T 、S T 分别表示实际电钟时间和标准时间;A f 、S f 分别表示实际、预定系统频率;B 表示系统频率偏差系数;T K 表示电钟偏差系数。 联络线频率偏差控制方式,TBC(Tie Line Bias Control),ACE 按上式形成;定频控制方式,。CFC(Constant FrequencyControl),ACE 不含(S A P P -);定净交换功率控制方式CNIC(Constant Net Interchange Control),ACE 不含(S A f f -)。 ACE 体现的是电网中电力供需不平衡的程度,即在电网实际运行中,由于系统总的发电水平和负荷水平的不一致,导致系统的频率或(和)联络线交换功率与其额定值(计划值)的偏差。负荷频率控制将ACE 分配给AGC 受控机组,通过调整机组的出力来改变系统总的发电水平,以达到将ACE 减到零的目的。 自动发电控制(AGC)的基本理论 1 自动发电控制(AGC)概述 自动发电控制在当今世界已是普遍应用的一项成熟与综合的技术。它是能量管理系统(Energy Management System ,即EMS)中最重要的控制功能。它的投入将提高电网频率质量,提高经济效益和管理水平。 电力系统频率和有功功率自动控制统称为自动发电控制(AGC)。由于系统发电机组的输出功率不能与系统总负载功率相平衡,引起系统频率变化。在系统紧

相关文档
最新文档