空调系统风道系统设计

空调系统风道系统设计
空调系统风道系统设计

第六章空调系统的风道设计

通风管道是空调系统的重要组成部分,风道的设计质量直接影响着空调系统的使用效果和技术经济性能。风道设计计算的目的,是在保证要求的风量分配前提下,合理确定风管布置和尺寸,使系统的初投资和运行费用综合最优。

§6.1 风道设计的基本知识

一.风道的布置原则

风道布置直接关系到空调系统的总体布置,它与工艺、土建、电气、给排水等专业关系密切,应相互配合、协调一致。

1.空调系统的风道在布置时应考虑使用的灵活性。当系统服务于多个房间时,可根据房间的用途分组,设置各个支风道,以便与调节。

2.风道的布置应根据工艺和气流组织的要求,可以采用架空明敷设,也可以暗敷设于地板下、内墙或顶棚中。

3.风道的布置应力求顺直,避免复杂的局部管件。弯头、三通等管件应安排得当,管件与风管的连接、支管与干管的连接要合理,以减少阻力和噪声。

4.风管上应设置必要的调节和测量装置(如阀门、压力表、温度计、风量测定孔、采样孔等)或预留安装测量装置的接口。调节和测量装置应设在便于操作和观察的地方。

5.风道布置应最大限度地满足工艺需要,并且不妨碍生产操作。

6.风道布置应在满足气流组织要求的基础上,达到美观、实用的原则。

二.风管材料的选择

用作风管的材料有薄钢板、硬聚氯乙烯塑料板、玻璃钢板、胶合板、铝板、砖及混凝土等。需要经常移动的风管,则大多采用柔性材料制成各种软管,如塑料软管、金属软管、橡胶软管等。

薄钢板有普通薄钢板和镀锌薄钢板两种。镀锌薄钢板是空调系统最常用的材料,其优点是易于工业化加工制作、安装方便、能承受较高温度,且具有一定的防腐性能,很适用于空调系统以及有净化要求的空调系统。其钢板厚度,一般采用0.5~1.5mm左右。

对于有防腐要求的空调工程,可采用硬聚氯乙烯塑料板或玻璃钢板制作的风管。硬聚氯乙烯塑料板表面光滑,制作方便,但不耐高温,也不耐寒,在热辐射作用下容易脆裂。所以,仅限于室内应用,且流体温度不可超过-10~+60℃。

以砖、混凝土等材料制作风管,主要用于与建筑、结构相配合的场合。它节省钢材,结合装饰,经久耐用,但阻力较大。在体育馆、影剧院等公共建筑和纺织厂的空调工程中,常利用建筑空间组合成送、回风管道。为了减少阻力、降低噪声,可采用降低管内流速、在风管内壁衬贴吸声材料等技术措施。

三.风管断面形状的选择

风管断面形状有圆形和矩形两种。圆形断面的风管强度大、阻力小、消耗材料少,但加工工艺比较复杂,占用空间多,布置时难以与建筑、结构配合,常用于高速送风的空调系统;矩形断面的风管易加工、好布置,能充分利用建筑空间,弯头、三通等部件的尺寸较圆形风管的部件小。为了节省建筑空间,布置美观,一般民用建筑空调系统送、回风管道的断面形状均以矩形为宜。

常用矩形风管的规格如表6—1所示。为了减少系统阻力,并考虑空调房间吊顶高度的限制,进行风道设计时,矩形风管的高宽比宜小于6,最大不应超过10 。

§6.2 风道设计的基本任务

一.一.风道设计的原则

进行风道设计时应统筹考虑经济、实用两条基本原则。

二.二.风道设计的基本任务

1.确定风管的断面形状,选择风管的断面尺寸。

2.计算风管内的压力损失,最终确定风管的断面尺寸,并选择合适的通风机。

风管的压力损失?P由沿程压力损失?P y和局部压力损失?P j两部分组成,即:

?P=?P y+?P j (Pa)(6—1) 沿程压力损失?P y(Pa),是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,又称为摩擦阻力损失;局部压力损失?P j(Pa),是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流而造成比较集中的能量损失。

(一)沿程压力损失的基本计算公式

长度为l(m)的风管沿程压力损失可按下式计算:

?P y=?p y l (Pa) (6—2)

式中?p y—单位管长沿程压力损失,也称为单位管长摩擦阻力损失,Pa/ m。

?p y=λ/d e×υ2ρ/2 (Pa) (6—3)

式中ρ—空气密度,标准状况下(大气压力为101325 Pa,温度为20℃),ρ=1.2kg/m3;

υ—风管内空气的平均流速,m/s;

d e—风管的当量直径,m,

圆形风管的当量直径d e=d,d为风管直径;

矩形风管的当量直径d e=2ab/(a+b),a、b分别为矩形风管的两个边长;

λ—摩擦阻力系数,λ值可按下式计算:

1/√λ=-2log(K/3.71 d e+2.51/Re√λ) (6—4)

式中K—风管内壁的当量绝对粗糙度,各种材料的粗糙度见表6—2;

Re—雷诺数:

Re=υd e/ν

ν—空气的运动粘度,标准状况下,ν=15.06×10-6m2/s。

风管的沿程压力损失可按上述诸公式进行计算,也可查阅附录13以及有关设计手册中《风管单位长度沿程压力损失计算表》进行计算:

标准尺寸的圆形断面薄钢板风管计算表见附录13—1;

标准尺寸的矩形断面薄钢板风管计算表见附录13—2;

非标准尺寸的矩形断面薄钢板风管计算表见附录13—3。

(二)局部压力损失的基本计算公式

风管的局部压力损失计算公式如下:

?P j=ζ×υ2ρ/2 (Pa)(6—5)

式中ζ—局部阻力系数;

υ—ζ与之对应的断面流速。

影响局部阻力系数ζ的主要因素有:管件形状、壁面粗糙度以及雷诺数。由于空调系统的空气流动大都处于非层流区,故可认为ζ仅仅与管件形状有关。ζ的数值,目前常用实验方法确定。实验时先测出管件前后的全压差(即?P j),再除以与速度υ相应的动压υ2ρ/2,则可求得局部阻力系数ζ值。为方便起见,在附录14以及许多文献资料中,都载有各种各样管件的局部阻力系数ζ计算表,可供设计时选用。

§6.3 风道设计计算的方法与步骤

一.风道水力计算方法

风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。其主要目的是,确定各管段的管径(或断面尺寸)和阻力,保证系统内达到要求的风量分配,最后确定风机的型号和动力消耗。

风道水力计算方法比较多,如假定流速法、压损平均法、静压复得法等。对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。

1.假定流速法

假定流速法也称为比摩阻法。这种方法是以风道内空气流速作为控制因素,先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。这是低速送风系统目前最常用的一种计算方法。

2.压损平均法

压损平均法也称为当量阻力法。这种方法以单位管长压力损失相等为前提。在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。一般建议的单位长度风管的摩擦压力损失值为0.8~1.5Pa/m。该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。

3.静压复得法

静压复得法的含义是,由于风管分支处风量的出流,使分支前后总风量有所减少,如果分支前后主风道断面变化不大,则风速必然下降,众所周知,当流体的全压一定时,风速

降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。此方法适用于高速空调系统的水力计算。

二.风道水力计算步骤

下面以假定流速法为例,来说明风道水力计算的方法步骤:

1.确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图,作为水力计算草图。

2.在计算草图上进行管段编号,并标注管段的长度和风量。

管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头)本身的长度。

3.选定系统最不利环路,一般指最远或局部阻力最多得环路。

4.选择合理的空气流速。

风管内的空气流速对空调系统的经济性有较大的影响。流速高,风管断面小,材料消耗少,投资费用小,但是系统的阻力大,动力消耗增加,运行费用增大,而且系统噪声比较大。流速低,阻力小,动力消耗少,但是风管断面大,材料和投资费用增加,风管占用的空间也比较大。所以必须通过全面的技术经济比较,选择合理的空气流速,使系统的造价和运行费用的综合最经济。根据经验总结,风管内的空气流速可按表6—3确定。

5.根据给定风量和选定流速,逐段计算管道断面尺寸,并使其符合表6—1所列的矩形风管统一规格(或圆形风管标准管径)。然后根据选定了的断面尺寸和风量,计算出风道内实际流速。

通过矩形风管的风量G可按下式计算:

G=3600abυ (m3/h) (6—6)

式中a,b—分别为风管断面净宽和净高,m。

通过矩形风管的风量可按下式计算:

G=900πd2υ (m3/h) (6—7)

式中d—为圆形风管内径,m。

6.计算风管的沿程阻力

根据风管的断面尺寸和实际流速,查阅查阅附录13或有关设计手册中《风管单位长度沿程压力损失计算表》求出单位长度摩擦阻力损失?p y,再根据公式6—2以及管长l,进一步求出管段的摩擦阻力损失。

7.计算各管段局部阻力

按系统中的局部构件形式和实际流速υ,查阅附录14或有关设计手册中《局部阻力系数ζ计算表》取得局部阻力系数ζ值,再根据公式6—5求出局部阻力损失。

8.计算系统的总阻力,?P=∑(?p y l +?P j )。

9.检查并联管路的阻力平衡情况。

10.根据系统的总风量、总阻力选择风机。

三.风道设计计算实例

某公共建筑直流式空调系统,如图7—1所示。风道全部用镀锌钢板制作,表面粗糙

度K=0.15mm。已知消声器阻力为50Pa,空调箱阻力为290 Pa,试确定该系统的风道断面尺寸及所需风机压头。

图7—1 某直流式空调系统图

A. 孔板送风口600×600;

B.风量调节阀;

C.消声器;

D.防火调节法;

E.空调器;

F.进风格栅

[解]

1.1.绘制系统轴测图,并對各管段进行编号,标注管段长度和风量,如图7—1所示。

2.2.选定最不利环路,逐段计算沿程压力损失和局部压力损失。本系统选定管段1—2—3—4—5—6为最不利环路。

3.3.列出管道水力计算表6—4,并将各管段流量和长度按编号顺序填入计算表中。

4.4.分段进行管道水力计算,并将结果均列入计算表6—4中。

管段1—2:风量1500m3/h,管段长l=9m

沿程压力损失计算:由表6—3初选水平支管空气流速为4m/s,根据公式6—6算得风道断面面积为

F’=1500/(3600×4)=0.104m2

取矩形断面为320×320mm的标准风管,则实际断面积F=0.102m2,实际流速

υ=1500/(3600×0.102)=4.08m/s

根据流速4.08m/s,查附录13 ,得到单位长度摩擦阻力?p y=0.7Pa/m,则管段1—2的沿程阻力

?P y=?p y×l=0.7×9=6.3Pa

局部压力损失计算:该管段存在局部阻力的部件有孔板送风口、连接孔板的渐扩管、多叶调节阀、弯头、渐缩管及直三通管。

孔板送风口:已知孔板面积为600×600mm,开孔率(即净孔面积比)为0.3,则孔板面风速为

υ=1500/(3600×0.6×0.6)=1.16m/s

根据面风速1.16m/s和开孔率0.3,查附录14序号35,得孔板局部阻力系数ζ=13,故孔板的局部阻力

?p j1=13×(1.2×1.162)/2=10.5Pa

渐扩管:渐扩管的扩张角α=22.5°,查附录14序号4,得ζ=0.6,渐扩管的局部阻力

?p j2=0.9×(1.2×4.082)/2=5.99Pa

多叶调节阀:根据三叶片及全开度,查附录14序号34,得ζ=0.25,多叶调节阀的局部阻力

?p j3=0.25×(1.2×4.082)/2=2.5Pa

弯头:根据α=90°,R/b=1.0,查附录14序号9,得ζ=0.23,弯头的局部阻力

?p j4=0.23×(1.2×4.082)/2=2.3Pa

渐缩管:渐缩管的扩张角α=30°<45°, 查附录14序号7,得ζ=0.1,渐缩管的局部阻力

?p j5=0.1×(1.2×4.082)/2=1Pa

直三通管:根据直三通管的支管断面与干管断面之比为0.64,支管风量与总风量之比为0.5,查附录14序号19,得ζ=0.1,则直三通管的局部阻力

?P j6=0.1×(1.2×5.22)/2=1.6Pa (取三通入口处流速)该管段局部阻力

?P j=?p j1+?p j2+?p j3+?p j4+?p j5+?P j6

=10.5+5.99+2.5+2.3+1+1.6

=23.89Pa

该管段总阻力

?P1-2=?P y+?P j=6.3+23.89=30.19Pa

管段2—3:风量3000m3/h,管段长l=5m,初选风速为5m/s。

沿程压力损失计算:

根据假定流速法及标准化管径,求得风管断面尺寸为320×500mm,实际流速为5.2m/s,查得单位长度摩擦阻力?p y=0.8Pa/m,则管段2—3的沿程阻力

?P y=?p y×l=0.8×5=4.0Pa

局部压力损失计算:

分叉三通:根据支管断面与总管断面之比为0.8,查附录14序号21,得ζ=0.28,则分叉三通管的局部阻力

?P j =0.28×(1.2×6.252)/2= 6.6Pa. (取总流流速)

该管段总阻力

?P2-3=?P y+?P j=4.0+6.6=10.6Pa

管段3—4:风量4500m3/h,管段长l=9m,初选风速为6m/s。

沿程压力损失计算:

根据假定流速法及标准化管径,求得风管断面尺寸为400×500mm,实际流速为6.25m/s,查得单位长度摩擦阻力?p y=0.96Pa/m,则管段3—4的沿程阻力

?P y=?p y×l=0.96×9=8.64Pa

局部压力损失计算:该管段存在局部阻力的部件有消声器、弯头、风量调节阀、软接头以及渐扩管。

消声器:消声器的局部阻力给定为50Pa,即

?p j1= 50.0Pa

弯头:根据α=90°,R/b=1.0,a/b=0.8,查附录14序号10,得ζ=0.2,弯头的局部阻力

?p j2=0.2×(1.2×6.252)/2=4.7Pa

风量调节阀:根据三叶片及全开度,查附录14序号34,得ζ=0.25,风量调节阀的局部阻力

?p j3=0.25×(1.2×6.252)/2=5.9Pa

软接头:因管径不变且很短,局部阻力忽略不计。

渐扩管:初选风机4—72—11N O4.5A,出口断面尺寸为315×360mm,故渐扩管为315×360mm~400×500mm,长度取为360mm,渐扩管的中心角α=22°,大小头断面之比为1.76查附录14序号3,得ζ=0.15,对应小头流速

υ=4500/(3600×0.315×0.36)=11m/s

渐扩管的局部阻力

?p j4=0.15×(1.2×112)/2=10.9Pa

该管段局部阻力

?P j=?p j1+?p j2+?p j3+?p j4

=50.0+4.7+5.9+10.9

=71.5Pa

该管段总阻力

?P3-4=?P y+?P j=8.64+71.5=80.14Pa

管段4—5:

空调箱及其出口渐缩管合为一个局部阻力考虑,?P j=290 Pa

该管段总阻力

?P4-5=?P j=290Pa

管段5—6:风量4500m3/h,管段长l=6m,初选风速为6m/s。

沿程压力损失计算:

根据假定流速法及标准化管径,求得风管断面尺寸为400×500mm,实际流速为6.25m/s,查得单位长度摩擦阻力?p y=0.96Pa/m,则管段5—6的沿程阻力

?P y=?p y×l=0.96×6=5.76Pa

局部压力损失计算:该管段存在局部阻力的部件有突然扩大、弯头(两个)、渐缩管

以及进风格栅。

突然扩大:新风管入口与空调箱面积之比取为0.2,查附录14序号5,,得ζ=0.64,突然扩大的局部阻力

?p j1=0.64×(1.2×6.252)/2=15.1Pa

弯头(两个):根据α=90°,R/b=1.0,a/b=0.8,查附录14序号10,得ζ=0.20,弯头的局部阻力

?p j2=0.2×(1.2×6.252)/2=4.7Pa

2?p j2=4.7×2=9.4 Pa

渐缩管:断面从630×500mm单面收缩至400×500mm,取α=<45°, 查附录14序号7,得ζ=0.1,对应小头流速

υ=6.25m/s

渐缩管的局部阻力

?p j3=0.1×(1.2×6.252)/2=2.36Pa

进风格栅:进风格栅为固定百叶格栅,外形尺寸为630×500mm,有效通风面积系数为0.8,则固定百叶格栅有效通风面积为

0.63×0.5×0.8=0.252m2

其迎面风速为

4500/(3600×0.252)=5 m/s

查附录14序号30,得ζ=0.9,对应面风速,固定百叶格栅的局部阻力

?p4=0.9×(1.2×52)/2=13.5Pa

该管段局部阻力

?P j=?p j1+2?p j2+?p j3+?p j4

=15.1+9.4+2.36+13.5

=40.36Pa

该管段总阻力

?P5-6=?P y+?P j=5.76+40.36=46.12Pa

5.检查并联管路的阻力平衡

用同样的方法,进行并联管段7—3、8—2的水力计算,并将结果列入表6—4中。

管段7—3:

沿程压力损失

?P y=9.1 Pa

局部压力损失

?P j=28.9 Pa

该管段总阻力

?P7-3=?P y+?P j=9.1+28.9=38Pa

管段8—2:

沿程压力损失

?P y=1.4 Pa

局部压力损失

?P j=25.8 Pa

该管段总阻力

?P8-2=?P y+?P j=1.4+25.8=27.2Pa

检查并联管路的阻力平衡:

管段1—2的总阻力?P1-2=30.19Pa

管段8—2的总阻力?P8-2=27.2Pa

(?P1-2-?P8-2)/?P1-2=(30.19-27.2)/30.19=9.9%<15%

管段1—2—3的总阻力?P1-2-3=?P1-2+?P2-3=30.19+10.6=40.79 Pa

管段7—3的总阻力?P7-3=38Pa

(?P1-2-3-?P7-3)/?P1-2-3=(40.79-38)/40.79=6.8%<15%

检查结果表明,两个并联管路的阻力平衡都满足设计要求。如果不满足要求的话,可以通过调整管径的方法使之达到平衡要求。

5.5.计算最不利环路阻力

?P=?P1-2+?P2-3+?P3-4+?P4-5+?P5-6

=30.19+10.6+80.14+290+46.12

=457.05 Pa

本系统所需风机的压头应能克服457.05 Pa阻力。

四.风道压力损失估算法

对于一般的空调系统,风道压力损失值可按下式估算

?P=?p y l(1+k)+∑?p s (Pa) (6—8)

式中?p y—单位管长沿程压力损失,即单位管长摩擦阻力损失,Pa/ m。

l—最不利环路总长度,即到最远送风口的送风管总长度加上到最远回风口的回风管总长度,m。

k—局部压力损失与沿程压力损失之比值:

弯头、三通等局部管件比较少时,取k =1.0~1.2;

弯头、三通等局部管件比较多时,可取到k =3.0~5.0。

∑?p s—考虑到空气通过过滤器、喷水室(或表冷器)、加热器等空调装置的压力损失之和。

表6—5给出了为空调系统推荐的送风机静压值,可供估算时参考:

§6.4 风管内的压力分布

空气在风管中流动时,由于风管阻力和流速变化,风管内的压力是不断变化的。研究风管内空气压力的分布规律,有助于更好地解决空调系统的设计和运行管理问题。

一.单风机系统

单风机系统是指只设送风机而不设回风机,整个系统内的压力损失全部由送风机来承担的空调系统,单风机空调系统风管内全压分布示意图如图6—2所示。对于单风机系统来说,要注意到零点的位置,若系统排风位于回风的负压区,则排风不可能通过排风阀排出,必须单设一轴流式排风机,如图中虚线所示。

双风机系统是指既设置有送风机而且设置有回风机的空调系统,系统内的压力损失由送风机和回风机共同承担。双风机空调系统风管内全压分布示意图如图6—3所示。对于双风机系统来说,排风必须处于回风机的正压段,而新风和回风必须处于送风机的负压段。如图中所示,①~②段由于回风机的加压作用,处于正压区,排风可以通过排风阀直接排出。而②~③段由于送风机的抽吸作用,处于负压区,新风和回风均可被抽吸进来。②为零位阀,通过该阀处的风压应该为零。

图6—2和图

阻力的情况下,定性地画出的全压分布曲线图。若以各点的全压减去该点的动压,便可得出静压分布曲线来。从图6—2和图6—3可以看出空气在风管内的流动规律为:1.风机的压头等于风机进、出口的全压差,或者说等于该风机所负担的风管系统沿程压力损失和局部压力损失之和。

2.风机吸入段的全压和静压均为负值,在风机入口处负压值最大;风机压出段的全压和静压一般情况下均为正值,在风机出口处正压值最大。因此,风机与风管的连接必须注

意严密性,否则,便会有空气漏入或逸出系统,以至影响系统的风量分配。

3.在风机的压出段,如果动压值大于全压值时,则该处的静压会出现负值。若在该断面开孔,便会吸入空气而不是压出空气(诱导式空调系统就是利用这一原理而工作的)。所以,必须正确选择送风管道中的气流速度,以免影响支风管的空气流量。

4.设计时应注意各并联支路的阻力平衡。如果设计时各支管阻力不相等,在实际运行时,各支管会按其阻力特性自动趋于平衡,同时也会改变了预定的风量分配值。

复习思考题

1.简叙风道布置的原则。

2.常用的风管材料由哪些?各适用于什么场合?

3.为什么说“矩形风管的高宽比宜小于6,最大不小于10”?

4.风道设计的基本任务是什么?

5.试解释下列名词:

(1)沿程压力损失;(2)单位管长摩擦阻力损失;

(3)局部压力损失;(4)风管的当量直径。

6.影响局部阻力系数ζ的因素有哪些?

7.为什么说风管内空气流速对空调系统的经济性有较大的影响?

8.风道阻力计算方法有哪些?简叙利用假定流速法进行风道水力计算的步骤。

9.为什么进行风道水力计算时,一定要进行并联管道的阻力平衡?如果设计时不平衡,运行时是否会保持平衡?对系统运行有何影响?

习题

1.1.一矩形风道断面尺寸为a=200mm,b=400mm,用镀锌薄钢板制成。风道内

空气流量为G=2000m3/h,求10m长风道内沿程压力损失及风道内空气的流速。

2.一矩形风道断面尺寸为400×200mm,用镀锌薄钢板制成,管长8m,风量为0.88m3/s,试计算其沿程压力损失。若该风管采用混凝土制作(k=3.0mm),其沿程压力损失为多少?

3.一90°矩形断面送出三通,各部分流量和断面尺寸如下:

G1=3000 m3/h,F1=320×500mm

G2=1500 m3/h,F2=320×320mm

G3=1500 m3/h,F3=320×320mm

求该三通的局部压力损失。

4.某直流式空调系统,如图所示。风道采用镀锌钢板制作,系统有5个活动百叶送风口(有效面积为80%),每个风口送风量均为800 m3/h,要求出风口风速为3.5m/s,试确定风道断面尺寸,以及系统总阻力与所需风机的压头。已知空调箱总阻力为200Pa。(注意,风道系统中应根据需要增设变径管,并计算其局部阻力)。

5.已知某圆形风道断面1—1和2—2间直径相同,流量G=9000 m3/h,断面1—1处全压为48.9Pa,断面2—2处有一侧孔。试问:

(1)如果该段风道直径定为600mm,两断面间压力损失?P1-2=?p y+?p y=2Pa,问侧孔处空气流动方向如何?为什么?

(2)欲使侧孔处出风静压速度为7.8m/s,问断面1—2间管径的设计值应为多少?(假定两断面间压力损失仍为2Pa)

习题6—4附图习题6—5附图

通风空调系统设计计算常用数据.

通风空调系统设计计算常用数据 普通洁净厂房 一. GMP对洁净度的要求 名称 空气洁净度≥0.5μm 微粒 粒/m3 ≥5μm微 粒 粒/m3 浮游 菌 个/m3 沉降菌 (Φ90 皿·0.5h) (个/皿 静态动态静态动态静态动态静态动态 中国 98版 GMP 百级≤3.5*103不作0 不作≤5不作≤1不作万级≤3.5*105不作≤2*103不作≤100不作≤3不作 10万 级 ≤3.5*106不作≤2*104不作≤500不作≤10不作 30万 级 ≤10.5*106不作≤6*104不作不作不作≤15不作 中国兽 药 GMP ≤3.5*103不作0 不作≤5不作≤0.5不作≤3.5*105不作≤2*103不作≤50不作≤1.5不作 ≤3.5*106不作≤2*104不作≤150不作≤3不作

≤10.5*106不作≤6*104不作≤200不作≤5不作二. 药厂洁净车间应控制的设计参数 应控制的参数GMP(1998)兽药GMP(修订稿) 空气洁净度级别(含细菌 要求要求 浓度) 换气次数(送入洁净室的 未要求要求 风量/室体积) 工作区截面风速未要求要求 静压差要求要求 温、湿度要求要求 照度要求要求 噪声未要求要求 新风量未要求未要求 三. 洁净室一般净时间: 1. 100级 2min; 2. 1万级 30min; 3. 10万级 40min;

4. 30万级 50min; 四. 几种GMP推荐的换气次数空气 洁净度级别中国GMP (1992) 中国GMP实 施指南 (1992) 中国GMP (1998) 中国兽药 GMP实施细 则 (1994) 中国兽 药GMP (修订 稿) 中国药品包 装用材料、 容器注册验 收通则 (2000) 1万级≥20 ≥25 未要求 ≥20 ≥20 ≥20 10万级≥15 ≥15 未要求 ≥15 ≥15 ≥15 30万级未要求 未要求 未要求 未要求 ≥10 ≥12 100万级未要求 ≥10 未要求 未要求 未要求 未要求 一般不大于30%; 五. 工作区截面要求 1. 气体流向:垂直单向流、水平单向流; 2. 单向流气体速度: 空气 洁净度级别中国GMP (1992) 中国GMP 实施指南 (1992) 中国GMP (1998) 中国兽药 GMP实施细 则 (1994) 中国 兽药 GMP (修 订 中国药品 包装用材 料、容器 注册验收

低温送风空调系统

低温送风空调系统基本知识 1.概述 低温送风空调系统与常规空调系统相比送风温度低、送风温差加大,降低了输送管道和空气处理设备的体积以及送风机能耗等。 冰蓄冷系统可以方便地得到低温冷冻水,因此冰蓄冷与低温送风空调相结合是最佳组合,达到节能、经济的目的。 空调系统分类及所需冷媒温度 空调系统类型 送风温度(℃) 冷媒温度(℃) 范围 名义值 常温送风系统 12~16 13 7 低温送风系统 9~11 10 4~6 6~8 7 2~4 ≤5 4 ≤2 2. 系统工作原理 ● 基本公式 ) 6.3)6.3s n x s n q t t c Q I I Q L -(= -(=ρρ 式中: L 送风量 Is 送风空气焓值 Qq 送风要吸收的余热全热 tn 室内空气温度 Qx 送风要吸收的余热显热 ts 送风温度 ρ 空气密度 c 空气定压比热 In 室内空气焓值 ● 工作原理 由供冷能源中心来的低温(1~4℃)液体送入空调机表冷器,使出风温度达到4~10℃,变风量末端装置根据房间温度要求调节送风量,自控系统根据各末端的风量风压要求调节系统送风量,使送风温度稳定不变。 3. 低温送风系统的优点

这样低的送风温度通常借助于冰蓄冷系统的1~4℃的低温冷冻水或载冷剂。将低温送风技术和冰蓄冷技术相结合,可进一步减少空调系统的运行费用,降低一次性投资,提高空调品质,改善储冷空调系统的整体效能。 1)与常规全空气空调系统相比可以降低初投资 ——减少系统设备费用一直是推动低温送风应用的一个重要因素。较低的送风温度和较大的供回水温差减少了所要求的送风量和供水量,降低了空调机组、风机和水泵以及风管和水管的投资,从而降低了系统设备的费用,并减少设备机房和管道的占用空间,节约初投资,一般低温送风系统的设备费用可降低约10%, 2)提高室内空气品质和舒适度 ——因供水温度低,低温送风系统除湿量大,因此能维持较低的相对湿度,提高了热舒适性。实验研究表明在较低的湿度下,受试者感觉更为凉快和舒适,空气品质更可接受;并可相应提高房间设计温度,减少能耗 3)建筑物投资降低 ——降低层高或增高有效层高; ——设备占用面积减少,办公有效面积增加; ——压缩建筑物高度,电梯、台阶建设费用减少。 4)节约运行费用 低温送风系统由于送风量和供水量的减少,可以有效的减少风机和水泵能耗,从而降低运行费用。一般低温送风系统的风机和水泵的能耗可降低约30%。 与冰蓄冷相结合,能起到削峰填谷缓解城市电网压力的作用,并可节约运行能耗。 对于低温送风空调系统,为了充分发挥它的优越性,建议采用变风量形式。在部分负荷时,定风量系统只能通过提高送风温度满足要求,而变风量系统能一直保证大温差送风。并且和运行费用 ——空气输送设备容量减少意味着电力基本费用降低; ——空气输送动力减少意味着电力附属费用也降低。 4.低温送风的特殊问题 1 结露问题 需对末端风口、水管阀门和所有风管采取防止结露措施。 2 冬季送热风问题 3 不采用二次盘管问题

夏热冬冷地区空调通风系统总结

夏热冬冷地区空调通风系统总结如下: 1.空调系统 1.1.一次回风定风量全空气系统: 大空间的房间适合采用一次回风定风量单风道全空气系统:从室外吸入的新风和室内回风在新回风段混合后经过初效过滤器,进入空气处理机组,经冷却、除湿、加压后经送风管、风量调节阀由铝质散流器送入室内,回风经门铰式风口及回风管接至空气处理机组。气流组织形式采用上送风,上回风。过渡季节可全新风运行,送风量按空调季节送风量的60%运行。空调送风量为新风量加回风量之和,以维持空调房间微正压。 空气处理机组设初效新回风段、中效过滤段、表冷(加热)段、(加湿段)、风机出风段。空气处理机组设于空调机房内。当室内冬季相对湿度要求在40%以上时,需根据一次回风系统的工况分析计算结果,决定是否采用加湿段。冷热水由设在屋面的风冷热泵机组提供。 一次回风系统还适用于电气及仪控设备房,规范规定电气设备间、蓄电池间、UPS间、通讯设备间、控制中心等房间均不允许水管进去,风管也不允许敷设在电气柜及控制柜上方,在设计施工图时应避开电气柜的位置,尽量在电气柜后方离墙800mm的空档里贴墙敷设风管,气流组织采用侧送侧回的形式。如果房间进深不大,就尽量在走道上伸出支管、调节阀及送回风口,实行侧送侧回的方式,风管就不必进入电气用房了。 如无电气及仪控设备房的,由各小房间组成的楼层,如各房间合用一次回风系统的,除非是各房间的人员和使用时间均相同且固定不变,否则应采用风机盘管加新风系统或者多联机中央空调系统,或者变风量系统。因为定风量系统是不可以每个房间单独开启和调节的,集中空调系统一开全开的方式不节能。 空气处理机组送回风管进出空调机房处均应设防火阀,及消声器。 1.2.风机盘管加新风系统: 由各小房间组成的建筑物适合采用风机盘管加新风系统,使各小房间的空调能自行开关和调节,利于节能运行。从室外吸入的新风经新风机组处理到室内温度的焓值后,通过风管送入各空调房间,室内回风经风机盘管冷却、

广州地铁通风空调系统设计说课讲解

广州地铁通风空调系统设计 简介:随着广州地铁一号线于1997年的开通,地铁的客运量大、速度快、安全准点以及舒适的特点日益显现出来,并迅速得到了广大市民的欢迎,取得了巨大的经济和社会效益。在番禺和花县撤市改区后,市政府及地铁总公司为实现广州现代化大都市的目标,以及尽快形成地铁网络,完善广州市的交通网络,将在今后的几年里迅速发展地铁二号线以及三号线,以至更多线路。笔者有幸参加了一号线的设计工作,在二号线工程中又参加了新港东站的设计,本文就新港东站的通风空调系统的设计问题与大家进行探讨,供参考。 关键字:通风空调地铁冷负荷 前言 随着广州地铁一号线于1997年的开通,地铁的客运量大、速度快、安全准点以及舒适的特点日益显现出来,并迅速得到了广大市民的欢迎,取得了巨大的经济和社会效益。在番禺和花县撤市改区后,市政府及地铁总公司为实现广州现代化大都市的目标,以及尽快形成地铁网络,完善广州市的交通网络,将在今后的几年里迅速发展地铁二号线以及三号线,以至更多线路。笔者有幸参加了一号线的设计工作,在二号线工程中又参加了新港东站的设计,本文就新港东站的通风空调系统的设计问题与大家进行探讨,供参考。 一、工程概述

广州市地下铁道二号线首期工程全程约23.245km,南起于琶洲站,北终于江夏站,共设20个车站。新港东站是首期工程中第二个车站,编号为202,位于华南快速大道东侧新港东路中心,东侧为琶洲站,西侧为磨碟沙站,附近有广州会展中心和广州博览中心等大型建筑。车站总长度206.2m,标准段宽度16.5m,为单层明挖侧式站台的地下车站,站台在轨道两侧纵向布置,站厅为服务及中转区域,设在南北两侧中部,站台边缘设置屏蔽门与轨道隔开。由于轨道将车站分割为南北两侧,因此南北两侧均设环控机房及设备管理用房。车站东端隧道风亭及排风亭设于车站东端南北两侧,西端隧道风亭及排风亭,车站中部新风亭及排风亭结合出入口设于中部南北两侧,本车站南北两侧各有六个风亭。整个车站呈一个古字“車”形。车站总布置详见附图1。 根据隧道通风系统的要求,在车站两端布置相应的隧道通风设备。根据地铁运营环境要求,在车站站厅站台的公共区部分设置通风空调和防排烟系统,正常运行时为乘客提供过渡性舒适环境,事故状态时迅速组织排除烟气(简称大系统)。根据地铁设备管理用房的工艺要求和运营管理要求设置通风空调和防排烟系统,正常运行时为运营管理人员提供舒适的工作环境和为设备正常工作提供必需的运行环境,事故状态时迅速组织排除烟气(简称小系统)。

通信机房空调送风系统设计探讨

通信机房空调送风系统设计探讨 ●新风作为机房空调调节设计的重要内容。新风维持机房内的正压,同时稀释室内不断产生的空气污染物,防止控制品质变化。同时,利用回风、减少新风是节能的需要,特别在夏季温差大的情况下,混入的回风越多,使用的新风量越少,就越节能。但无限制减少新风,又会影响室内空气品质。因此为了解决节能和舒适度的矛盾,就要规定新风量供应的标准。 机房新风设计标准,空调新风系统的新风量依据规范应取以下三项中的最大值:一是保证工作人员每人40米3/小时;其二,室内总风量的5~10%;其三,维持室内正压所需风量,即主机房对室外9.8Pa,其他房间相对室外4.9Pa。 而实际情况下多是采取经验值的计算方法:按照室内容积的循环次数来计算新风量。根据不同机房环境,2~4次/H的新风量系数能较好的满足人方面的需求。 新风引进的做法通常有两种:一种是通过新风小室,对新风进行集中处理后再通过管道送到机房或者机房专用空调柜内。这种传统方式费用高,占地大。另一种是直接通过新风设备处理后送入空调柜内。包括通过管道送风的工程类新风设备、柜式和窗式新风处理设备(处理风量2500m3/h以下),可以设置在室外或机房内,处理灵活,造价低,维护方便。 ●风道送风系统包括静压箱、风管、散流器、轴流风机等等。风

管采用铝板或不锈钢板制作。风管保温材料应考虑非燃烧材料。通常采用矩形风管,其宽高比宜小于6,最大不超过8,考虑气流衰减,风管选择为变截面方式。 潜热微小的环境导致需要大风量的空调系统。为了保证数据中心内不同位置的IT设备都能处于适宜的温度和湿度工作条件下,数据中心内显热庞大。就必需正确设计数据中心的送风和回风的气流组织。下送风方式更易于调节风量、空调近端和远端的温度更接近。 数据中心常采用的送风方式主要有两种:风管上送风方式、架高电地板下送风方式。 采用架高地板下送风方式时,防静电地板下的空间可用作为一个静压箱(静压送风风库)。冷空气从空调进入静压箱,通过带气流分布风口的活动地板将机房空调送出的冷风送入室内及发热设备的机柜内(即通过地板送风口送至机柜前部的冷通道)。由于气流风口地板与一般活动地板可互换性,因此可自由调节机房内气流的分布。这样无论通信设备安装在什么位置,都可以通过防静电活动地板的风口得到空调送的冷空气。 若机房采用了静电地板,静电地板与地面之间高度为300~350mm,且其空间内无阻隔物,可以形成送风通道并作为静压箱,那么可选择下送风、上回风方案如图所示。

某会展中心通风空调系统设计方案

XX会展中心通风空调系统设计方案 工程概况 XX会展中心是由XX市政府和XX集团共同兴建的会议展览建筑,建筑基底东西长约100m,南北长约150m,总建筑面积26103.56m2。主展馆居中,为单层钢结构建筑,最高点m,南北两侧局部三层,分别为为礼堂、各种会议、办公及设备用房。消防分类为多层建筑。冷热源机房设于建筑物外。 主要设计参数 室内设计参数 空调水系统设计 本工程夏季冷负荷3951.5kW,单位建筑面积冷负荷指标151.4W/m2;冬季设计热负荷3260KW,单位建筑面积热负荷指标125W/m2。 夏季设计供回水温度7/12℃,冬季设计供回水温度60/50℃,冷热源来自室外机房。 根据建筑物实际可能的使用情况,将水环路划分为展厅、礼堂、会议室三部分,从室外主机房分、集水器分别引入,每个环路均采用异程系统,采取水力平衡措施。 空调风系统设计 展厅 采用全空气定风量一次回风系统。其中高大空间部分采用分层空调方式,侧送下回,靠外墙局部为送风气流死角,增设地板散流器下送风口。空调机房设于展厅东西入口上方的夹层内。侧送风口采用可调型圆形喷口,分上下两排布置,其中上排距地高度7m,下排距地6.5m,通过调整角度满足展厅不同季节、不同射程的气流组织需要。新风由竖风道自屋顶退层内引入,避免破坏建筑物外立面。该部分气流组织示意图见图2。图3 为空调机房平面布

置,图4为风口立面布置图。由妥思公司提供的风口选型结果见表2。 展厅内局部层高6m 的空间采用吊顶空调机组加集中新风的空调方式,气流组织采用上送上回。 礼堂 采用全空气定风量一次回风系统。其中观众席采用全回风机组加全新风机组的空调方式,回风机组设于观众席下方的夹层内,新风机组设于主席台后上方的夹层内。气流组织采用上送侧下回,送风管道在屋顶钢结构内敷设,送风口采用旋流风口, 回风在观众席台阶下

空调风系统的设计要点

空调风系统的设计要点 空调风系统的设计要点 (1)空调系统新风量的大小不仅与能耗、初投资和运行费用密切相关, 而且关系到人体的健康,因此《公共建筑节能设计标准》GB50189- 2005对其取值进行了规定,设计人员进行工程设计时,不应随意增加 或减少。另外,在人员密度相对较大且变化较大的房间,宜采用新风 需求控制,即根据室内CO2浓度检测值增加或减少新风量,使CO2浓 度始终维持在卫生标准规定的限值内。 (2)风机盘管机组加新风空调系统的新风口,应单独设置,或布置在风 机盘管机组出风口的旁边,不应将新风接至风机盘管机组的回风吸入 口处,以免减少新风量或削弱风机盘管处理室内回风的能力。 (3)房间面积或空间较大、人员较多或有必要集中进行温、湿度控制和 管理的空调场所(如商场、影剧院、营业式餐厅、展览厅、候机/车楼、多功能厅、体育馆、大型会议室等),其空调风系统宜采用全空气空调 系统,不宜采用风机盘管系统。全空气空调系统具有易于改变新、回 风比例,必要时可实现全新风运行,从而获得较大的节能效益和环境 效益,且易于集中处理噪声、过滤净化和控制空调区的温、湿度,设 备集中,方便维修和管理等优点。 (4)建筑空间高度大于或等于10m、且体积大于10000m3时,宜采用分 层空调系统。分层空调是一种仅对室内下部空间进行空调、而对上部 空间不进行空调的特殊空调方式,与全室性空调方式相比,分层空调 夏季可节省冷量30%左右,因此,能节省运行能耗和初投资。但在冬季供暖工况下运行时并不节能,此点特别提请设计人员注意。 对于民用建筑中的中庭等高大空间,通常来说,人员通常都在底层活动,因此舒适性范围大约为地面以上2~3m。采用分层空调,其目的是将这部分范围的空气参数控制在使用要求之内,3m以上的空间则处于不 保证的范畴。这里提到的分层空调只是一个概念和原则,实际工程中 有多种做法,比较典型的是送风气流只负担人员活动区,同时在高空

空调系统风道设计word文档

https://www.360docs.net/doc/7c8249672.html,/zykt/2/2.1.html 第8章空调系统风道设计 §8.1风道设计的基本知识 一、道的布置原则 风道布置直接与工艺、土建、电气、给排水等专业关系密切,应相互配合、协调一致。 1.空调系统的风道在布置时应考虑使用的灵活性。 2.风道的布置应符合工艺和气流组织的要求。 3.风道的布置应力求顺直,避免复杂的局部管件。 4.风管上应设置必要的调节和测量装置(如阀门、压力表、温度计、风量测定孔、采样孔等)或预留安装测量装置的接口。 5.风道布置应最大限度地满足工艺需要,并且不妨碍生产操作。 6.风道布置应在满足气流组织要求的基础上,达到美观、实用的原则。 二、管材料的选择 用作风管的材料有薄钢板、硬聚氯乙烯塑料板、玻璃钢板、胶合板、铝板、砖及混凝土等。 需要经常移动的风管—大多采用柔性材料制成各种软管,如塑料软管、金属软管、橡胶软管等。 薄钢板有普通薄钢板和镀锌薄钢板两种,厚度一般为0.5~1.5m m 左右。 对于有防腐要求的空调工程,可采用硬聚氯乙烯塑料板或玻璃钢板制作的风管。硬聚氯乙烯塑料板表面光滑,制作方便,但不耐高温,也不耐寒,在热辐射作用下容易脆裂。所以,仅限于室内应用,且流体温度不可超过-10~+60℃。 以砖、混凝土等材料制作风管,主要用于与建筑、结构相配合的场合。

为了减少阻力、降低噪声,可采用降低管内流速、在风管内壁衬贴吸声材料等技术措施。

三、风管断面形状的选择 风管断面形状: 圆形断面的风管—强度大、阻力小、消耗材料少,但加工工艺比较复杂,占用空间多,布置时难以与建筑、结构配合,常用于高速送风的空调系统; 矩形断面的风管—易加工、好布置,能充分利用建筑空间,弯头、三通等部件的尺寸较圆形风管的部件小。为了节省建筑空间,布置美观,一般民用建筑空调系统送、回风管道的断面形状均以矩形为宜。 常用矩形风管的规格如下表所示。为了减少系统阻力,进行风道 设计时,矩形风管的高宽比宜小于6,最大不应超过10。 表8-1矩形风管规格 §8.2风道设计的基本任务

体育馆空调通风系统设计的文献综述

体育馆空调通风系统设计的文献综述 1.课题的背景与意义 随着我国人民生活水平的不断提高,购买力增强。近年来修建了不少体育运动建筑,并且向多元化方向发展,建筑规模越来越大。装饰豪华、设施全面、多维服务,集商贸、娱乐、运动、比赛为一体的高级体育运动建筑也层出不穷。 体育馆是一个流动人口众多的公共场所,室内空气的温湿度、洁净度和新鲜空气量等,对观众和运动员的身体健康影响很大[1]。因此,体育建筑设施的空气环境越来越被卫生部门所重视。我国卫生防疫部门对体育建筑提出了卫生要求,对较大的重点体育馆还进行过监测,对一些已建的大中运动地点要求进行改造,增设通风设施或加建空气调节装置。 体育建筑不断的增多,以及人们对室内空气的温湿度、洁净度和空气品质问题越来越重视[2] 。由于能源的紧缺,节能问题越来越引起人们的重视。因此迫切需要为体育活动场所安装配置节能、健康、舒适的中央空调系统来满足人们对高生活水平的追求。 2.空调技术及系统的发展 随着国民经济的快速发展以及人们生活水平的提高,建筑业也得到迅猛发展。而暖通空调业作为建筑业的重要组成部份,其新技术、新材料、新产品更是层出不穷。暖通空调业发展所遵循的原则,概括起来就是:节能、环保、可持续发展性,保证建筑环境的卫生与安全,适应国家的能源结构调整战略,贯彻热、冷计量政策,创造不同地域特点的暖通空调发展技术。 具体的可概括为以下几个方面: (1)供暖技术。集中供暖技术;分户热计量的实施;供暖系统改造;低温地板辐射供暖;新型散热器应用、发展;区域热电联产技术;分布式冷热电联供技术。 (2)通风技术。夏热冬冷地区住宅通风;传染病医院病房通风;手术室等生物洁净空调的空调洁净技术;商场、地铁等公共空间的通风;工业通风。 (3)室内环境质量。热舒适环境;室内空气品质;通风技术的发展及空调气流组织。 (4)燃气空调。燃气热泵;使用燃气的冷热电三联供;燃气蒸汽联合循环。 (5)蓄能技术。冰蓄冷空调;低温送风技术;水蓄冷技术;蓄热供暖。 (6)公共建筑hvac。体育馆、剧院、商场、商用办公综合楼等的供暖空调通风技术;建筑方排烟设计。 (7)可持续发展能源技术与暖通空调。可再生能源利用;热回收技术与设备;建筑本体节能;被动式建筑。 (8)节能环保设备的开发。利用低位热能和水源、土壤热源的热泵;高能效设备。 (9)空调通风系统和设计进展。分散式个别空调;变风量、变水量系统;置换通风及相关系统研究和应用;住宅空调方式;新风利用、蒸发冷却技术应用。 (10)模拟与分析技术、智能控制。暖通空调能耗模拟、能量分析;建筑自动化技术;暖通空调与智能建筑。 (11)施工安装和运行管理。施工安装技术;调试;运行节能;空调通风系统清洗、过滤、灭菌等。 (12)制冷技术。空调相关制冷技术研究应用进展;新型制冷型、天然制冷剂、含氯氟烃制冷剂替代物;新型制冷循环。 3.暖通空调节能技术的开发与应用 空调节能技术有两大原则,即舒适性与节能之间的矛盾统一的原则,能源利用与环境保护之间的矛盾统一的原则。绿色生态建筑评价将“环境”作为第一个指标项目,说明“绿色建筑”加大空

通风空调风道设计常见问题_百度文库.

通风空调风道设计常见问题 一、风道设计问题 现象:风管不能突然扩大、突然缩小。很多工程中由于建筑空间窄小,风管的变径或与设备的连接处,苦于地方不够或虽有足够的空间但对空间的尺寸未能详尽安排,施工者又未从气流合理着手考虑接法等问题,结果造成阻力增大,风量减少。达不到设计要求者屡见不鲜。现举一例如下: 某饭店一个送风系统安装尺寸见图 2.6.6-1(a。设计风量10000m3/h。而竣工后试车时实测风量只有6000m3/h左右。 原因:主要是管道安装不合理,突扩、突缩、直角弯头等,造成吸入段阻力过大,影响了风机效率。 对策:将风管拆掉,重新作安装。尽量按照合理的变径,拐弯等要求制作,如图 2.6.6-1(b)。改装后测得风量为10800m3/h。 注意:风管变径时,顺气流方向分为扩大与缩小两种情况。一般扩大斜度宜不大于1/7,即是≤150,而缩小不宜大于1/4,即≤300。

为了保持上述斜度,变径管的长度L可按下法求得: (1单边变径时,如图2.6.6-2(a。 当(W1-W2 ≥(h1-h2时L=(W1-W2×7 当(W1-W2≤(h1-h2时,L=(h1-h2 ×7 双边均变径时,如图2.6.6-2(b 当(W1-W2 ≥(h1-h2时,L=(W1-W2×3.5 当(W1-W2 ≤(h1-h2时,L=(h1-h2 ×3.5 现象:弯头不能随便弯。 1.弯头无导流叶片时,其弯曲半径R最小不得小于1/2W,(W–为风管的宽度。一般以1W为宜。

2.带导流叶片之弯头。由于受空间及障碍物的限制,弯头内侧的曲率半径小于1/2W时,气流所形成的涡流大,压力损失多,此时需加导流叶片。导流叶片之数量与间距见表2.6.6-1及图2.6.6-3(a、(b。 表2.6.6-1 N R/W X X1X2X3 (叶片数 0.35~0.7010.35W0.65W

暖通空调系统设计手册完整版

本文档如对你有帮助,请帮忙下载支持! 暖通空调系统设计手册 目录 第一章设计参考规范及标准.................................................. 错误!未定义书签。 一、通用设计规范:....................................................... 错误!未定义书签。 二、专用设计规范:....................................................... 错误!未定义书签。 三、专用设计标准图集:................................................... 错误!未定义书签。第二章设计参数............................................................ 错误!未定义书签。 一、商业和公共建筑物的空调设计参数ASHRAE ................................ 错误!未定义书签。 二、舒适空调之室内设计参数日本.......................................... 错误!未定义书签。 三、新风量............................................................... 错误!未定义书签。 1、每人的新风标准ASHRAE ............................................... 错误!未定义书签。 2、最小新风量和推荐新风量UK ........................................... 错误!未定义书签。 3、各类建筑物的换气次数UK .......................................... 错误!未定义书签。 4、各场所每小时换气次数................................................ 错误!未定义书签。 5、每人的新风标准UK ................................................... 错误!未定义书签。 6、考虑节能的基本新风量(1/s人)(日本) ................................ 错误!未定义书签。 7、办公室环境卫生标准日本............................................ 错误!未定义书签。 8、民用建筑最小新风量.................................................. 错误!未定义书签。第三章空调负荷计算........................................................ 错误!未定义书签。 一、不同窗面积下,冷负荷之分布% .......................................... 错误!未定义书签。 二、负荷指标(估算)(仅供参考).......................................... 错误!未定义书签。 三、空调冷负荷法估算冷指标。空调冷负荷法估算冷指标(W/M2空调面积)见下表 . 错误!未定义书签。 四、按建筑面积冷指标进行估算建筑面积冷指标......................... 错误!未定义书签。 五、建筑物冷负荷概算指标香港............................................. 错误!未定义书签。 六、各类建筑物锅炉负荷估算W/M3℃......................................... 错误!未定义书签。 七、热损失概算W/M3℃..................................................... 错误!未定义书签。 八、冷库冷负荷概算指标................................................... 错误!未定义书签。第四章风管系统设计........................................................ 错误!未定义书签。 一、通风管道流量阻力表................................................... 错误!未定义书签。 1、缩伸软管摩擦阻力表.................................................. 错误!未定义书签。 2、镀锌板风管摩擦阻力表................................................ 错误!未定义书签。 二、室内送回风口尺寸表................................................... 错误!未定义书签。 1、风口风量冷量对应表.................................................. 错误!未定义书签。 2、不同送风方式的风量指标和室内平均流速ASHRAE ......................... 错误!未定义书签。 三、室内风管风速选择表................................................... 错误!未定义书签。 1、低速风管系统的推荐和最大流速m/s .................................... 错误!未定义书签。 2、低速风管系统的最大允许速m/s ........................................ 错误!未定义书签。 3、通风系统之流速m/s .................................................. 错误!未定义书签。 四、室内风口风速选择表................................................... 错误!未定义书签。 1、送风口风速.......................................................... 错误!未定义书签。 2、以噪音标准控制的允许送风流速m/s .................................... 错误!未定义书签。 3、推荐的送风口流速m/s ................................................ 错误!未定义书签。 4、送风口之最大允许流速m/s ............................................ 错误!未定义书签。

空调系统风道系统设计【共23页】

空调系统风道系统设计 ----------专业最好文档,专业为你服务,急你所急,供你所需------------- 文档下载最佳的地方 第六章空调系统的风道设计通风管道是空调系统的重要组成部分,风道的设计质量直接影响着空调系统的使用效果和技术经济性能。风道设计计算的目的,是在保证要求的风量分配前提下,合理确定风管布置和尺寸,使系统的初投资和运行费用综合最优。 § 6、1 风道设计的基本知识一、风道的布置原则风道布置直接关系到空调系统的总体布置,它与工艺、土建、电气、给排水等专业关系密切,应相互配合、协调一致。 1、空调系统的风道在布置时应考虑使用的灵活性。当系统服务于多个房间时,可根据房间的用途分组,设置各个支风道,以便与调节。 2、风道的布置应根据工艺和气流组织的要求,可以采用架空明敷设,也可以暗敷设于地板下、内墙或顶棚中。 3、风道的布置应力求顺直,避免复杂的局部管件。弯头、三通等管件应安排得当,管件与风管的连接、支管与干管的连接要合理,以减少阻力和噪声。

4、风管上应设置必要的调节和测量装置(如阀门、压力表、温度计、风量测定孔、采样孔等)或预留安装测量装置的接口。调节和测量装置应设在便于操作和观察的地方。 5、风道布置应最大限度地满足工艺需要,并且不妨碍生产操作。 6、风道布置应在满足气流组织要求的基础上,达到美观、实用的原则。 二、风管材料的选择用作风管的材料有薄钢板、硬聚氯乙烯塑料板、玻璃钢板、胶合板、铝板、砖及混凝土等。需要经常移动的风管,则大多采用柔性材料制成各种软管,如塑料软管、金属软管、橡胶软管等。 薄钢板有普通薄钢板和镀锌薄钢板两种。镀锌薄钢板是空调系统最常用的材料,其优点是易于工业化加工制作、安装方便、能承受较高温度,且具有一定的防腐性能,很适用于空调系统以及有净化要求的空调系统。其钢板厚度,一般采用0、5~ 1、5mm左右。 对于有防腐要求的空调工程,可采用硬聚氯乙烯塑料板或玻璃钢板制作的风管。硬聚氯乙烯塑料板表面光滑,制作方便,但不耐高温,也不耐寒,在热辐射作用下容易脆裂。所以,仅限于室内应用,且流体温度不可超过-10~+60℃。 以砖、混凝土等材料制作风管,主要用于与建筑、结构相配合的场合。它节省钢材,结合装饰,经久耐用,但阻力较大。在

空调系统、通风系统及防排烟系统设计与施工说明

设计与施工说明(一) 一.工程概况: 1、本项目位于三亚海棠湾B位10号地,建筑面积108279.15平方米。主要分为主体酒店、酒店别墅区及可售别墅区。 2、本设计内容包括空调系统、通风系统及防排烟系统。本次设计范围为酒店地下室后勤区及主楼部分后勤区。 二、主要设计依据: 1、《高层民用建筑设计防火规范》(GB50045-95,2005)。 2、《民用建筑供暖通风与空气调节设计规范》<> 3、《公共建筑节能设计标准》(GB50189-2005)。 4、《海南省公共建筑节能设计标准》(DBJ03-2006)。 5、建筑条件图 6,甲方对设计提出的有关文件。 三、室外空调设计参数: 1、夏季空调计算干球温度:35.1°C,湿球温度:28.1°C。 2、夏季风速为.2.6m/s。 3、夏季大气压力:100.34KPa。 4、冬季不采暖。 四、室内通风空调设计参数: 1、室内空调系统设计参数见附表一。 2、通风换气次数 3、冷源系统: a) 空调冷冻水供回水温度:7~12℃。注:(改为6~12℃。) b) 空调冷却水供回水温度:32~37℃。 4.排烟量:房间和走道机械排烟量按每小时每平方米面积不小于60立方米计算。 五、空调冷源设计: 1.本项目空调计算总冷负荷为6988KW后 2.冷冻站设在后勤区负二层,选用3台600RT的水冷式离心机组及1台200RT螺杆式冷水机组。提供7~12管冷冻水。机组采用环保型冷媒,如R134a。冷水机组采用定频式,冷冻水泵及冷却水泵采用变频式。 3.冷却塔放置在室外地坪上。提供32~37°C冷却水。 4.酒店别墅区及可售别墅区采用一拖多联式小型中央空调空调机组。室外机放置于室外地坪上。详见别墅部分设计图纸。 六、空调水管系统设计: 1.本工程采用一次泵变频供水系统;整个项目供水分为二个回路:主楼回路及后勤区回路; 每个区集水器回路供水干管上安装热量表,计量各回路的冷量消耗。每个回路的管道敷设形式和管径大小详见对应的平面图和系统图。 2.本工程的水系统采用膨胀罐定压补水 3,冷冻水系统采用两管制。采用同程式布置。局部为异程式。 七,空调、通风系统设计: (一)空调系统 1,风机盘管系统: 客房、办公类等较小房间采用风机盘管系统提供空调。送风方式根据室内装修情况具体确定。2,全空气单风道空调系统∶

浅谈实验室通风空调系统设计

浅谈实验室通风空调系统设计 摘要:通风系统引起的空调补风能耗在实验室空调能耗中占较大比例,是实验室最具节能潜力的部分。按照我国现实国情,从各地项目的经济条件出发,选用合理的实验室空调通风设计标准,采取灵活适用的空调冷热源方案,研究实验室变风量通风系统的设计方案,是较大幅度地减少实验室新风能耗的一些方法,目的是从总体上降低实验室空调能耗。同时,排风柜自循环过滤系统的应用,相比传统的排风柜形式,其在新风能耗方面的节能潜力优势明显,值得进一步研究及推广。 关键词:实验室;通风空调;系统设计 有资料表明,一个完全满足实验室规范及人员舒适性要求的实验室,其单位面积的空调负荷明显大于一般的办公室需求,有些实验室的空调负荷(制冷)实际需求甚至超过300w/m2,远大于甲级办公楼的负荷值。因此,如何在工程设计上有效降低实验室空调能耗,为用户带来客观的运行费用节省,有其探讨价值。 一、实验室通风空调设计 1实验室概况及环境要求 本建筑内质量实验室、车间实验室、化学室位于2层,

环保实验室、样品室位于3层,室内布置有台式通风柜、万象抽气罩、安全柜及烤箱架等需要通风的实验设施;根据业主方的要求,实验室及样品室的湿度均要求在50%,质量实验室、车间实验室及环保实验室有恒温要求。实验室及样品室均要求为室内负压,负压数值无需准确控制。 2实验室通风设计 2.1实验室通风系统设计原则 实验室的通风设计应满足实验室的安全性、经济性、技术先进性与安装使用维护的便利。实验室通风必须保证工作人员的安全和健康,即需保证排风柜入口合适的面风速,送排风阀的快速启动及风机风量的匹配,实验室内相对于建筑其他区域一定为负压,回风不可利用,全新风,并保证室内最小的换气次数。据以上原则,本项目实验楼根据楼层布局采用独立的空调新风送风系统和独立的排风系统。实验室每个排风柜为变风量排风,保持其入口平均面风速随着柜门开度的变化快速反应。在安全柜等排风设备为定风量排风。根据实验室的具体情况,可能配置变风量或定风量室内辅助排风阀从吊顶上排风。通过这些排风控制阀,既保证了通风设备的正常工作,又能满足室内换气次数的要求。 考虑实验室的实际需要和使用情况,配置有变风量阀的通风柜的实验室设置2个开关:紧急排风工况开关和夜间工况开关。在紧急排风工况时,排风柜的排风量始终保持最

空调及通风系统设计方案

11 洁净空调与通风 本工程为赣州章源钨业高性能、高精度涂层刀片一期年产1000万片技术改造项目,本次设计为全厂各生产厂房及主楼暖通、空调设计。 11.1 专业设计依据 采暖通风与空气调节设计规范(GB50019-2003) 洁净厂房设计规范(GB 50073-2001) 工业企业设计卫生标准(GBZ1-2010) 大气污染物综合排放标准(GB16297-1996) 建筑设计防火规范(GB 50016-2006) 有色金属工业环境保护设计技术规范(YS5017-2004) 11.2 工程概况 (1)本次技术改造项目全厂各生产厂房空调面积:14528m2,其中混合料车间:1682.1m2、压制车间:1243.5m2、烧结车间:1729.4m2、研磨珩磨车间:1873.5m2、CVD化学涂层车间:1063.5m2、PVD物理涂层车间:1063.5m2、模具切削实验中心:1710m2、主办公楼:5747m2。考虑到年产400吨棒材项目棒材车间(计算空调面积:1293.3m2)空调冷(热)源由本次技术改造项目统一输送,则全厂各生产厂房空调面积增为17514m2。 空调夏季总冷负荷约为:7029.1kW,空调冬季总热负荷约为:4912.7kW。 按工艺对冷冻循环水温度要求,设置中温工艺冷冻循环水制冷站一座,低温工艺冷冻循环水制冷站-1一座,低温工艺冷冻循环水制冷站-2一座。工艺冷冻循环水制冷站亦同时考虑年产400吨棒材项目棒材车间工艺冷冻循环水制冷容量。 (2)设计范围: 本工程暖通专业设计范围:全厂供暖、通风、空调及暖通管网设计: a.对工艺有要求的场所设置通风、事故排风装置、微正压温湿度控制空调系统及洁净空调系统设计。 b.按空调冬、夏季负荷要求设置空调冷(热)媒循环水主机站房,利用生产

暖通空调复习题#精选.

第二章 1夏季空调室外计算干球温度、湿球温度如何确定? 夏季空调室外计算干球取夏季室外空气历年平均不保证50h 的干球温度;湿球温度也同样。历年平均:指近三十年平均。用途:用于计算夏季新风冷负荷 2冬季空调室外计算温度与采暖室外计算温度是否相同,为什么? 不相同。温度值确定不同:规定冬季历年平均不保证1天的日平均温度作为冬季空调室外空气计算温度。采暖室外计算温度是 规定取冬季历年平均不保证5天的日平均温度。 用途不同:前者在冬季利用空调供暖时,计算围护结构的热负荷和新风负荷均用此温度。后者是用于消除余热余湿的通风及自然通风中的计算,进风需冷却时的进风冷负荷也采用。 3外墙和屋面的逐时冷负荷计算温度如何计算?与外玻璃窗的冷负荷计算温度有何不同? 4什么是得热量?什么是冷负荷?两者有何区别? 得热量:单位时间内房间从外界获得的热量 冷负荷:为补偿房间得热,保持一定热湿环境,在单位时间内所需向房间供应的冷量。 差别所在:瞬时得热量中,以对流方式传递的显热、潜热直接放热给空气,构成瞬时冷负荷。辐射方式传热量,为围护结构和物体吸收并贮存,然后放出,称为滞后冷负荷。 瞬时得热量≠瞬时冷负荷;只有当得热量中不存在辐射热或结构和物体无蓄热能力时才相等 5室内冷负荷包括哪些内容?空调制冷系统冷负荷包括哪些内容? 室内冷负荷包括: ①由于室内外温差和太阳辐射,通过围护结构进入室内的热量形成的冷负荷。②人体散热,散温形成的冷负荷。③灯光照明散热形成的冷负荷。④其它设备散热形成的冷负荷 空调制冷系统冷负荷:①室内冷负荷;②新风冷负荷(以上两项是主要部分); ③制冷量输送过程传热;(冷损失)④输送设备(风机、泵)的机械能转变的得热量;⑤某些空调系统采用冷、热抵消的调节手段(如再加热);⑥其它进入空调系统的热量(顶棚回风,灯光热量带入回风系统。) 6湿负荷包括哪些内容,如何计算? 7夏季通风室外计算温度和相对湿度是如何确定的?冬季通风室外计算温度是如何确定的? 夏季 ①通风室外计算温度的确定:《规范》规定取历年最热月14时的月平均温度的平均值。 ②通风室外计算相对湿度的确定:取历年最热月14时的月平均相对湿度的平均值。 冬季 按历年最冷月 时平均温度确定的平均值。 第三章 1何为全水系统,全水系统由哪几部分组成? 全水系统:全部用水作为介质传递室内热负荷,冷负荷的系统。 组成:热源(冷源)、管道系统、末端设备(供热或供冷)。 2风机盘管按结构形式分有哪几类?安装方式有哪几类? 按结构型式分类: 1)立式,2)卧式,3)壁挂式,4)卡式(吸顶式) 安装方式: 1)明装、2)暗装、3)半明装 3如选择风机盘?风机盘管供冷量如何确定? 风机盘管选择方法:应按夏季冷负荷选择,冬季热负荷校核即可。 )()()(.R c c t t AK Q -=ττ

汽车空调出风口及风道设计的要求规范

汽车空调出风口及风道设计 作者:胡成台 单位:一汽轿车股份有限公司

目录 第1章风道及出风口介绍......................................................... 错误!未指定书签。 1.1风道介绍................................................................................................. 错误!未指定书签。 1.2出风口介绍............................................................................................. 错误!未指定书签。 1.3相关法规/标准要求................................................................................ 错误!未指定书签。 1.3.1国家/政府/行业法规要求................................................................ 错误!未指定书签。 1.3.2FCC相关标准要求.......................................................................... 错误!未指定书签。 第2章风道及出风口设计规范 ............................................ 错误!未指定书签。 2.1风道及出风口结构................................................................................. 错误!未指定书签。 2.1.1风道结构.......................................................................................... 错误!未指定书签。 2.1.2出风口结构...................................................................................... 错误!未指定书签。 2.1.3出风口及风道实例.......................................................................... 错误!未指定书签。 2.1.4材料.................................................................................................. 错误!未指定书签。 2.2风道及出风口整车布置......................................................................... 错误!未指定书签。 2.2.1风道整车布置.................................................................................. 错误!未指定书签。 2.2.2出风口整车布置.............................................................................. 错误!未指定书签。 2.3通风性能................................................................................................. 错误!未指定书签。 2.3.1风道中的压力损失.......................................................................... 错误!未指定书签。 2.3.2出风量.............................................................................................. 错误!未指定书签。 2.3.3通风有效面积.................................................................................. 错误!未指定书签。 2.4出风口水平叶片布置方式..................................................................... 错误!未指定书签。 2.4.1叶片数量.......................................................................................... 错误!未指定书签。 2.4.2叶片尺寸要求.................................................................................. 错误!未指定书签。 2.5.3叶片间距.......................................................................................... 错误!未指定书签。 2.5出风口垂直叶片布置方式..................................................................... 错误!未指定书签。 2.5.1叶片数量.......................................................................................... 错误!未指定书签。 2.5.2叶片尺寸要求.................................................................................. 错误!未指定书签。 2.5.3叶片间距.......................................................................................... 错误!未指定书签。 2.6气流性能................................................................................................. 错误!未指定书签。 2.6.1气流方向性...................................................................................... 错误!未指定书签。 2.6.2泄漏量.............................................................................................. 错误!未指定书签。 2.7出风口手感............................................................................................. 错误!未指定书签。 2.7.1拨钮操作力...................................................................................... 错误!未指定书签。 2.7.2拨轮操作力...................................................................................... 错误!未指定书签。 第3章试验验证与评估 ........................................................ 错误!未指定书签。 3.1设计验证流程......................................................................................... 错误!未指定书签。 3.2设计验证的内容与方法......................................................................... 错误!未指定书签。 第4章附录 ............................................................................ 错误!未指定书签。 4.1术语和缩写............................................................................................. 错误!未指定书签。 4.2设计工具................................................................................................. 错误!未指定书签。

相关文档
最新文档