微专题-圆锥曲线中的最值问题(解析版)解答

微专题-圆锥曲线中的最值问题(解析版)解答
微专题-圆锥曲线中的最值问题(解析版)解答

专题30 圆锥曲线中的最值问题

【考情分析】

与圆锥曲线有关的最值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。

江苏高考试题结构平稳,题量均匀.每份试卷解析几何基本上是1道小题和1道大题,平均分值19分,实际情况与理论权重基本吻合;涉及知识点广.虽然解析几何的题量不多,分值仅占总分的13%,但涉及到的知识点分布较广,覆盖面较大;注重与其他内容的交汇。圆锥曲线中的最值问题,范围问题都是考查学生综合能力的载体.俗话说:他山之石可以攻玉.在研究这几年外省新课程卷解析几何试题时,就很有启发性.比如2010年安徽卷理科19题,该题入题口宽,既可用传统的联立直线与曲线,从方程的角度解决,也可利用点在曲线上的本质,用整体运算、对称运算的方法求解.再比如2011年上海卷理科23题,主要涉及到中学最常见的几个轨迹,通过定义点到线段的距离这一新概念设置了三个问题,特别是第三问,呈现给学生三个选择,学生可根据自已的实际情况选择答题,当然不同层次的问题,评分也不一样,体现让不同的学生在数学上得到不同的发展

【备考策略】

与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系;

(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;

(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。

(4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;【激活思维】

1.已知双曲线122

22=-b

y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲

线的右支有且只有一个交点,则此双曲线离心率的取值范围是[2,)+∞

2. P 是双曲线

22

1916

x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为7

3.抛物线y=-x 2

上的点到直线4x +3y -8=0距离的最小值是

43

4.已知抛物线y 2

=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12

+y 2

2

的最小值是 32 .

5.已知点M (-2,0),N (2,0),动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,

所求方程为:22

x y 122

-= (x >0)

(Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0,

此时A (x 0,20x 2-),B (x 0,-2

0x 2-),O

AO B ?=2

当直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,

代入双曲线方程22x y 122

-=中,得:(1-k 2)x 2-2kbx -b 2

-2=0

依题意可知方程1?有两个不相等的正数根,设A (x 1,y 1),B (x 2,y 2),则

2222122

2122

44(1)(2)02012

01k b k b kb x x k b x x k ?

??=--?--≥?

?

+=>?-?

?+=>?-?

解得|k |>1, 又OA OB ?=x 1x 2+y 1y 2=x 1x 2+(kx 1+b )(kx 2+b )

=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2

=22

22k 242k 1k 1

+=+-->2 综上可知OA OB ?的最小值为2

【典型示例】

求抛物线2

y x =-上的点到直线4380x y +-=距离的最小值? 分析一:设抛物线上任一点坐标为P(0x ,-x

20

),

由点到直线的距离公式得P 到直线的距离d(0x )=5

|

834|2

00--x x =5320)32(320+-x 34≥,

当0x =32时,d(0x )取得最大值3

4,

分析二:设抛物线上点P(0x ,-

x 2

)到直线4x+3y-8=0距离最小,

则过P 且与抛物线相切的直线与4x+3y-8=0平行,

故y '

( 0x )=-2 0x =-34,∴0x =32,∴P(32,-9

4

), 此时d=5

|

8943324|--?+?)(=34,. 分析三:设直线方程为4x+3y+C=0

则当l 与抛物线相切时l 与4x+3y-8=0间的距离为所求最小,

由?????=++-=0

342

C y x y x 得4x-3x 2+C=0,∴△=16+12C=0, ∴c=-34,此时

d=

3

45|

34

8|=---)( 【分类解析】

例1:已知椭圆22

1259

x y +=,A (4,0),B (2,2)是椭圆内的两点,P 是椭圆上任一点,求:(1)求

5

||||4

PA PB +的最小值;

(2)求||||PA PB +的最小值和最大值 分析:(1)A 为椭圆的右焦点。作PQ ⊥右准线于点Q , 则由椭圆的第二定义

||4

||5

PA e PQ ==, ∴

5

||||||||4

PA PB PQ PB +=+, 显然点P 应是过B 向右准线作垂线与椭圆的交点,最小

值为

174

。 (2)由椭圆的第一定义,设C 为椭圆的左焦点,

则||2||PA a PC =-∴||||||2||10(||||)PA PB PA a PC PB PC +==-=+-,

根据三角形中两边之差小于第三边,当P 运动到与B 、C 成一条直线时,便可取得最大和最小值。 当P 到P"位置时,||||||PB PC BC -=,||||PA PB +有最大值,最大值为10||10210BC +=+;当P 到'

P 位置时,|||||P B P C B C -

=-,||||PA PB +有最小值,最小值为

10||10210BC -=-.

(数形结合思想、椭圆定义、最值问题的结合)

变式: 点A (3,2)为定点,点F 是抛物线y 2

=4x 的焦点,点P 在抛物线y 2=4x 上移动,若|PA|+|PF| 取得最小值,求点P 的坐标。 解:抛物线y 2

=4x 的准线方程为x=-1,

设P 到准线的距离为d ,则|PA|+|PF|=|PA |+d 。 要使|PA|+|PF|取得最小值,由图3可知过A 点

的直线与准线垂直时,|PA|+|PF|取得最小值,把y=2

代入y 2

=4x ,得P (1,2)。

例2: 已知椭圆的中心在O,右焦点为F ,右准线为L ,若在L 上存在点M ,使线段OM 的垂直平分线经过点F ,求椭圆的离心率e 的取值范围?

解:如果注意到形助数的特点,借助平面几何知识的最值构建使问题简单化,由于线段OM 的垂直平分线经过点F ,则,c OF MF ==利用平面几何折线段大于或等于直线段(中心到准线之间的距

离),则有 2c ≥c

a 2

e ∴≥22,

A

P F O d X=1

x y

∴椭圆的离心率e 的取值范围椭圆的离心率e 的取值范围为???

????1,22 变式1: 已知双曲线22

221,(0,0)x y a b a b

-=>>的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,

且|PF 1|=4|PF 2|,求此双曲线的离心率e 的最大值? 解:双曲线的离心率e 的最大值为

5

3

变式2: 已知椭圆方程为 122

22=+b

y a x ,(b a <<0)的左、右焦点分别为F 1、F 2,点P 在为椭圆

上的任意一点,且|PF 1|=4|PF 2|,求此椭圆的离心率e 的最小值? 解:椭圆的离心率e 的最小值为

5

3

例3: 已知P 点在圆x 2

+(y -2)2

=1上移动,Q 点在椭圆2

219

x y +=上移动,试求|PQ|的最大值。 解:故先让Q 点在椭圆上固定,显然当PQ 通过圆心O 1时|PQ|最大,因此要求|PQ |的最大值,

只要求|O 1Q |的最大值.设Q (x ,y ),则|O 1Q |2= x 2+(y -4)2

因Q 在椭圆上,则x 2=9(1-y 2

) ②

将②代入①得|O 1Q |2= 9(1-y 2)+(y -4)2

2

18272y ??=-++ ???

因为Q 在椭圆上移动,所以-1≤y ≤1,故当1

2

y =时,1max

33OQ = 此时max 331PQ =+

【点晴】1.与圆有关的最值问题往往与圆心有关;

2.函数法是我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,值得注意的是函数自变量取值范围的考察不能被忽视.......................

。 变式1: 设P 是椭圆2

2x a

+2y = 1 ( a > 1 ) 短轴的一个端点, Q 为椭圆上的一个动点,

求| PQ | 的最大值.

解法1: 依题意可设 P (0, 1 ), Q (x , y ), 则| PQ | = 22(1)x y +-. 又因为Q 在椭圆上, 所以 2x = 2a (12y -) .

2||PQ = 2a (12y -) + 2y -2y + 1

= (12a -)2y -2y + 1 + 2a

= (12a -) 221()1y a -

-2

11a -

- + 1 + 2

a . 因为 | y | ≤ 1, a > 1,

若a ≥2, 则211a -≤1, 当y = 2

1

1a -时, | PQ | 取最大值22211a a a --;

若1< a <2, 则当y = -1时, | PQ | 取最大值2 . 解法2:

设P (0, 1 ), Q (cos a θ, sin θ), 则 2||PQ = 2a 2cos θ + 2(sin 1)θ- = (12a -)2sin θ-2sin θ+2a + 1 = (12a -)22

1(sin )1a θ-

--2

11a -+2

a + 1. 注意到 |sin θ| ≤ 1, a > 1. 以下的讨论与解法1相同.

变式2:已知△OFQ 的面积为26,OF FQ m ?= (1)设646m ≤≤,求∠OFQ 正切值的取值范围;

(2)设以O 为中心,F 为焦点的双曲线经过点Q (如图),26

||,(1)4

OF c m c ==- 当 ||OQ 取得最小值时,求此双曲线的方程。

解析:(1)设∠OFQ =θ

||||cos()1

||||sin 26

2

OF FQ m

OF FQ πθθ??-=?

???=??46tan m θ?=- 646m ≤≤ 4tan 1θ-≤≤-

(2)设所求的双曲线方程为

22

111122

1(0,0),(,),(,)x y a b Q x y FQ x c y a b -= >> =-则 ∴11

||||262

OFQ S OF y ?=?=,∴146y c =±

又∵OF FQ m ?=,∴21116

(,0)(,)()(

14

OF FQ c x c y x c c c ?=?-=-?=- ) 222

11126963,||12.48

c x c OQ x y c ∴= ∴=+=+≥

当且仅当c=4时,||OQ 最小,此时Q 的坐标是(6,6)或(6,6)-

2

222

226614

1216

a a

b b a b ??-==??∴ ???=???+=?

,所求方程为22 1.412x y -= 【精要归纳】

圆锥曲线的最值问题,常用以下方法解决:

(1)当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解;

(2)范围实质为一个不等式关系,如何构建这种不等关系?例2中可以利用方程和垂直平分线性质构建。利用题设和平面几何知识的最值构建不等式往往使问题简单化,回味本题的探究过程,认识解析几何中“形助数”简化运算的途径。

(3).函数法是我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,值得注意的是函数自变量取值范围的考察不能被忽视.......................。 (4)利用代数基本不等式,结合参数方程,利用三角函数的有界性。 【课后训练】

1.已知P 是椭圆2

214

x y +=在第一象限内的点,A (2,0),B (0,1),O 为原点,求四边形OAPB 的面积的最大值

2

2.给定点A (-2,2),已知B 是椭圆

2212516x y +=上的动点,F 是右焦点,当53AB BF +取得最小值时,则B 点的坐标为 。53

(,2)2

- 3.抛物线y 2

=2x 上到直线x-y +3=0距离最短的点的坐标为__________2

1(,1)

4.如图,已知A 、B 是椭圆

22

1169

x y +=的两个顶点, C 、D 是椭圆上两点,且分别在AB 两侧,则四边形ABCD

面积的最大值是_______122

5.如图所示,设点1F ,2F 是22

132

x y +=的两个焦点,过2F 的直线与椭圆相交于A 、B 两点,求△1F AB 的面积的最大值,并求出此时直线的方程。 解

12112F F B

F AB

F F A

S

S

S

=+,设

11(,)

A x y ,

22(,)

B x y ,则

1

1212121

||||||(1)

2

F A B F F y y y y c S

=?-

=

-

=

线

AB 的

1x k y =

+代

22(23)440k y ky ++-=1212

2244,2323

k y y y y k k --?+=

=++

即2122

2243(1)43||123

211

k y y k k k +- =

=

+++

+

令211t k =+≥,∴1

4312F AB

t t

S +=

,1

2t t +(1t ≥)利用均值不等式不能区取“=” ∴利用1()2f t t t

=+(1t ≥)的单调性易得在1t =时取最小值

1

F AB S

在1t =即0k =时取最大值为

43

3

,此时直线AB 的方程为1x = 6. P 、Q 、M 、N 四点都在椭圆x y 2

2

2

1+=上,F 为椭圆在y 轴正半轴上的焦点。已知PF →与FQ →共线,MF →与FN →

共线,且PF MF →→=·0。求四边形PMQN 的面积的最小值和最大值。

分析:显然,我们只要把面积表示为一个变量的函数,然后求函数的最值即可。

解:如图,由条件知MN 和PQ 是椭圆的两条弦,相交于焦点F (0,1),且PQ ⊥MN ,直线PQ 、

MN 中至少有一条存在斜率,不妨设PQ 的斜率为k ,又PQ 过点F (0,1),故PQ 方程为y kx =+1。代入椭圆方程得(

)22102

2

++-=k

x

kx

设P 、Q 两点的坐标分别为()()

x y x y 1122,,,,则:

x k k k x k k k 1222

2

2

22222

2=--++=-+++,

从而()()()

()

(

)PQ

x x y y k

k PQ k k 2

122

122

22

22

2

2

8122212=-+-=

++=

++,

①当k ≠0时,MN 的斜率为-

1

k

,同上可推得

MN k k =+-?? ??????????

?+-?? ??

?22112122

故四边形面积()

()

S PQ MN k k k k k k k k

==++?? ??

?++?? ??

?=

++

?

? ?

?

?++12411122142152222222222·

令u k k

=+

2

2

1,得()S u u u =++=-+?? ???425221152

因为u k k

=+

≥2

2

12,此时k u S =±==1216

9,,,且S 是以u 为自变量的增函数,所以16

9

2≤

222,

S PQ MN =

=1

2

2· 综合①②知,四边形PMQN 面积的最大值为2,最小值为

169

高考圆锥曲线中的最值和范围问题的专题

高考专题圆锥曲线中的最值和范围问题 ★★★高考要考什么 1 圆锥曲线的最值与范围问题 (1)圆锥曲线上本身存在的最值问题: ①椭圆上两点间最大距离为2a (长轴长). ②双曲线上不同支的两点间最小距离为2a (实轴长). ③椭圆焦半径的取值范围为[a -c ,a +c ],a -c 与a +c 分别表示椭圆焦点到椭圆上的点的最小距离与最大距离. ④抛物线上的点中顶点与抛物线的准线距离最近. (2)圆锥曲线上的点到定点的距离的最值问题,常用两点间的距离公式转化为区间上的二次函数的最值问题解决,有时也用圆锥曲线的参数方程,化为三角函数的最值问题或用三角形的两边之和(或差)与第三边的不等关系求解. (3)圆锥曲线上的点到定直线的距离的最值问题解法同上或用平行切线法. (4)点在圆锥曲线上(非线性约束条件)的条件下,求相关式子(目标函数)的取值范围问题,常用参数方程代入转化为三角函数的最值问题,或根据平面几何知识或引入一个参数(有几何意义)化为函数进行处理. (5)由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数,另一个元作为自变量求解. 与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围; (3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数, 通过讨论函数的值域来求参数的变化范围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是 均含有三角式。因此,它们的应用价值在于: ①通过参数θ简明地表示曲线上点的坐标; ②利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题; (6)构造一个二次方程,利用判别式?≥0。 ★★★突破重难点 【练习】1、点A (3,2)为定点,点F 是抛物线y 2=4x 的焦点,点P 在抛物线y 2=4x 上移动,若|P A|+|PF| 取得最小值,求点P 的坐标。若A (1,3)为定点,点F 是抛物线y 2=4x 的焦点,点P 在抛物线y 2=4x 上移动,若|P A|+d|取得最小值,其中d 是点P 到准线的距离,求点P 的坐标 2.已知A (3,2)、B (-4,0),P 是椭圆x y 22 259 1+=上一点,则|P A |+|PB|的最大值为() A .10 B .105- C .105+D .1025+ 3.已知双曲线22 1169 x y -=,过其右焦点F 的直线l 交双曲线于AB ,若|AB |=5,则直线l 有() A .1条 B .2条 C .3条 D .4条 4.已知点P 是抛物线y 2=4x 上一点,设P 到此抛物线的准线的距离为d 1,到直线x +2y+10=0的距离为d 2,则d 1+d 2的最小值为()

圆锥曲线最值问题及练习

圆锥曲线最值问题及练习 中学数学最值问题遍及代数、三角,立体几何及解析几何各科之中,且与生产实际联系密切,最值 问题有两个特点:①覆盖多个知识点(如二次曲线标准方程,各元素间关系,对称性,四边形面积,解二元二次方程组,基本不等式等)②求解过程牵涉到的数学思想方法也相当多(诸如配方法,判别式法,参数法,不等式,函数的性质等)计算量大,能力要求高。 1、回到定义 例1、已知椭圆 22 1259 x y +=,A (4,0),B (2,2)是椭圆内的两点,P 是椭圆上任一点,求:(1)求5||||4 PA PB +的最小值; (2)求|PA|+|PB|的最小值和最大值。 略解:(1)A 为椭圆的右焦点。作PQ ⊥右准线于点Q,则由椭圆的第二定义 ||4 ||5 PA e PQ ==, ∴ 5 ||||||||4 PA PB PQ PB +=+.问题转化为在椭圆上找一点P ,使其到点B 和右准线的距离之和最小,很明显,点P 应是过B 向右准线作垂线与椭圆的交点,最小值为174 。 (2)由椭圆的第一定义,设C 为椭圆的左焦点,则|PA|=2a-|P C| ∴|P A|+|PB|=2a-|PC|+|PB|=10+(|PB | -|PC|) 根据三角形中,两边之差小于第三边,当P 运动到与B 、C 成一条直线时,便可取得最大和最小值。即-|BC|≤|PB| -|PC|≤|BC|.当P 到P"位置时,|PB| -|PC|=|BC|,|P A|+|PB|有最大值,最大值为10+|BC| = 10+当P 到P"位置时,|PB| -|PC|=-|B C|,|P A|+|PB |有最小值,最小值为10-|BC| =10- 回到定义的最值解法同样在双曲线、抛物线中有类似应用。(2)中的最小值还可以利用椭圆的光学性质来解释:从一个焦点发出的光线经过椭圆面反射后经过另一焦点,而光线所经过的路程总是最短的。 2、利用闭区间上二次函数最值的求法 例2、在抛物线2 4x y =上求一点,使它到直线y=4x -5的距离最短。 解:设抛物线上的点)4,(2 t t P ,点P 到直线4x-y -5=0的距离17 4)21(4175442 2 +-=+-=t t t d

高中数学:圆锥曲线中的最值问题

高中数学:圆锥曲线中的最值问题 在圆锥曲线中常遇到面积最大最小问题,距离的最长最短问题,不定量的最大最小问题等等,应从函数、方程、三角、几何、导数等多个角度思考问题。下面举例说明。 一、利用圆锥曲线的对称性求最值 例1. 设AB是过椭圆中心的弦,椭圆的左焦点为,则△F1AB的面积最大为() A. B. C. D. 解析:抓住△F1AB中为定值,以及椭圆是中心对称图形。如图1,由椭圆对称性知道O为AB的中点,则△F1OB的面积为△F1AB面积的一半。又,△F1OB边OF1上的高为,而的最大值是b,所以△F1OB的面积最大值为。所以△F1AB的面积最大值为cb。

图1 二、利用圆锥曲线的参数方程求最值 例2. 已知点P是椭圆上到直线的距离最小的点,则点P的坐标是() A. B. C. D. 解析:化椭圆,利用三角函数的方法将最值转化为角变量来确定。将化成参数方程,设,则 , 其中,

当时,。 此时可以取得,从而可得到。故选A。 三、利用重要不等式求最值 例3. 已知圆C过坐标原点,则圆 心C到直线l:距离的最小值等于() A. B. 2 C. D. 解析:抓住定值,利用重要不等式求最值,但是不要忽视等号成立的条件。圆C过原点,则。圆心C(a,b)到直线l:的距离 所以圆心到直线l距离的最小值为。 四、利用圆锥曲线的定义求最值

例4. 已知双曲线的左右焦点分别为F 1,F2,点P在双曲线的右支上,且,则此双曲线的离心率的最大值是() A. B. C. 2 D. 解析:“点P在双曲线的右支上”是衔接两个定义的关键,也是不等关系成立的条件。利用这个结论得出关于a、c的不等式,从而得出e的取值范围。由双曲线的第一定义,得 又, 所以, 从而 由双曲线的第二定义可得, 所以。又, 从而。故选B。

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

圆锥曲线练习题(附答案)

) 圆锥曲线 一、填空题 1、对于曲线C ∶1 42 2-+-k y k x =1,给出下面四个命题: ①由线C 不可能表示椭圆; ②当1<k <4时,曲线C 表示椭圆; ③若曲线C 表示双曲线,则k <1或k >4; ④若曲线C 表示焦点在x 轴上的椭圆,则1<k <2 5 其中所有正确命题的序号为_____________. ? 2、已知椭圆)0(122 22>>=+b a b y a x 的两个焦点分别为21,F F ,点P 在椭圆上,且满 足021=?PF PF ,2tan 21=∠F PF ,则该椭圆的离心率为 3.若0>m ,点?? ? ??25,m P 在双曲线15422=-y x 上,则点P 到该双曲线左焦点的距离为 . 4、已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 5、已知点P 是抛物线24y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标是 (4,a ),则当||a >4时,||||PA PM +的最小值是 . 6. 在ABC 中,7 ,cos 18 AB BC B ==- .若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e = . 7.已知ABC ?的顶点B ()-3,0、C ()3,0,E 、F 分别为AB 、AC 的中点,AB 和AC 边上的中线交于G ,且5|GF |+|GE |=,则点G 的轨迹方程为 8.离心率3 5 = e ,一条准线为x =3的椭圆的标准方程是 .

9.抛物线)0(42<=a ax y 的焦点坐标是_____________; 10将抛物线)0()3(42≠-=+a y a x 按向量v =(4,-3)平移后所得抛物线的焦点坐标为 . ^ 11、抛物线)0(12 <=m x m y 的焦点坐标是 . 12.已知F 1、F 2是椭圆2 2 22)10(a y a x -+=1(5<a <10=的两个焦点,B 是短轴的一个端 点,则△F 1BF 2的面积的最大值是 13.设O 是坐标原点,F 是抛物线)0(22>=p px y 的焦点,A 是抛物线上的一点, 与x 轴正向的夹角为60°,则||为 . 14.在ABC △中,AB BC =,7 cos 18 B =-.若以A B ,为焦点的椭圆经过点 C ,则该椭圆的离心率e = . 二.解答题 15、已知动点P 与平面上两定点(A B 连线的斜率的积为定值1 2 -. . (Ⅰ)试求动点P 的轨迹方程C. (Ⅱ)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |=3 2 4时,求直线l 的方程.

圆锥曲线的定点、定值和最值问题

圆锥曲线的定点、定值、范围和最值问题 会处理动曲线(含直线)过定点的问题;会证明与曲线上动点有关的定值问题;会按条件建 . 一、主要知识及主要方法: 1. 形式出现,特殊方法往往比较奏效。 2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决。 3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值. 二、精选例题分析 【举例1】 (05广东改编)在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O 的两不同 动点A 、B 满足AO BO ⊥. (Ⅰ)求AOB △得重心G 的轨迹方程; (Ⅱ)AOB △的面积是否存在最小值?若存在,请求出最小值; 若不存在,请说明理由. 【举例2】已知椭圆2 2142x y +=上的两个动点,P Q 及定点1,2M ? ?? ,F 为椭圆的左焦点,且PF ,MF ,QF 成等差数列.()1求证:线段PQ 的垂直平分线经过一个定点A ; ()2设点A 关于原点O 的对称点是B ,求PB 的最小值及相应的P 点坐标. 【举例3】(06全国Ⅱ改编)已知抛物线2 4x y =的焦点为F ,A 、B 是抛物线上的两动点,且 AF FB λ=u u u r u u u r (0λ>).过A 、B 两点分别作抛物线的切线(切线斜率分别为0.5x A ,0.5x B ),设其交点为 M 。 (Ⅰ)证明FM AB ?u u u u r u u u r 为定值;

圆锥曲线综合练习试题(有答案)

圆锥曲线综合练习 一、 选择题: 1.已知椭圆221102 x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( ) A .4 B .5 C .7 D .8 2.直线220x y -+=经过椭圆22 221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为( ) A B .12 C .2 3 3.设双曲线22 219 x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( ) A .4 B .3 C .2 D .1 4.若m 是2和8的等比中项,则圆锥曲线2 2 1y x m +=的离心率是( ) A B C D 5.已知双曲线22 221(00)x y a b a b -=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N , 两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( ) A B 6.已知点12F F ,是椭圆2 2 22x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +u u u r u u u u r 的最小值是( ) A .0 B .1 C .2 D .7.双曲线221259 x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( ) A .22或2 B .7 C .22 D .2 8.P 为双曲线22 1916 x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点, 则||||PM PN -的最大值为( ) A .6 B .7 C .8 D .9 9.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( ) A .2 B .4 C .8 D .16 10.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =u u u r u u u r ,则以B C ,为焦点,且过D E ,的双曲线离心率为( ) A B 1 C 1 D 1 11.两个正数a b ,的等差中项是92,一个等比中项是a b >,则抛物线2b y x a =-的焦点坐标是( ) A .5(0)16- , B .2(0)5-, C .1(0)5-, D .1 (0)5 , 12.已知12A A ,分别为椭圆22 22:1(0)x y C a b a b +=>>的左右顶点,椭圆C 上异于12A A ,的点P

与圆锥曲线有关取值范围与最值问题

与圆锥曲线有关取值围与最值问题 一、利用圆锥曲线定义求最值 . )1,3(,14 5,.122 221的最小值求在双曲线上,为双曲线内一点,点右焦点,的左是双曲线已知AF AP A P y x F F +=- . 19 25)2,2(),0,4(.22 2的最大值和最小值求是椭圆上的动点,内的两个点,是椭圆已知MB MA M y x B A +=+ . )2,3()2(.)2,0()1(. 2.32的最小值,求点和的最小值到抛物线准线的距离之的距离与到点求点为焦点上的一个动点,是抛物线已知PF PA A P P F x y P += .5 3)2,9(1169.42 2值的值最小,并求此最小使,点,在这个双曲线上求一,点的右焦点为已知双曲线MF MA M A F y x +=-

二、单变量最值问题——化为函数最值 .)2(;123),()1(.,,,123)07.(520 200021212 2的面积的最小值求四边形,证明 点的坐标为设,垂足为两点,且的直线交椭圆于过两点,的直线交椭圆于,过的左、右焦点分别为已知椭圆全国ABCD y x y x P P BD AC C A F D B F F F y x <+⊥=+ . 012,,,.62 2 值的面积的最小值与最大,求四边形共线,且与共线,与知轴正半轴上的焦点,已为椭圆在上,四点都在椭圆PMQN MF PF FN MF FQ PF y F y x N M Q P =?=+ .24 3,2tan 12 11. 1)0(1.722 22方程的最小值,并写出椭圆时,求,当)设(的取值范围;,求的夹角为与,向量)若(,且的面积为记△为椭圆上的点,的焦点,为椭圆如图,OQ c c S c OF FQ OF S FQ OF S OFQ Q b a b y a x F ≥==<<=?>>=+θθ

圆锥曲线中的最值、范围问题

圆锥曲线中的最值、范围问题 圆锥曲线中最值问题的两种类型和两种解法 (1)两种类型 ① 涉及距离、面积的最值以及与之相关的一些问题; ② 求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些 问题. (2)两种解法 ① 几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来 解决; ② 代数法,若题目的条件和结论能体现一种明确的函数关系, 则可先建立起目标函数, 再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解. [典例](2018武昌调研)已知椭圆的中心在坐标原点, A(2,0), B(0,1)是它的两个顶点, 直线y = kx(k>0)与直线AB 相交于点D ,与椭圆相交于 E , F 两点. (1) 若 ED — = 6I D F ,求 k 的值; (2) 求四边形AEBF 的面积的最大值. [思路演示] 2 解:(1)由题设条件可得,椭圆的方程为 X + y 2= 1,直线AB 的方程为x + 2y — 2= 0. 4 设 D(x o , kx o ), E(X 1, kx 1), F(X 2, kx ?),其中 X 1 由 ED — = 6DF ,得 x 0— x 1= 6(x 2— x 0), 解得k = 2或k = 3. 2 由点D 在直线AB 上,得X o + 2kx 0- 2 = x o =百. 2 1 + 2k 10 7 .1 + 4k 2' 化简,得 24k 2— 25k + 6= 0, y = kx , 由 V y 2= 1 得(1 + 4k 2)x 2= 4, X o = ^(6X 2+ X 1) = 5x 2 = _10_ 7 ;1 +

专题圆锥曲线中的最值与范围问题

高三数学专题复习 圆锥曲线中的最值问题和范围的求解策略 最值问题是圆锥曲线中的典型问题,它是教学的重点也是历年高考的热点。解决这类问题不仅要紧紧把握圆锥曲线的定义,而且要善于综合应用代数、平几、三角等相关知识。以下从五个方面予以阐述。 一.求距离的最值或范围: 例1.设AB 为抛物线y=x 2 的一条弦,若AB=4,则AB 的中点M 到直线y+1=0的最短距离为 , 解析:抛物线y=x 2 的焦点为F (0 , 41),准线为y=41-,过A 、B 、M 准线y=4 1-的垂线,垂足分别是A 1、B 1、M 1,则所求的距离d=MM 1+43=21(AA 1+BB 1) +43=21(AF+BF) +4 3 ≥ 21AB+43=21×4+43=411,当且仅当弦AB 过焦点F 时,d 取最小值4 11, 评注:灵活运用抛物线的定义和性质,结合平面几何的相关知识,使解题简洁明快,得心应手。 练习: 1、(2008海南、宁夏理)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之 和取得最小值时,点P 的坐标为( A )A. ( 4 1 ,-1) B. ( 4 1 ,1) C. (1,2) D. (1,-2) 2、(2008安徽文)设椭圆22 22:1(0)x y C a b a b +=>>其相应于焦点(2,0)F 的准线方程为4x =. (Ⅰ)求椭圆C 的方程; (Ⅱ)已知过点1(2,0)F -倾斜角为θ的直线交椭圆C 于,A B 两点,求证:242 2AB COS θ =-; (Ⅲ)过点1(2,0)F -作两条互相垂直的直线分别交椭圆C 于,A B 和,D E ,求AB DE + 的最小值 解 :(1)由题意得: 2 22 2222 8 44c a a c b a b c =???=??=??=????=+?∴ ∴椭圆C 的方程为22 184 x y += (2)方法一: 由(1)知1(2,0)F -是椭圆C 的左焦点,离心率2 2 e = 设l 为椭圆的左准线。则:4l x =- 作1111,AA l A BB l B ⊥⊥于于,l 与x 轴交于点H(如图) ∵点A 在椭圆上 112 2AF AA =∴ 112 (cos )2 FH AF θ=+ 12 2cos 2AF θ=+ 12cos AF θ =-∴ 同理 12cos BF θ =+

高中数学《圆锥曲线》解答题解法全归纳

高中数学圆锥曲线解答题解法 题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题 题型三:动弦过定点的问题 题型四:过已知曲线上定点的弦的问题 题型五:向量问题 题型六:面积问题 题型七:弦或弦长为定值、最值问题 问题八:直线问题 问题九:对称问题 问题十、存在性问题:(存在点,存在直线y=kx+m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆) 题型一:数形结合确定直线和圆锥曲线的位置关系(简单题型未总结) 题型二:弦的垂直平分线问题 例题1、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得 ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。 由2 (1)y k x y x =+?? =?消y 整理,得2222 (21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2 2 4 2 (21)4410k k k ?=--=-+> 即2 1 04 k << ② 由韦达定理,得:212221,k x x k -+=-121x x =。则线段AB 的中点为22 211 (,)22k k k --。 线段的垂直平分线方程为:

221112()22k y x k k k --=--令y=0,得021122x k =-,则2 11(,0)22 E k - ABE ?Q 为正三角形,∴2 11 ( ,0)22 E k -到直线AB 的距离d 为32AB 。 2 2 1212()()AB x x y y =-+-Q 22 2141k k k -= +g 212k d k += 222 314112k k k k -+∴+=g 解得3913k =±满足②式此时0 53 x =。 【涉及到弦的垂直平分线问题】 这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。 例题分析1:已知抛物线y=-x 2 +3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 解:设直线AB 的方程为y x b =+,由22123 301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点11(,)22M b -- +,又由11 (,)22 M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出2 21114(2)32AB =+-?-=. 题型三:动弦过定点的问题 例题2、已知椭圆C :22 221(0)x y a b a b +=>>的离心率为32, 且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。 (I )求椭圆的方程; (II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论 解:(I )由已知椭圆C 的离心率3c e a ==,2a =,则得3,1c b ==。从而椭圆的方程为 2 214 x y +=

圆锥曲线中的最值和范围问题方法

专题14 圆锥曲线中的最值和范围问题 ★★★高考在考什么 【考题回放】 1.已知双曲线122 22=-b y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直 线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(C ) A.( 1,2) B. (1,2) C.[2,)+∞ D.(2,+∞) 2. P 是双曲线 22 1916 x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为( B ) A. 6 B.7 C.8 D.9 3.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是( A ) A . 43 B .75 C .8 5 D .3 4.已知双曲线22 221,(0,0)x y a b a b -=>>的左、右焦点分别为F 1、F 2,点P 在双 曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为:(B ) (A) 4 3 (B) 5 3 (C)2 (D) 73 5.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 32 . 6.设椭圆方程为142 2 =+y x ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足OP uuu r (21=OA +u u u r )OB u u u r ,点N 的坐标为)21 ,21(,当l 绕点M 旋转时, 求(1)动点P 的轨迹方程;(2)||NP uuu r 的最小值与最大值. 【专家解答】(1)法1:直线l 过点M (0,1)设其斜率为k ,则l 的方程为y=kx+1. 记A (x 1,y 1),B (x 2,y 2),由题设可得点A 、B 的坐标 (x 1,y 1)、 (x 2,y 2)是方程组 ?? ? ??=++=141 2 2y x kx y 的解. 将①代入②并化简得(4+k 2)x 2+2kx -3=0, 所以??? ???? +=++-=+.48,42221221k y y k k x x 于是).44 ,4()2,2()(212 22121 k k k y y x x ++-=++=+= ① ②

圆锥曲线中的最值问题

圆锥曲线中的最值问题 主讲:秦岭老师 9816秦岭数学18届群:307181356 9816秦岭数学19届群:151219471 9816秦岭数学20届群:481591151 一、知识回顾 1.圆锥曲线的定义 (1)平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.即:|MF1|+|MF2|=2a>2c=|F1F2|; (2)平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.即:||MF1|-|MF2||=2a<2c=|F1F2|; (3)平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.即:|MF|=d . 2. 直线与圆锥曲线的位置关系 将直线与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0 (或ay2+by+c=0). (1)当a≠0,考虑一元二次方程的判别式Δ,有 ①Δ>0?直线与圆锥曲线相交; ②Δ=0?直线与圆锥曲线相切; ③Δ<0?直线与圆锥曲线相离. (2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点, ①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行; ②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合. 3.圆锥曲线的弦长 设斜率为k (k≠0)的直线l与圆锥曲线C相交于A、B两点,A(x1,y1),B(x2,y2),

圆锥曲线试题及答案

椭圆 一、选择题 1.(2012·高考大纲全国卷)椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( ) A. x 216+y 2 12 =1 B. x 2 12 +y 28 =1 C.x 28+y 24=1 D.x 2 12+y 2 4=1 解析:选C.由题意知椭圆的焦点在x 轴上, 故可设椭圆方程为x 2a 2+y 2 b 2=1(a >b >0). 由题意知????? 2c =4,a 2 c =4,∴? ???? c =2, a 2 =8, ∴b 2 =a 2 -c 2 =4,故所求椭圆方程为x 28+y 2 4 =1. 2.(2011·高考浙江卷)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2 -y 24 =1有公共 的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点,若C 1恰好将线段AB 三等分,则( ) A .a 2=132 B .a 2 =13 C .b 2=12 D .b 2 =2 解析:选C.由题意知,a 2=b 2+5,因此椭圆方程为(a 2-5)x 2+a 2y 2+5a 2-a 4 =0,双曲 线的一条渐近线方程为y =2x ,联立方程消去y ,得(5a 2-5)x 2+5a 2-a 4 =0, ∴直线截椭圆的弦长d =5×2a 4-5a 25a 2 -5=2 3 a , 解得a 2=112, b 2 =12 . 3.椭圆x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,其右准线与x 轴的交点为A ,在椭圆上存在点 P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( ) A .(0, 2 2 ] B .(0,1 2] C .[2-1,1) D .[1 2 ,1) 解析:选D.设P (x 0,y 0),则|PF |=a -ex 0.又点F 在AP 的垂直平分线上,∴a -ex 0= a 2 c -c ,因此x 0=a ac -a 2+c 2 c 2 . 又-a ≤x 0

圆锥曲线中最值问题

圆锥曲线中的最值问题 一、圆锥曲线定义、性质 1.(文)已知F 是椭圆 x225+y2 9 =1的一个焦点,AB 为过其中心的一条弦,则△ABF 的面积最大值为( ) A .6 B .15 C .20 D .12 [答案] D [解析] S =12|OF |·|y 1-y 2|≤1 2 |OF |·2b =12. 2、若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1,则椭圆长轴长的最小值为( ) A .1 B. 2 C .2 D .2 2 解析:设椭圆 x2a2+y2 b2 =1(a >b >0),则使三角形面积最大时,三角形在椭圆上的顶点为椭圆短轴端点,∴S =1 2×2c ×b =bc =1≤b2+c22=a22 .∴a 2≥2.∴a ≥ 2.∴长轴长2a ≥22,故选D. 3、(文)(2011·山东省临沂市质检)设P 是椭圆 x2 25 + y29 =1上一点,M 、N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( ) A .9,12 B .8,11 C .8,12 D .10,12 解析:由已知条件可知两圆的圆心恰是椭圆的左、右焦点,且|PF 1|+|PF 2|=10, ∴(|PM |+|PN |)min =10-2=8,(|PM |+|PN |)max =10+2=12,故选C. 点评:∵圆外一点P 到圆上所有点中距离的最大值为|PC |+r ,最小值为|PC |-r ,其中C 为圆心,r 为半径,故只要连接椭圆上的点P 与两圆心M 、N ,直线PM 、PN 与两圆各交于两点处取得最值,最大值为|PM |+|PN |+两圆半径和,最小值为|PM |+|PN |-两圆半径和. 4、(2010·福州市质检)已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是( ) A .5 B .8 C.17-1 D.5+2 [答案] C [解析] 抛物线y 2=4x 的焦点为F(1,0),圆x 2+(y -4)2=1的圆心为C(0,4),设点P 到抛物线的准线距离为d ,根据抛物线的定义有d =|PF|,∴|PQ|+d =|PQ|+|PF|≥(|PC|-1)+|PF|≥|CF|-1=17-1. 5 、 已知点F 是双曲线 x2 4 - y212 =1的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________. 解析 如图所示,根据双曲线定义|PF |-|PF ′|=4,即|PF |-4=|PF ′|.又|P A |+|PF ′|≥|AF ′|=5, 将|PF |-4=|PF ′|代入,得|P A |+|PF |-4≥5,即|P A |+|PF |≥9,等号当且仅当A ,P ,F ′三点共线, 即P 为图中的点P 0时成立,故|PF |+|P A |的最小值为9.故填9.答案 9 6、已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值 是( )

圆锥曲线历年高考题(整理)附答案

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2b 2 =1的一条渐近线方程为y =4 3x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 23+y 2 =1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点 在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2 y x =-上的点到直线4380x y +-=距离的最小值是( ) A . 43 B .75 C .8 5 D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006辽宁卷)曲线 221(6)106x y m m m +=<--与曲线22 1(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006安徽高考卷)若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006辽宁卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线2 2 1mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,设点11, 2A ?? ??? ,则求该椭圆的标准方程为 。 11. (2011年高考全国新课标卷理科14) 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 轴上,

高中数学干货资料-圆锥曲线中的最值和范围问题

圆锥曲线中的最值和范围问题 高考在考什么 【考题回放】 1.已知双曲线122 22=-b y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲 线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A.( 1,2) B. (1,2) C.[2,)+∞ D.(2,+∞) 2. P 是双曲线 22 1916 x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为( ) A. 6 B.7 C.8 D.9 3.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是( ) A . 43 B .75 C .8 5 D .3 4.已知双曲线22 221,(0,0)x y a b a b -=>>的左、右焦点分别为F 1、F 2,点P 在双曲线的右 支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为:( ) (A) 4 3 (B) 5 3 (C)2 (D) 73 5.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 . 6.设椭圆方程为14 2 2 =+y x ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足OP (21=OA +)OB ,点N 的坐标为)2 1 ,21(,当l 绕点M 旋转时,求(1)动点P 的 轨迹方程;(2)||NP 的最小值与最大值.

高考要考什么 【考点透视】 与圆锥曲线有关的最值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。 【热点透析】 与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围; (3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。因此,它们的应用价值在于: ① 通过参数θ简明地表示曲线上点的坐标; ② 利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题; (6)构造一个二次方程,利用判别式?≥0。 突破重难点 【范例1】已知动点P 与双曲线13 22 2=-y x 的两个焦点F 1、F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为9 1 -. (1)求动点P 的轨迹方程; (2)若已知D (0,3),M 、N 在动点P 的轨迹上且DN DM λ=,求实数λ的取值范围. 【范例2】给定点A (-2,2),已知B 是椭圆2212516x y +=上的动点,F 是右焦点,当53 AB BF +

圆锥曲线中的最值问题

圆锥曲线中的最值问题 一 重点:求圆锥曲线中的各种最值问题。 二 难点:题目中各种基本思想方法的灵活应用。 三 基本方法:本节所用到换元、数形结合、目标函数等数学思想和方法。 四 例题 1.几何法 (Ⅰ)有关点的最值问题 【练习1】椭圆22 221(0)x y a b a b +=>>上的点到原点距离的最大值是 ;最小值是 ;相应点的坐标是 . 【练习2】双曲线22 221x y a b -=上的点到原点距离的最小值是 ;相应点的坐标是 . 【练习3】椭圆22 221(0)x y a b a b +=>>上的点到焦点距离的最大值是 ;最小值是 ;相应点的坐标是 . 【练习4】双曲线22 221x y a b -=上的点到焦点距离的最小值是 ;相应点的坐标是 . 【练习5】抛物线22(0)y px p =>上的点到焦点距离的最小值是 ;相应点的坐标是 . 【例1】点P 为抛物线上24x y =上一动点,定点(8,7)A ,则点P 到x 轴与到A 点的距离之和的最小值为 ,并求此时点P 的坐标 。 【解析】1019PB PA PC BC PA PF PA BC FA BC +=-+=+-≥-=-=,当且仅 当点P 是抛物线与FA 的交点时,9PB PA +=最小。此时,由243440x y x y ?=?-+=?解得(4,4) P 或1 (1,)4 P -(舍去.但,是PF PA -的最大值点.P 在线段外,有向线段方向问题。 PF PA -的最小值点即线段AF 的垂直平分线与抛物线的交点)。 【评析】(1)如何判断点A 的位置。参照区域判断方法。 (2)折线和化为直线段。 (3)此题无最大值。 (4)若点A 在抛物线内部,如何?(过A 作x 轴的垂线,垂线段长即为所求,垂线与抛物线的交点即为P 点。此情况也无最大值。)PF PA -的最大、最小值点?

相关文档
最新文档