全国电子设计大赛一等奖论文三相逆变微电网并联

全国电子设计大赛一等奖论文三相逆变微电网并联
全国电子设计大赛一等奖论文三相逆变微电网并联

题目:微电网模拟系统

摘要

本文针对微电网模拟系统研究背景,设计了可编程逻辑器件FPGA为控制核心的两个三相逆变器系统。本系统的硬件主要由逆变主电路系统和FPGA控制电路系统构成,包括FPGA控制电路、CC2640的AD采样电路、三相逆变驱动电路、互感器电路、辅助电源电路、调压整流电路、滤波及缓冲电路等。由FPGA控制电路输出六路PWM信号(PWM1-PWM6)来控制逆变器的MOS管通断,通过电流电压互感器对输出进行反馈,再经A/D转换器进行采样,传给FPGA控制电路来调节输出,构成闭环控制系统。本系统软件设计是利用Verilog HDL的FPGA逻辑门、IP核、时钟(DMC)等资源生成SPWM模块、并行通信模块结合TI的CC260的A/D采集和显示模块。最后,将软硬件系统联合调试,经验证,软硬

件都达到预期目标,实际效果较好。

关键字:微电网模拟系统;FPGA可编程逻辑;三相逆变;SPWM模块

目录

方案论证

1.1主控单元的比较与选择

方案一:采用数字信号处理器DSP。传统基于DSP的逆变控制的设计虽然在计算的复杂度和软件的灵活性上有一定优势,但是程序为顺序运行从而导致逆变器控制算法在计算速度上受到很大的限制。

方案二:采用可编程逻辑器件FPGA。基于FPGA的逆变器的并行特点使其非常适合产生SPWM,从而在速度上占很大的优势,适合本题目要求。

综上所述,选择方案二。

1.2SPWM模块的比较与选择

方案一:采用比较器对正弦波和三角波进行比较得到PWM波,然后送入驱动电路放大再驱动MOSFET。但该方案受运放参数影响较大,调试困难。

方案二:运用可编程逻辑器件FPGA产生PWM通过正弦值查表法来产生SPWM。该方案实现简单,有较强的抗干扰能力。

综上所述,选择方案二。

1.3驱动模块的比较与选择

方案一:采用专用驱动芯片IRS2186搭建驱动电路。驱动芯片配合外围电路完成,该方法优点是系统的集成度高,有良好的过载和短路保护功能。。

方案二:采用分立元器件搭建驱动电路。电路中选用高速开关管8050和8550,其反应速度可以达到微秒级,可以避免信号在传输过程中的累加延迟,有利于减少输出波形的失真度。但电路较复杂化,需要额外搭建保护电路。

综上所述,选择方案一。

1.4 方案描述

本设计的整体方案主要有FPGA 控制模块,SPWM 模块,驱动模块,A/D 采样模块,OLED 显示模块和并行通信模块组成。

图1 总体系统方案框架图

理论分析与计算

2.1 逆变器提高效率的方法

逆变器效率提升技术主要集中在两个方面:结构和器件等硬件;控制及调制策略。

结构及器件上的改进,采用软开关技术通过谐振电路,实现功率器件在零电压状态下开通或者关断,从而有效减小换流时MOS 管的开关损耗,达到提升逆变器效率的目的。

控制策略的改进,采用电压空间矢量脉宽调制技术通过三相交流电压综合在一起,通过对称排列方式,可获得减小MOS 管开关次数的效果,从而能够进一FPGA 可编程逻辑主CC2640

低功耗MCU

并行通三相全MOS LC 滤波按键设置 显示模块

滤波电输

步减小逆变器功率器件的开关损耗。

2.2运行模式控制策略

本设计三相逆变器有单独工作模式和并联工作模式。通过分析逆变电源并联基础模型,采样一种基于FPGA的无互连线复合控制方案。

双闭环反馈控制中,设K K,K KK为电压环的比例系数和反馈系数,K K,K cf为电流调节器的比例系数和反馈系数,K KKK为参考的指令电压。忽略参数r的影响,经过环路分析,设K=K K K K K KKK,可推导出系统传递函数为:

P(s)=K K(K)

K KKK(K)=K

KK K2+K K K KK K KKK K K+KK KK+1

(公式1)

故空载时逆变系统的幅值静差:

1?|K K(K)

K KKK(K)|=1?

√(KK+1?KK2)2+(K K K K+KK+1)2

(公式2)

可见,系统的静差可随K K,K KK和K K,K KK的增大而不断减小。基于内模原理的重复控制技术,对于给定或具有重复性干扰的系统具有较好的控制效果,有效降低并联电流波形的THD。结合双闭环和重复控制的并联波形控制方法,解决并联逆变电源的功率分配问题,不用模式切换即可方便地并联使用。

电路与程序设计

3.1逆变器主电路与器件选择

本系统器件选择FPGA主控,LC滤波电路,全桥AOTF298L芯片,电压电流互感器,OLED显示屏,以及薄膜按键。

3.1.1总体系统电路

图2 总体系统电路图

3.1.2逆变电路

逆变电路的设计采用全控型MOSFET三相桥式逆变电路。由FPGA控制器产生SPWM到IRS2186芯片搭建的驱动电路,驱动电路控制MOSFET管的通断,逆变输出经过低通滤波器将SPWM波形变换成较稳定的正弦波电压。在此电路中存在布线电感,在开关器件关断的过程中容易出现过尖峰电压,严重时会损坏开关器件,因此需要设置保护电路来抑制尖峰电压,而且设置瞬态电压抑制器和快速二极管组成的钳位电路可将MOSFET关断过程产生的尖峰电压限制在安全范围内,同时可以减少开关损耗。逆变电路图如下:

FPGA三相IRS2186三相逆

图3 逆变电路图

3.1.3滤波电路

滤波电路的设计在逆变器的输出中含有逆变器开关频率和开关频率整数倍附近的谐波,如果不滤除这些高频谐波,将会给电路带来谐波污染。因此本设计选择LC滤波电路。逆变全桥输出的是200KHz的SPWM方波,基波为工频50Hz,还含有低次和高次谐波,其中幅值最大的是200KHz 的谐波。在实际应用中,忽

略电感对负载的分压作用及电容对负载的分流作用,并考虑变压器的电感,经计算及实验调整后,取L?=100u?H ,C=100V 。

3.2 控制电路与控制程序

本系统采用FPGA 和CC2640联合控制方案,能更好的实现均流和任意比例电流输出,达到较好并联的效果。(控制电路见附录)

3.2.1 控制程序

图 4 主程序程序流程图 开始

装载正弦值

按键?

SPWM 输出

结束

3.3测试方案与测试结果

第一步:将四通道示波器的三个探针接在单片机输出PWM的引脚;

第二步:记录输出三相波形数据;

第三步:改变单片机输出SPWM的频率,返回第一步操作,直到调出50HZ 的SPWM波测试完。

3.4测试结果

图5 三相输出波形图

3.5测试结果分析

结果分析由数据表明,三相逆变电源输出每路相位相差120度的频率可调的正弦波,电压有效值24V,电流最大输出3A。基本实现所有功能,满足题目要求。

总结

通过比赛,大大提高了我们的创新精神,动手能力,团队协作和竞争意识。充分发挥团队合作精神,工作进展很顺利。我们在比赛中做到精益求精,在完成基本功能之后,又向发挥部分进发,最后完成了所有的基本功能和发挥部分,较好的达到了题目要求的各项指标。

参考文献

[1] 邱关源.电路[M].北京:高等教育出版社,2003

[2] 华成英,童诗白.模拟电子技术基础[M].北京:高等教育出版社,2006?

[3] 李练兵,光伏发电并网逆变技术:化学工业出版社,2016

[4] 路秋生,中大功率开关变换器:机械工业出版社,2017附件

附1:元器件明细表

附2:仪器设备清单

附3:电路图图纸

附图1 过压保护电路图

附图2 主控制电路图附4:PCB图

附图3 主控板PCB正面图

附图4 主控板PCB背面图附6:程序清单

FPGA代码:

module sanxiangA

(clk,ah,al,bh,bl,ch,cl,hafeh,hafel,led,key_in,key_in1,key_out,data_in, control_jk,din,sclk,sync,enable,ldac,v_back,flag_out,flag_in);

input clk;lk(clk),.channel(channel),.data(data),.din(din),.sclk(sclk),.sync(sync), .enable(enable),.ldac(ldac));

endmodule

CC2640代码:

#include

#include

#include

#include ""

#include ""

#include ""

#include ""

/* Header files required to enable instruction fetch cache */

#include

#include

#ifndef USE_DEFAULT_USER_CFG

#include ""

for(counter = 0; counter < 15; ++counter) {

*vectorTable++ = *flashVectors++;

}

}

#endif //FEATURE_OAD

/* enable interrupts and start SYS/BIOS */ BIOS_start();

return 0;

}

基于Matlab的电力电子技术课程设计报告

《电力电子技术》 课程设计报告 题目:基于Matlab的电力电子技术 仿真分析 专业:电气工程及其自动化 班级:电气2班 学号:Z01114007 姓名:吴奇 指导教师:过希文 安徽大学电气工程与自动化学院 2015年 1 月7 日

中文题目 基于Matlab 的电力电子技术仿真分析 一、设计目的 (1)加深理解《电力电子技术》课程的基本理论; (2)掌握电力电子电路的一般设计方法,具备初步的独立设计能力; (3)学习Matlab 仿真软件及各模块参数的确定。 二、设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: (1)根据设计题目要求的指标,通过查阅有关资料分析其工作原理,设计电路原理图; (2)利用MATLAB 仿真软件绘制主电路结构模型图,设置相应的参数。 (3)用示波器模块观察和记录电源电压、控制信号、负载电压、电流的波形图。 三、设计内容 (1)设计一个降压变换器(Buck Chopper ),其输入电压为200V ,负载为阻感性带反电动势负载,电阻为2欧,电感为5mH ,反电动势为80V 。开关管采用IGBT ,驱动信号频率为1000Hz ,仿真时间设置为0.02s ,观察不同占空比下(25%、50%、75%)的驱动信号、负载电流、负载电压波形,并计算相应的电压、电流平均值。 然后,将负载反电动势改变为160V ,观察电流断续时的工作波形。(最大步长为5e-6,相对容忍率为1e-3,仿真解法器采用ode23tb ) (2)设计一个采用双极性调制的三相桥式逆变电路,主电路直流电源200V ,经由6只MOSFET 组成的桥式逆变电路与三相阻感性负载相连接,负载电阻为1欧,电感为5mH ,三角波频率为1000Hz ,调制度为0.7,试观察输入信号(载波、调制波)、与直流侧假想中点N ‘的三相电压Uun ’、Uvn ’、Uwn ’,输出线电压UV 以及负载侧相电压Uun 的波形。 四、设计方案 实验1:降压变换器 dc-dc 变流电路可以将直流电变成另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。其中,直接直流变流电路又称为斩波电路,功能是将直流电变为另一直流电。本次实验主要是在Matlab 中设计一个降压斩波电路并仿真在所给条件下的波形和数值与理论计算相对比。降压斩波电路原理图如下所示,该电路使用一个全控型器件V ,这里用IGBT ,也可采用其他器件,例如晶闸管,若采用晶闸管,还需设置使晶闸管关断的辅助电路。为在V 关断时给负载中电感电流提供通道,设置了续流二极管VD 。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等,后两种情况下负载中均会出现反电动势,图中用m E 表示。若无反电动势,只需令0m E ,以下的分析和表达式中均适用。

电力科技论文电力电子技术论文

电力科技论文电力电子技术论文 DSP控制的正弦波逆变电源 摘要:文章介绍了一种采用DSP来实现SPWM数字化控制的逆变电源设计方案,描述了该逆变电源的硬件工作原理,SPWM波形的产生原理和系统控制算法,通过逆变电源的制作证明其可行性,是一种实用的控制方案。 关键词:逆变电源;DSP;SPWM;PID控制;保护电路 随着新能源产业的发展,对逆变电源输出特性和稳定性的要求也越来越高。而目前的逆变电源的控制趋势是往数字化发展,数字化可以实现电路的简化,输出特性和效率的提高。本文设计并研制了1kw 样机,实验结果表明在减少谐波和提高响应速度方面具有优越性。 一、逆变器原理和结构 逆变系统电能变换主要由二部分组成:前级的DC-DC变换器以及后级的DC-AC变换器。前级需要将地输入的直流电压升压直420V 以上,通过直流母线的连接,再利用DC-AC变换器将直流输入转变成220V AC的交流输出。DC-DC升压部分选择推挽结构,DC-AC逆变部分采用全桥逆变结构。 核心控制电路使用TMS320F28023,输出SPWM控制信号,控制后级驱动芯片。 图1为逆变电源主体结构图:

DC-DC升压部分采用推挽结构,通过输出互补两路的PWM信号控制开关管,通过高频变压器进行升压到420V。图2为推挽升压示意图: 逆变部分采用全桥结构,同样利用DSP输出PWMgg号,驱动后级驱动芯片,实现对开关管的控制,通过输出的滤波整形,达到正弦波输出。该电路主体结构如图3所示。 二、SPWM的实现方法 在采样控制理论中有一个重要结论:冲量相等而形状不同的脉冲,加在具有惯性环节上,其效果基本相同。基于这个理论,将一组幅度相等,宽度不等的脉冲,使脉冲的中点和相对的正弦等分的中点重合,且使脉冲面积和相应的正弦部分冲量相等,就可以得到一组SPWM波形。如果把期望的目标波形作为调制信号,把受调制信号作为载波,通过对载波的调制可以得到期望的SPWM波。 (一)SPWM调制模式下ZVS的实现 由于开关频率的提高,传统硬开关模式存在以下一些主要问题:开关损耗问题,容性开通问题和感性关断问题,二极管反向恢复问题,引起整体电路EMI问题。而软开关ZVS技术在这个方面能够有效的防止或者减少以上问题的产生。理想状态下ZVS开通过程是:电压下降到零后,电流再缓慢上升到通态值,开通损耗近似为零。因功率

2007全国电子设计大赛E题获奖论文报告

题目:开关稳压电源(E题) 摘要 本设计综合考虑题目基本部分和发挥部分的指标要求,系统采用简单的boost 升压电路作为DC-DC变换器主电路;PWM控制器采用低压型专用集成芯片UC3843; 主开关管采用IRF540;由内置12位A/D、D/A的高性能、低功耗单片机C8051F021组成系统测控与显示单元,采用液晶显示器作为系统的状态和运行数据显示屏。通过实际测试,作品的性能指标中,输出纹波完全达到了要求;电压调整率,整体效率,负载过流故障排除后自恢复功能,输出电压键控1V步进,电流、电压实时测量及数显功能等几项指标达均到了发挥部分要求;负载调整率也接近发挥部分指标要求。另外,系统还增加了实时输出功率数据显示和负载过流状态下的声、光报警等实用功能。

一、引言 为了满足题目发挥部分规定的电压调整率、负载调整率以及效率等几项指标要求,我们在设计中主要是尽量减少辅助控制电路的损耗。通过单片机和脉宽调制电路来稳定输出电压,并通过单片机的控制实现对整个电路的过流保护功能,排除过流故障后,电源能自动恢复为正常工作状态。同时,当输出电压与设定电压误差较大时,单片机能对输出电压进行一定调节,以提高负载调整率;通过单片机实现了输出电压的键盘设定和步进调整(步进为1V)。系统具有测量和数字显示输出电压、电流的功能。此外,还增加了实时输出功率测量与显示、在输出过流的时候系统发出声、光报警信号等功能。 二、方案论证与比较 1.DC-DC主回路拓扑方案论证 方案一:采用变压器升压的隔离型PWM直流-直流变换器电路,此电路效率较低,开关辐射/纹波较大,电路较复杂。 方案二:采用非隔离型BOOST升压电路,控制电路用专用集成芯片UC3843A,这种电路使用的外部原件最少、调试容易、成本低、效率高。因此,采用此种方案。 2. 控制方法及实现方案 方案一:采用电压型脉宽调制技术,产生频率固定,脉冲宽度可调整的方波脉冲,采用电压反馈环控制系统,它的反馈信息取自输出电压,用反馈电压调整控制器的输出脉冲宽度,改变脉冲占空比,实现开关电源的稳定。 方案二:采用电流型脉宽调制芯片,此技术与传统的仅有输出电压反馈的PWM系统相比增加了一个电感电流反馈。此反馈就做为PWM的斜坡函数,就不再需要锯齿波发生器,更重要的是使用电感电流反馈使系统的可靠性有了明显的改善,经比较具有如下优点: 1)使系统具有快速的瞬态响应及高速的稳定性。 2)输出电压精度很高。 3)具有内在的对功率开关管电流的控制及限流能力。 4)具有良好的并联运行能力。 可以看出方案二的控制性能明显优于方案一,所以采用方案二。 3. 提高效率的方法及实现方案 单片机系统及其它辅助电路的功耗对电源的整体效率有很大的影响。所以选用一款功耗低的单片机作为控制与显示单元电路。采用效率高、开关速度快、损耗小的MOS场效应管作为主开关管。选用快速、低损耗的肖特基二极管作为输出

全国大学生电子设计竞赛文档模板

题目 摘要:……(左顶格小四宋体)摘要是概括地总结论文的内容。一般写摘要应考虑必须自成系统,并尽量提供更多的信息。摘要应包括下列内容: A.简明扼要地说明课题研究的主要意义和目的; B.作者做了哪些工作; C.如何做的(采用的方案); D.主要结果和结果的意义。 摘要应避免写成正文小标题的罗列,应具有独立性和自含性,并采用第三人称表述,一般以300字内为宜。 关键词:…;…;…(3~5个) 关键词是反映文章主题内容的名词和术语,应尽量从汉语主题词表中选取,第一关键词应能体现出文章的学科分类 TOPIC Abstract: Keywords:…;…;… 设计报告的密封方法:按页码顺序整理好并装订,第一页为设计题目、400字以内的中文设计摘要及对应的英文摘要,并将“设计报告封纸”在距设计报告上端约2厘米处装订,然后将参赛队的代码(代码由赛区组委会统一编制,在发放题目时通知各参赛队)写在设计报告密封纸的最上方。设计报告装订好后将密封纸掀起并折向报告背后,最后用胶水在后面粘牢。 竞赛组委会设计报告格式要求:设计报告每页上方必须留出3厘米以上空白,空白内不得书写任何内容,每页下端注明页码,如需绘图,应尽量绘制在报告纸上;如采用别的方式绘制,则应将图纸剪下,粘贴在报告纸的相应位置上;如有计算机打印的程序,也要粘贴在报告纸的相应位置上。 报告正文前需附一篇400字以内的中文摘要及对应英文摘要。

一、XXXX方案设计与论证 (考虑过的各方案框图、简要原理和优缺点以及所选方案之理由等)。 文内标题力求简短、明确,各层标题均单独占行书写,一级标题:三号黑体,居中;二级标题:小三幼园,空两格书写序数,空一格书写标题;第三级标题:四号宋体,空两格书写序数,空一格书写标题;四级标题:四号华文新魏,空两格书写序数,空一格书写标题。五级建议采用:小四宋体,(1),(2);、六级建议采用:小四宋体,①、②、③。 汉字“一、二、三、……”作为序号时,其后应用顿号,即“一、” 正文:小四号宋体;均缩进2个字符(全角)。 行间距采用1.25倍行距,段前0.5行、段后0.0行。 页码在页面下方,居中。 纸型:A4 页边距:上:3cm ,下:2.54cm,左:3.17cm,右3.17cm 1 XXX方案 1.1 XXXXXX 1.1.1 XXXXXX 图号、图名,五号加粗宋体,图号图名间空1个字符,段前2磅、段后8磅,图下居中。图居中,图中文字:5号宋体,段前0行、段后0行,单倍行距。图序以阿拉伯数字连续编号,仅有1图者于图题处标明“图1”;图需卧排时,应顶左底右。 图5.7.2 PCA定时/计数器和比较/捕获单元 表格应尽可能采用三线表。表格应有表序和表题。序号和表题居中排于表格上方,两者之间空1字。表序以阿拉伯数字连续编号,仅有1表者,于表题处标

电力电子技术课程设计报告

课程设计说明书 设计题目:单相交流调压技术 专业班级: 2009级电气工程及其自动化 姓名:王昊 学号: 0915140068 指导教师:褚晓锐 2011年12月23日 (提交报告时间)

一.课程设计题目:单项交流调压技术的工程应用 二.课程设计日期: 2011年12月19日 三.课程设计目的: “电力电子技术”课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。因此,要求学生能综合应用所学知识,设计出具有电压可调功能的直流电源系统,能够较全面地巩固和应用本课程中所学的基本理论和基本方法,并初步掌整流电路设计的基本方法。培养学生独立思考、独立收集资料、独立设计的能力;培养分析、总结及撰写技术报告的能力。 四.课程设计要求: :按课程设计指导书提供的课题,根据第下表给出的基本要求及参数独立完成设计,课程设计说明书应包括以下内容: 1、方案的经济技术论证。 2、主电路设计。 3、通过计算选择整流器件的具体型号。 4、确定变压器变比及容量。 5、确定平波电抗器。 7、触发电路设计或选择。 8、课程设计总结。 9、完成4000字左右说明书,有系统电气原理图,内容完整、字迹工整、图表整齐规范、数据详实。 设计技术参数工作量工作计划 1、单相交流220V电源。 2、交流输出电压U d 在0~220V连续可调。 3、交输出电2000W。1、方案的经济技术论证。 2、主电路设计。 3、通过计算选择整流器件的 具体型号。 第一周: 周一:收集资料。 周二~三:方案论证。 周四:主电路设计。

4、触发电路设计。 5、绘制主电路图。 周五:理论计算。 第二周: 周一:选择器件的具体型号 周二~三:触发电路设计。。 周四~五:总结并撰写说明书。 五.课程设计内容: 设计方案图及论证 将一种交流电能转换为另一种交流电能的过程称为交流-交流变换过程,凡能实现这种变换的电路为交流变换电路。对单相交流电的电压进行调节的电路。用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。结构原理简单。该方案是由变压器、触发电路、整流器、以及一些电路构成的,为一台电阻炉提供电源。输入的电压为单相交流220V ,经电路变换后,为连续可调的交流电。 各部分电路作用 220V 交流输入部分作用:为电路提供电源,主要是市电输入。 调压环节的作用:将交流220V 电源经过变压器、整流器等电路转换为连续可调的交 220V 交流输入 调压环节 输出连续可调的交流电 触发电路

电力电子毕业设计

中原工学院 本科毕业设计(论文)开题报告题目:单相交流电源的设计 教学单位:电子信息学院 专业:自动化 学号:200800494125 姓名:李杨 指导教师:巫付专 2012年2月

一、题目背景、研究意义及国内外相关研究情况。 (1)题目背景 现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具体应用。当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具体应用。 开关电源稳压:利用现代电力电子技术,控制开关管开通和关断的时间比率, 维持稳定输出电压的一种电源。开关稳压电源(以下简称开关电源)问世后,在很 多领域逐步取代了线性稳压电源和晶闸管相控电源。早期出现的是串联型开关电 源,其主电路拓扑与线性电源相仿,但功率晶体管工作于开关状态。随着脉宽调 制(PWM)技术的发展,PWM开关电源问世,它的特点是用20kHz的载波进行脉 冲宽度调制,电源的效率可达65%~70%,而线性电源的效率只有30%~40%。 因此,用工作频率为20 kHz的PWM开关电源替代线性电源,可大幅度节约能 源,从而引起了人们的广泛关注,在电源技术发展史上被誉为20kHz革命。随 着超大规模集成(ultra-large-scale-integrated-ULSI)芯片尺寸的不断减小,电源的尺 寸与微处理器相比要大得多;而航天、潜艇、军用开关电源以及用电池的便携式 电子设备(如手提计算机、移动电话等)更需要小型化、轻量化的电源。因此,对开关电源提出了小型轻量要求,包括磁性元件和电容的体积重量也要小。(2)发展阶段 开关稳压电源发展阶段主要分为以下三个阶段: 第一个阶段是功率半导体器件从双极型器件(BPT、SCR、GT0)发展为MOS型 器件(功率MOS-FET、IGBT、IGCT等),使电力电子系统有可能实现高频化,并大 幅度降低导通损耗,电路也更为简单。 第二个阶段自20世纪80年代开始,高频化和软开关技术的研究开发,使功 率变换器性能更好、重量更轻、尺寸更小。高频化和软开关技术是过去20年国 际电力电子界研究的热点之一。

电力电子技术课程设计范例

电力电子技术课程设计 题目:直流降压斩波电路的设计 专业:电气自动化 班级:14电气 姓名:周方舟 学号: 指导教师:喻丽丽

目录 一设计要求与方案 (4) 二设计原理分析 (4) 2.1总体结构分分析 (4) 2.2直流电源设计 (5) 2.3主电路工作原理 (6) 2.4触发电路设计 (10) 2.5过压过流保护原理与设计 (15) 三仿真分析与调试 (17) 3.1 Matlab仿真图 (17) 3.2仿真结果 (18) 3.3 仿真实验结论 (24) 元器件列表 (24) 设计心得 (25) 参考文献 (25) 致谢 (26) 一.设计要求与方案 供电方案有两种选择。一,线性直流电源。线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电源进行稳压。线性电源体积重量大,很难实现小型化、损耗大、效率低、输出与输入之间有公共端,不易实现隔离,只能降压,不能升压。二,升压斩波电路。由脉宽调制芯片TL494为控制器构成BOOST原理的,实现升压型DC-DC变换器,输出电压的可调整与稳压控制的开关源是借助晶体管的开/关实现的。因此选择方案二。 设计要求:设计要求是输出电压Uo=220V可调的DC/DC变换器,这里为升压斩波电路。由于这些电路中都需要直流电源,所以这部分由以前所学模拟电路知识可以由整流器解决。MOSFET的通断用PWM控制,用PWM方式来控制MOSFET的通断需要使用脉宽调制器TL494来产

生PWM控制信号。 设计方案: 1、电源电路 电源电路采用电容滤波的二极管不控整流电路,220V单相交流电经220V/24V变压器,降为24V交流电,再经二极管不控整流电路及滤波电容滤波后,变为平直的直流电,其幅值在22V~36V之间。 2、主电路 2.1主电路选用升压斩波电路,开关管选用电力MOSFET。 2.2Boost电路的负载为110V、25W白炽灯, 2.3boost电路中,占空比不要超过65%,否则电压大于100V。 3、控制电路的选择与确定 3.1 脉冲发生器TL494 3.2 驱动电路IR2110 二.设计原理分析 2.1总体结构分析 电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断。来完成整个系统的功能。因此,一个完整的降压斩波电路也应包括主电路,控制电路,驱动电路和保护电路这些环节。 直流斩波电路由电源、变压器、整流电路、滤波电路、主电路、控制和驱动电路及保护电路组成。如图2—1所示:

电力电子课设报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:电力电子技术 设计题目:可逆直流PWM驱动电源的设计 院系:电气工程系 班级:0706111 设计者:王勃 学号:1070610602 指导教师:李久胜 设计时间:2010年11月 哈尔滨工业大学教务处

哈尔滨工业大学课程设计任务书

H型单极性同频可逆直流PWM驱动电源的设计 技术指标:被控直流永磁电动机参数:额定电压20V,额定电流1A,额定转 速2000rpm。驱动系统的调速范围:大于1:100。驱动系统应具有软启动功能,软启动时间约为2s。详细设计要求见附录2. 1.整体方案设计 本文设计的H型单极性同频可逆直流PWM驱动电源由四部分组成:主电路,H 型单极模式同频可逆PWM控制电路,IPM接口电路及稳压电源。同时具有软启动功能,软启动时间为2s左右。控制原理如图1所示: 功率转换电路 图1 直流PWM驱动电源的控制原理框图 脉宽调制电路以SG3525为核心,产生频率为5KHz的方波控制信号,占空比可调。经用门电路实现的脉冲分配电路,转换成两列对称互补的驱动信号,同时具有5us的死区时间,该信号驱动H型功率转换电路中的开关器件,控制直流永磁电动机。稳压电源采用LM2575-ADJ系列开关稳压集成电路,通过调整电位器,使其稳定输出15V直流电源。 2.主电路设计 2.1主电路设计要求 直流PWM驱动电源的主电路图如图2所示。此部分电路的设计包括整流电路和H桥可逆斩波电路。二极管整流桥把输入的交流电变为直流电。四只功率器件构成H 桥,根据脉冲占空比的不同,在直流电机上可得到不同的直流电压。 主电路部分的设计要求如下: 1)整流部分采用4 个二极管集成在一起的整流桥模块。 2)斩波部分H 桥不采用分立元件,而是选用IPM(智能功率模块)PS21564来实现。该模块的主电路为三相逆变桥,在本设计中只采用其中U、V 两相即可。

电力科技论文电力电子技术论文:现代电力电子技术应用的探讨

电力科技论文电力电子技术论文: 现代电力电子技术应用的探讨 摘要:随着电力电子、计算机技术的迅速发展,交流调速取代直流调速已成为发展趋势。变频调速以其优异的调速和启、制动性能被国内外公认为是最有发展前途的调速方式。变频技术是交流调速的核心技术,电力电子和计算机技术又是变频技术的核心,而电力电子器件是电力电子技术的基础。电力电子技术是近几年迅速发展的一种高新技术,广泛应用于机电一体化、电机传动、航空航天等领域,现已成为各国竞相发展的一种高新技术。 关键词:电力电子;技术;发展;应用 1电力电子技术的发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 2现代电力电子的应用领域 2.1计算机高效率绿色电源 高速发展的计算机技术带领人类进入了信息社会,同时也促进了

电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进入了电子、电器设备领域。 2.2通信用高频开关电源 通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V 的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。 因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。 2.3直流-直流(DC/DC)变换器

电子设计竞赛论文要点

程控增益放大器(B题) 程控增益放大器 摘要:本设计采用带通滤波器来选择输入信号带宽滤除杂质。以工作稳定、性能指标较高的STC89C52RC单片机作为微控制器核心来控制选择DDS模块的信号输出、放大器步进选择以及液晶显示。用两个AD603为放大电路核心组成级联放大电路,通过单片机控制DAC0832将数字量转化为模拟量来进行程控放大,提高了放大增益、扩展了通频带宽、而且具有良好的抗噪声系数。放大器带宽可以预置并显示,经测试本设计基本满足题目要求。 关键词:STC89C52RC AD603 程控放大器 AD9850 带通滤波 目录 1、引言: 1 2、方案设计: 1 2.1 总方案框图 1 2.2 DDS模块选择 1 2.3 滤波电路的选择 2 2.4 增益控制部分,放大器的选择 2 3、设计实现: 2

3.1 硬件设计 2 3.1.1 最小系统设计 3 3.1.2 滤波电路 3 3.1.4 放大电路 3 3.1.5 数模转换,电压输出电路 4 3.2软件设计 4 4、测试: 5 4.1、测试方法 5 4.2、测试条件 5 4.3、测试仪器 5 4.4、测试结果 6 5、结论及体会: 6 5.1 结论 6 5.2 体会 6 参考文献: 7 附录一: 8 1 最小系统和按键模块电路原理图 8

2 滤波电路原理图 8 3 自制DDS模块及其外围电路系统原理图 9 4 增益控制电路原理图 10 5 DAC8032数模转换电路图 11 附录二:主要源程序 12 1、引言: 放大器是电子系统中最基本的单元电路,放大器的增益又是其中一个重要的性能参数,随着电路控制的日益精细,对放大器增益的控制和调整也变得越来越细致。程控增益放大器与普通放大器的差别在于反馈电阻网络可变且受控于控制接口的输出信号。不同的控制信号,将产生不同的反馈系数,从而改变放大器的闭环增益。通过单片机用程序来控制放大的增益,通过键盘输入放大倍数,再利用单片机输出相应的数字信号,然后通过DA变换,换成模拟电压信号,使用这个电压信号来控制放大器的放大倍数,实现了程控增益放大。在灵活性方便性上远远优于传统的放大器。 2、方案设计: 2.1 总方案框图 Ui 本系统原理方框图如图2.1所示。本系统由DDS模块、51单片机、滤波电路、键

电力电子技术课程设计报告

电力电子课程设计报告题目三相桥式全控整流电路设计 学院:电子与电气工程学院 年级专业:2015级电气工程及其自动化 姓名: 学号: 指导教师:高婷婷,林建华 成绩:

摘要 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要同时也是应用得最为广泛的电路,不仅用于一般工业,也广泛应用于交通运输、电力系统、通信系统,能源系统及其他领域,因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用,因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 关键词:电力电子,三相,整流

目录 1 设计的目的和意义………………………………………1 2 设计任务与要求 (1) 3 设计方案 (1) ?3.1三相全控整流电路设计 (1) 3.1.1三相全控整流电路图原理分析 (2) ?3.1.2整流变压器的设计 (2) ?3.1.3晶闸管的选择 (3) 3.2 保护电路的设计 (4) 3.2.1变压器二次侧过压保护 (4) ?3.2.2 晶闸管的过压保护………………………………………………4 3.2.3 晶闸管的过流保护………………………………………………5 3.3 触发电路的选择设计 (5) 4 实验调试与分析 (6) 4.1三相桥式全控整流电路的仿真模型 (6)

4.2仿真结果及其分析……………………………………………7 5 设计总结 (8) 6 参考文献 (9)

1 设计的目的和意义 本课程设计属于《电力电子技术》课程的延续,通过设计实践,进一步学习掌握《电力电子技术》,更进一步的掌握和了解他三相桥式全控整流电路。通过设计基本技能的训练,培养学生具备一定的工程实践能力。通过反复调试、训练、便于学生掌握规范系统的电子电力方面的知识,同时也提高了学生的动手能力。 2 设计任务与要求 三相桥式全控整流电路要求输入交流电压2150,10,0.5U V R L H ==Ω=为阻 感性负载。 1.写出三相桥式全控整流电路阻感性负载的移相范围,并计算出直流电压的变化范围 2.计算α=60°时,负载两端电压和电流,晶闸管平均电流和有效电流。 3.画出α=60°时,负载两端 d U 和晶闸管两端 1 VT U 波形。 4.分析纯电阻负载和大电感负载以及加续流二极管电路的区别。 5.晶闸管的型号选择。 3 设计方案 3.1三相全控整流电路设计

电力电子技术论文

电力电子技术在太阳能中的应用 电力电子技术: 电力电子技术是指电力功率半导体器件,这些器件作为开关操作其中的控制和转换。硅控整流器的来临,简称可控硅,导致的新的电力电子领域的应用发展。之前的可控硅引进,汞弧整流器用于电力控制,但这种整流电路工业电子和汞弧整流器的应用范围是有限的一部分。一旦可控硅可用,应用领域蔓延到许多领域,如驱动器,电源供应器,航空 电力电子技术是什么? 电力电子技术是应用电子电路的能量转换。 您可能有更多的比你想象中的电力电子的相互作用。如果你开车,使用一台电脑,用微波炉做饭,对任何类型的电话交谈,听音响,或用电钻钻孔,然后你来接触电力电子技术。由于电力电子,电力运行所需的处理,过滤,并以最高的效率,最小的尺寸和最小重量的东西,你日常使用。在正式条款“,该技术包括使用的电子元件,应用电路理论与设计技术,分析工具,对电子的转换效率,控制和电力空调的发展。” 电力电子技术研究的主要领域包括: ?电子器件(如二极管和晶体管) ?控制和监管 电力转换器的电路设计和各项工作的转换器电路拓扑 ?磁性元件(如变压器和电感器) ?电子电路封装和制造 ?电机控制 电力电子技术的主要任务 电力电子技术,涵盖了整个电力系统领域的应用,这些应用延伸,从几个VA /瓦数兆伏安/兆瓦的功率范围。 电力电子技术的主要任务是控制和电源转换从一种形式到另一种。转换的四种主要形式是: ?整风指交流电压为直流电压的转换, ?直流到交流的转换, ?直流- 直流转换和 ?交流到交流的转换。 ?“电子式电能转换器”是用来指电力电子电路,转换电压和电流从一种形式到另一个任期。 此外,可控硅和其他功率半导体器件被用作静态开关。 电力电子技术的重要性和用途 电力电子技术是随处可见。例如,电力电子技术中使用 ?计算机 ?汽车 ?电信 ?空间系统和卫星 ?电机

电子设计竞赛论文

1系统方案设计与论证 1.1设计要求 (1)设计一个可根据电源线的电参数信息分析用电器类别和工作状态的装置,电器电流范围 0.005A – 10.0A,用电器包括LED 灯、节能灯、USB 充电器(带负载)、无线路由器、机顶盒、电风扇、热水壶。 (2)可识别的电器工作状态总数不低于 7,电流不大于 50mA 的工作状态数不低于 5,同时显示所有可识别电器的工作状态。自定可识别的电器种类,包括一件最小电流电器和一件电流大于 8A 的电器,并完成其学习过程。 (3)实时指示用电器的工作状态并显示电源线上的电特征参数,响应时间不大于2s。特征参量包括电流和其他参量,自定义其他特征参量的种类、性质,数量自定。电器 的种类及其工作状态、参量种类可用序号表示。 (4)随机增减用电器或改变使用状态,能实时指示用电器的类别和状态。 (5)具有学习功能。清除作品存储的所有特征参数,重新测试并存储指定电器的特征参数。一种电器一种工作状态的学习时间不大于 1 分钟。 1.2设计基本思路 题目要求设计可根据电参数分析用电器类别的装置,区分用电器的方法可以是电流的 大小,电压电流的相位差。因此,装置采用ZMPT101B电压互感器、ZMCT103C电流 互感器采集电压电流信息,判断用电器类型,并经28027单片机程序控制在显示屏显示。该装置可以检测键盘的输入,处于学习、识别两种不同模式,存储信息的模块采 用AT24C64,存储用电器的信息。为完成便携终端信息的接收和提示,系统还加入蜂 鸣器和WIFI无线传输模块。 1.3系统框图 1.4方案比较与选择 (1)控制器 方案一:TMS320F28027是一种高效 32 位中央处理单元,具有分析和断点功能。可 以借助硬件进行实时调试。60MHz器件,3.3V 单电源集成型加电和欠压复位,两个内部 零引脚振荡器多达 22 个,复用通用输入输出 (GPIO) 引脚三个,32 位 CPU 定时器片载 闪存、SRAM、一次性可编程 (OTP) 内存。

电力电子技术课程设计报告

电力电子技术课程设计 报告书 专业班级:16电气2班 姓名:王浩淞 学号:2016330301054 指导教师:雷美珍

目录 1、webench电路设计 1.1设计任务要求 输入电压为(8V-10V),输出电压为5V,负载电流为1A 1.2设计方案分析 图1.3.1主电路原理图 图1.3.2元器件参数 图1.3.3额定负载时工作值

图1.3.4输出电流和系统效率间的关系 如图1.3.4所示,在输出电流相同的情况下,输入电压越小,系统的稳态效率越高,因此提高效率的最直接方式就是降低系统的输入电压,其次在输入电压相同的情况下,我们可以调节输出电压的大小,使系统效率达到最大,例如当输入电压为9.0V时,根据图像输出电流为0.40A的时候效率最高。第二种方法是改变元器件的参数,通过使用DCR(直流电阻)小的电感元件来实现输出纹波电压降低。 1.3主芯片介绍 TPS561201和TPS561208采用SOT-23封装,是一款简单易用的1A同步降压转换器。这些器件经过优化,可以在最少的外部元件数量下工作,并且还经过优化以实现低待机电流。这些开关模式电源(SMPS)器件采用D-CAP2模式控制,可提供快速瞬态响应,并支持低等效串联电阻(ESR)输出电容,如特种聚合物和超低ESR陶瓷电容,无需外部补偿元件。TPS561201以脉冲跳跃模式工作,在轻负载操作期间保持高效率。TPS561201和TPS561208采用6引脚1.6×2.9(mm)SOT(DDC)封装,工作在-40°C至125°C的结温范围内。 1.4电气仿真结果分析

图1.4.1启动仿真图1.4.2稳态仿真 图1.4.3暂态仿真图1.4.4 负载暂态仿真 二、基于电力系统工具箱的电力电子电路仿真 2.1 设计要求和方案分析 本课程设计主要应用了MATLAB软件及其组件之一Simulink,进行系统的设计与仿真系统主要包括:Boost升压斩波主电路部分、PWM控制部分和负载。Boost升压斩波主电路部分拖动带反电动势的电阻,模拟显示中的一般负载,若实际负载中没有反电动势,只需令其为零即可。负载为主电路部分提供脉冲信号,控制全控器件IGBT的导通和关断,实现整个系统的运行。在Simulink中完成各个功能模块的绘制后,即可进行仿真和调试,用Simulink 提供的示波器观察波形,进行相应的电压和电流等的计算,最后进行总结,完成整个Boost 变换器的研究与设计。 2.2 simulink仿真模型分析 电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。占空比越大,Boost Chopper的输出电压值

电力电子技术论文

电力电子技术的应用 班级:电082 陈泽平40850171 【摘要】本文主要介绍了电力电子技术在电力系统、汽车工业、储能领域等方面的应用。 【关键词】电力电子技术应用电力系统汽车工业储能领域 电力电子技术是一门应用于电力领域的电子技术,就是使用电力电子器件对电能进行变换和控制的技术。电力电子技术所变换的“电力”,功率可以达到数百兆瓦甚至吉瓦,也可以小到数瓦甚至毫瓦级。进入21世纪,随着新的理论、新的器件、新的技术的不断涌现,特别 是与微电子(计算机与信息)技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展。以下主要对电力电子技术在电力系统、汽车工业、储能领域等方面的应用作简要介绍。 一.电力电子技术在电力系统中的应用 自20世纪80年代,柔性交流输电(FACTS)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。以下按照电力系统的发电、输电和配电以及节电环节,列举电力电子技术的应用。 1.在发电环节的应用 大型发电机广泛采用静止励磁控制。静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点。由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控

制规律提供了充分发挥作用并产生良好控制效果的有利条件。1 变速恒频励磁广泛应用于水力、风力发电机。为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。这种技术就叫变速恒频励磁。 2.在输电环节的应用 在输电环节中应用的技术主要有直流输电(HVDC)和轻犁直流输电(HVDC Light)技术以及柔性交流输电(FACTS)技术,其中柔性交流输电技术应用尤为重要。 3.在配电环节的应用 DFACTS是指应用于配电系统中的灵活交流技术,它是Hingorani于1988年针对配电网中供电质量提出的新概念。 4.在节能环节的运用 通过交负荷电动机的调速技术节电是电动机节电非常重要的一个方面。交流调速在冶金、矿山等部门及社会生活中得到了广泛的应用。 二.电力电子技术在汽车工业中的应用 电力电子技术在汽车工业的应用2,主要包括以下几个方面: 1)利用电子开关替代传统的机械开关以及继电器; 2)无触点点火、燃油电子喷射; 3)电子动力转向、电子自动变速器; 4)对原有的直流电源系统进行改造;

电力电子技术课程设计报告

成都理工大学工程技术学院T h e E n g i n e e r i n g&T e c h n i c a l C o l l e g e o f C h e n g d u U n i v e r s i t y o f T e c h n o l o g y 电力电子技术课程设计报告 姓名 学号 年级 专业 系(院) 指导教师

三相半波整流电路的设计 1设计意义及要求 1.1设计意义 整流电路是出现最早的电力电子电路,将交流电变为直流电,电路形式多种多样。当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路。其交流侧由三相电源供电。三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路、十二脉波可控整流电路等,均可在三相半波的基础上进行分析。 1.2初始条件 设计一三相半波整流电路,直流电动机负载,电机技术数据如下:220nom U V =, I =308A nom ,=1000r/min nom n ,C =0.196V min/r e ,0.18a R =。 1.3要求完成的主要任务 1)方案设计 2)完成主电路的原理分析 3)触发电路、保护电路的设计 4)利用MATLAB 仿真软件建模并仿真,获取电压电流波形,对结果进行分析 5)撰写设计说明书

2方案设计分析 本文主要完成三相半波整流电路的设计,通过MATLAB软件的SIMULINK模块建模并仿真,进而得到仿真电压电流波形。 分析采用三相半波整流电路反电动势负载电路,如图1所示。为了得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波流入电网。三个晶闸管分别接入b c a、、三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。 图1 三相半波整流电路共阴极接法反电动势负载原理图 直流电动机负载除本身有电阻、电感外,还有一个反电动势E。如果暂不考虑电动机的电枢电感时,则只有当晶闸管导通相的变压器二次电压瞬时值大于反电动势时才有电流输出。此时负载电流时断续的,这对整流电路和电动机负载的工作都是不利的,实际应用中要尽量避免出现负载电流断续的工作情况。 3主电路原理分析及主要元器件选择 3.1主电路原理分析 主电路理论图如图1所示。假设将电路中的晶闸管换作二极管,并用VD表示,该电路就成为三相半波不可控整流电路。此时,三个二极管对应的相电压中哪一个的值最大,则该相对应的二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压。在相电压的交点处,均出现了二极管换相,即电流由一个二极管向另一个二极管转移,称这些交点为自然换相点。自然换相点是各相晶闸管能触发导通的最早时刻,将其作 α=。,要改变触发角只能是在此基础上增大它,即为计算各晶闸管触发角α的起点,即0 沿时间坐标轴向右移。

电力电子技术及应用论文

电力电子技术及应用 引言: 自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代 电气传动技术舞台。从工程应用的角度看,无论是电力、机械、矿冶、交通、石油化工、轻纺等传统产业,还是通信、激光、机器人、环保、原子能、航天等高科技产业,都迫切需要提供高质量的电能,特别是要求节能。而电力电子则是实 现将各种能源高效率地变换成高质量电能、节能、环保和提高人民生活质量的 重要手段,它已经成为弱电控制与强电运行之间,信息技术与先进制造技术之间,传统产业实现自动化、智能化、节能化、机电一体化的桥梁。电力电子的突出 特点是高效、节能、省材,所以电力电子已成为我国国民经济的重要基础技术, 是现代科学、工业和国防的重要支撑技术。因此,无论上述诸多高技术应用领域,还是各种传统产业,乃至照明、家电等量大面广的,与人民日常生活密切相关的 应用领域,电力电子产品已无所不在。 电力电子技术概述 电力电子技术是一门新兴的应用与电力领域的电子技术,就是使用电力电 子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。电力电子 技术所变换的“电力”功率可大到数百MW甚至GW,也可小至数W甚至1W以下,和以信息处理为主的信息电子技术不同,电力电子技术主要用于电力变换。

电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。电力电子技术现已成为现代电气工程与自动化专业 的一门专业基础课,在培养该专业人才中占有重要地位。 电力电子学是由电力学、电子学和控制理论三个学科交叉二形成的。其概 念的基础就是由于晶闸管和晶闸管变流技术的发展而确立的。电力电子技术的 应用范围及其广泛,比如优化电能使用,通过电力电子技术对电能的处理,使 电能的使用达到合理、高效和节约,实现了电能使用最佳化;改造传统产业和 发展机电一体化等新兴产业,电力电子技术是弱电控制强电的媒体,是机电设 备与计算机之间的重要接口,它为传统产业和新兴产业采用微电子技术创造了 条件,成为发挥计算机作用的保证和基础;电力电子技术高频化和变频技术的 发展,将是机电设备突破工频传统,向高频化方向发展,实现最佳工作效率, 将使机电设备的体积减小几倍、几十倍,响应速度达到高速化,并能适应任何 基准信号,实现无噪音且具有全新的功能和用途;电力电子智能化的发展,在 一定程度上将信息处理与功率处理合一,使微电子技术与电力电子技术一体化,其发展可能引起电子技术的重大改革。 电力电子技术的内容可分为: 1、电力电子器件; 2、相控型整流器和有源逆变电路; 3、直流电压变换电路; 4、交流电压变换电路; 5、电力电子应用技术。 电力电子器件 常用电力电子器件的基本结构、工作原理、外特性、主要参数、开关特性、安 全工作区。 1、根据开关器件是否可控分类

相关文档
最新文档