R410A直流变频涡旋压缩机的优化设计

R410A直流变频涡旋压缩机的优化设计
R410A直流变频涡旋压缩机的优化设计

空压机变频节能改造方案说明

---------------------考试---------------------------学资学习网---------------------押题------------------------------ 录目 变频节能改造背景第一部分基本情况一、变频调速技术二、 空压机的改造缘由第二部分 空压机介绍一、 存在的主要问题二、 变频改造的优点三、 实现方法第三部分一、公司简介二、实现方法 投资估算及服务承诺第四部分一、投资估算二、服务承诺

第一部分变频节能改造背景 一、基本情况 广西南宁华诺糖厂空压站现有315KW/380V空压机3台,160KW/380V 空压机4台每年耗电量约200多万元。对华诺糖厂来说是一笔很大的开支。 近年来,我国经济飞速发展,对能源的需求尤其是是对电能的需求激增。去年夏季,珠三角和长三角许多城市不得不拉闸限电,我国不仅在电能开发上需要加快速度,而且还应该在节约电能方面狠下功夫,据统计,我国在电能利用率上仅有34%左右,比发达国家低10多个百分点,电能供给缺口大,电能利用率低,致使电费一涨再涨。去年8月份,襄樊市电力缺口大,电价上涨0.05元/度,达0.52元/度,使公司的成本开支增大,要降低成本,抓住主要矛盾,首先是降低电耗! 二、变频调速技术 交流电动机变频调速是近25年内发展起来的新技术,而在我国的普及应用已有10多年,即使在这短短的10多年里,国内变频器技术发展很快,技术相当成熟,并且有些变频器(如英威腾变频)装到成

套上出口到美国和澳大利亚。在国内广泛应用在风机、水泵、压缩机及调速设备上,应用的用户很多,使用后反映都不错。 变频调速技术在国内压缩机上应用的处于高速增长期,我们专业做变频器推广应用的企业已做了许多压缩机节能改造的工程,节电效果相当明显,业绩发展很快。尤其是2001年国家经贸委下发的《关于加快风机水泵压缩机变频节能改造的意见》给我们襄樊华强照明有限公司节电工作指明了明确的方向。 第二部分空压机的改造缘由 一. 空压机介绍: 工作原理是由一对相互平行齿合的阴阳转子(或称螺杆)在气缸内 转动,使转子齿槽之间的空气不断地产生周期性的容积变化,空气则沿着转子轴线由吸入侧输送至输出侧,实现螺杆式空压机的吸气、压缩和排气的全过程。 电机功率:110KW交流异步电机 额定电流:220A 额定转速:1480转/分 原系统工作状况:

无油涡旋压缩机国内外研究现状

无油涡旋压缩机国内外研究现状 涡旋压缩机最早诞生于1905年,由法国工程师Leon Creux发明的,由于加工技术的局限性,80年代初才开始批量生产。70年代开始,由于能源危机的加剧和高精度数控铣床的出现,为涡旋机械的发展带来了机遇。 涡旋压缩机是继往复压缩机、转子压缩机、螺杆压缩机之后的又一种新型高效容积式压缩机,被公认为是技术最先进的第三代压缩机。涡旋压缩机作为一种新型压缩机,具有效率高,噪声小,零部件少等一系列优点。与同等容量的往复式压缩机相比,主要零部件仅为往复式的1/8,体积减少40%左右,噪声下降5~8dB,效率提高10%,重量减轻15%,驱动力矩的波动幅度仅为往复式的1/8。 随着工业的发展,在一些特殊场合常要求气体在压缩时不被润滑油所污染, 或不允许外界空气逸入汽缸,所以无油润滑压缩机成为这些特殊场合的首选压缩机。由于无油润滑的涡旋式压缩机较其他形式的无油压缩机在结构、工作效率、可靠性、振动及环保等方面有着不可替代的优势,因此,对无油润滑的涡旋式压缩机的研究以及尽快实现产品的国产化,已经成为当今国内涡旋压 缩机研究领域的热点。 国外无油压缩机开始于二十世纪三十年代。1935年瑞士苏尔寿公司发表了迷宫式密封无油润滑压缩机的专利。五十年代初,世界市场上出现了第一批无油润滑压缩机。我国最早从事无油润滑压缩机研制工作的是沈阳气体压缩机厂和中国科学院兰州化学物理研究所。自1964年起开展对压缩机的活塞环、浮动环、密封圈和导向套等自润滑材料的试验研究工作。 无油润滑形式的涡旋压缩机产品有很好的市场前景,,然而无油润滑涡旋式压缩机的研究在我国才刚刚起步,还很不完善。无油润滑涡旋压缩机在密封和润滑方面问题一直是影响其效率的关键因素。与油润滑涡旋压缩机相比, 由于没有润滑油的密封作用,无油润滑涡旋压缩机在工作过程中的泄漏问题更加严重。 要实现无油润滑,涡旋齿顶密封摩擦副是需要首先考虑的部位,一般采用自润滑材料镶嵌来解决。目前常用到的自润滑材料有聚四氟乙烯(PTFE)基复合材料、聚醚醚酮(PEEK)基复合材料、聚苯醚砜(PESF)和聚醚砜(PES)、纳米结构喷涂固体自润滑符合材料涂层、等离子喷涂高温自润滑涂层以及热喷涂等离子技术。 德国独资的台州市德瑞压缩机有限公司引进的DR3系列涡旋式空气压缩机,齿顶密封摩擦副采用聚醚醚酮(PEEK)基复合材料,机加工工艺采用德国DMG公司的高精度五轴联动加工中心(机器加工精度5um),生产的涡旋式空气压缩机机头一直返销德国,现德方追加投资的DR3系列静音式涡旋式空气压缩机整机生产线,即将全面投产,将极大地满足国内无油空压机的需求。

直流变频涡旋压缩机和数码涡旋压缩机对比 副本

直流变频涡旋压缩机和数码涡旋压缩机对比 直流变频涡旋压缩机和数码涡旋压缩机是目前变容量技术(根据负荷变化要求来调节制冷剂流量)的两大标志性代表。两种压缩机的主要应用领域都为多联机空调系统,但较之已经进入市场多年的变频多联机系统,数码涡旋多联机系统只能算作一种新型产品。下面仅就上述两种压缩机及其空调系统进行比较。 1.工作原理 1)直流变频涡旋压缩机是由电机定子产生的旋转磁场与转子的永磁场直接作用实现 压缩机运转的。通过直流变频器来改变输入电压和频率,从而对电机进行调速。当 室内负荷要求提高时,压缩机的电机转速加快,容量增大;当室内负荷要求降低时, 压缩机的电机转速放慢,从而使容量减小。 2)数码涡旋压缩机是将吸气旁通的卸载控制应用于涡旋压缩机上开发出来的变容量 压缩机。其原理是在定涡旋盘顶部加装一个可以上下移动的活塞,活塞顶部为调节 室,通过直径的排气孔与排气腔相通,此外还通过设有外接电磁阀的旁通管和吸气 管相连。电磁阀开启时,调节室内的排气被释放至低压吸气管,导致活塞上移(仅 为1mm),定涡旋盘也随之上移,使动、定涡旋盘分离“卸载”,形成了无制冷剂 蒸气被压缩机的状态;电磁阀关闭时,活塞上下侧的压力为排气压力,压缩机“加 载”,恢复压缩过程,这样就可实现0和100%两档容量调节。通过改变电磁阀的 开闭时间,就可以实现压缩机10%~100%容量调节。 2.可靠性 1)直流变频涡旋压缩机是由日本空调厂家于上世纪80年代首次推出的产品。至今已 有20多年的开发、使用经验,成熟度较高,而且价格也在逐渐下降。在日本,直 流变频技术的应用逐年增加,到2002年已占到整个空调器产品的%。 2)数码涡旋压缩机是美国谷轮公司于1995年推出的产品,产品应用于整机系统中的 运行特性目前仍然存在许多争议,相关研究水平和应用成果远不如变频压缩机系统 那么丰富。最明显的缺陷是因为动、定涡旋盘要通过沿轴向脱离分开一段距离来实 现变容量调节功能,而这种涡旋盘的频繁开闭会极大地损伤其使用寿命。例如,按 照20s一个“加载/卸载”周期、连续工作10年的使用寿命来计算,其动、定涡旋 盘的开闭次数将达到上千万次。如此频繁的开闭会加速动、定涡旋盘的磨损和老化。

涡旋压缩机论文翻译

三维排放涡旋空气压缩机流动数值模拟 Jian Mei Feng, Zong Chang Qu, Xin Wei Lin 能源与动力工程学院 中国西安交通大学,西安710049 E- mail地址:jmfeng@https://www.360docs.net/doc/7d15146566.html, zchqu@https://www.360docs.net/doc/7d15146566.html, lxw5837@https://www.360docs.net/doc/7d15146566.html, 概述 涡旋压缩机在传统压缩机行业里被公认为有较高的竞争力。大量的出版物极有兴趣的证明了这一点。在流动损失效率得到进一步提高的同时,特别是在最后的压缩区和排放区,流动损失更是大大地被减少。详细了解流动过程中发生在排放区的流动损失是分析和减少排放流量损失的有利条件,这对减少严重损失是非常必要地。由于过程的复杂性,只有一个方法可以解决连续性和动量方程,那就是采用数值计算方法。在过去的10年里,进行了一些对涡旋压缩机的性能的调查。不过,对流体流动特性的细节的讲解的资料是相对很少的,尤其是在涡旋压缩机室。在本论文中,应用物理模型对实际的涡旋空气压缩机排放区的放电过程中的一个特点,作出合理的简化和三维准稳态湍流数值模拟。通过对排放区出口端的三维速度和压力分布进行典型流动分析,我们可以对涡旋空气压缩机的物理过程有深入地了解。 1. 引言 涡旋压缩机广泛应用于制冷,空调及电力领域,其竞争优势是在于它的高效率,和能够减少部分损失的要求,降低噪音,减少振动水平。三维模拟涡旋压缩机的运行,如:移动动涡盘的轨道、摩擦损失和流动阻力损失等各种损失。这些损失是该排放流量(由于流动损失约消耗百分之3的输入功率)的主要部分,特别是在大流量过程中。在流动过程中存在放电现象,因此在最后压缩地区要减少这些流动亏损,尤其是在速度增加的大流量区域更明显。因此,在涡旋空气压缩机顶部进行三维放电数值模拟是十分有必要的。最重要的流动模式,是在排放和最终压缩区。尤其是在大流量涡旋压缩机排气口务必要根据分析结果,来为寻找供应来源的排放所造成的损失进行理论分析和设计。 本文研究的对象是一个1.6 的涡旋空气压缩机的排放量。最重要的理论研究对象是对对称弧和排放区的修改和整定。基本参数和修改后的提示参数列于表1。示意图1显示了涡旋压缩机的排放区域。 表1:基本参数和修改后的参数 图1:涡旋压缩机排放区示意图。 2. 物理模型与数值方法 2.1 物理模型 这种气体通过涡旋齿的“压缩运动”而提供动力,而涡旋齿的这种运动可以在涡旋压缩机的工作腔内对可压缩性粘性非定常流的气体进行压缩。由于高转速和附近的靠近腔壁的速度梯度,所以气体的湍流特性必须加以考虑。但绕壁速度比较小的气体速度,例如,在腔壁上的速度大约是百分之5的气体速度是本文研究空气压缩机排放的平均速度,因此它必须在准稳态的环境下,并且有固定的流场。也就是说,忽略轨道流动的腔壁运动是有道理的。因此,进行三维稳态湍流计算分析,是对压缩区和排放区流场的预测和分析。在涡旋压缩机中空气是从两个方向注入到压缩腔内的,并且两侧各有曲柄角度。不同的体积流量在不同曲轴

压缩机的启动方式及原理电路图接线图

压缩机的启动方式及原理电路图接线图 压缩机电磁重锤式起动方式 当电压通过电磁重锤式启动器L-M线圈到压缩机运行绕组M端,此时由于无压缩机转矩,造成压缩机运行绕组电流很大,这个电流足以使锤式启动器电磁铁吸合,进而使L-S端接通电压送给启动绕组端,当转速达到80%时运行电流下降到重锤线圈的释放电流值以后重锤自由落下L-S断开,启动绕组开路,压缩机启动完成,运行绕组电流进入正常状态。一般整个启动过程完成约需0.3-2秒完成。 压缩机PTC热敏电阻起动接线方式 PTC热敏电阻是一种具有正温度系数的半导体元件,但PTC热敏电阻温度升高时,电阻也升高,反之PTC 热敏电阻温度降低时,电阻也变小。根据这个原理把PTC元件应用在电动机起动上,在接通电源后经约0.3秒后,启动绕组以近似开路状态,所通过电流很小,压缩机启动完成。 压缩机过电流及过热保护 过热保护器在这里起非常重要的作用,绝不能不用或用不相符电流值的元件代替。过热保护器紧贴在压缩机外壳表面,当运行电流过大过,热保护器内的电阻丝发热,烘烤碟形双金属片,使它反向拱起,保护触点断开,压缩机断电停止运转。如果压缩机内温度升高,必定使机壳温度升高,在正常额定运行电流通过阻丝的低发热量下,加上壳体温升达到90℃以上时,双金属片也会拱起,保护触点断开,压缩机断电停止运转。因此该保护器具有两种保护功能。 绕组测量。 压缩机C公共绕组、S是启动绕组端、M为运行绕组。S-M电阻最大,S-C电阻偏小,M-C电阻最小,S-C 加上M-C的电阻值等于S-M的电阻值 压缩机常见故障维修-判断:过热保护器频繁“开”“断” 电磁重锤式起动器,内部电磁铁卡死,造成起动时L-S不能接通,热保器5-10秒断开保护。L-S触点接触不良,启动绕组得不到启动电压,热保器5-10秒断开保护。 PTC起动器内部变质或破碎,启动绕组得不到启动电压不能起动。 过热保护器老化,或电阻丝开路。有的用眼能看到电阻丝已被电流烧的融化时,这时压缩机本身坏的可能性就非常大了。 压缩机内部不良,线圈绕组短路,机械故障。 电源电压过低或过高运行电流都增大。电源电压过低压缩机还有可能不起动。 当压缩机机壳温度是在环境温度下,如果上电时间仅在1-3秒过热保护器就跳开,这时压缩机本身坏的可能性就很大了。 气路故障,在常温下,正常开机经过4个小时以上运转,发现冷冻室温度降不下来,简单判断用湿手摸蒸发器不沾手或沾手不牢固,散热器温度不高,一般是压缩机排气性能不好。 重锤式启动方法

电动涡旋式压缩机关键技术特点

电动涡旋式压缩机关键技术特点: 纯电动汽车采用电动涡旋式压缩机,现代电动汽车已不再安装内燃机,或主要不以发动机作为动力源,显然空调制冷的压缩机大多已不能以发动机来驱动,而改由电动机来驱动.这种驱动方式取消了传统的外驱式皮带轮,电动机一般与压缩机组装为一体,形成全封闭的结构,这种结构形式灵活方便,可装置在发动机室的任何位置,而且电动机与压缩机可采取同轴驱动,不会出现传统驱动方式的皮带打滑、压缩机转速与发动机转速不同步的现象。 电动涡旋式压缩机关键技术1,直流变频,小排量,髙转速涡旋压缩。2,电动机(驱动机构)永磁直流,(矢量变频调速控制)髙转速。3,控制器,整体式,软硬件设计技术,数据釆集和设定,与汽车CAN 连接,形成完整系统。4,圧缩机变节距设计,密封浮动密封。 1)涡旋式压缩机吸气、压缩、排气过程基本上都是连续进行的,吸入压力损失小,浮动密封气密系数高,容积效率高,适应高转速,振动小噪音低,结构简单、可靠性高。 2)永磁同步电机(Permanent Magnet Synchro-nous Motor, PMSM)具有体积小、重量轻、结构简单、运行可靠、功率因数高、易于散热等。PMSM在电动汽车空调压缩机上的应用与普通的空调压缩机又有很大的不同。 (1)使用直流电源作为动力源; (2)汽车空调安装在运动的车辆上,需要承受频繁的振动与冲击,对

电机运行的安全性和可靠性要求更高; (3)需要空调有快速制冷、制热和低速运行的能力; (4)直接消耗电池能源,为保证电动汽车的推进动力,需要提高电机 的效率。 矢量变频调速控制在PMSM中采用了优良的控制方式。为了扩展电机速度范围,PMSM中常采用弱磁控制。 3)控制器可划分为四个部分,分别是电源模块、控制模块、通信模块和功率模块。(1)电源模块输入端接电动车要求的xV高压直流电,分别对功率模块和控制模块供电,(2)控制模块的工作电压为需要设计的降压电路。(3)通信电路采用光耦隔离,可在输入信号异常时保护控制芯片不被烧坏。(4)智能功率模块设有故障保护功能,当有温度、电流、电压等故障发生时,模块会输出故障信号使电机停止运行,从而起到保护作用。

螺杆空压机变频节能改造方案

螺杆空压机变频节能改造原理与应用 螺杆式空压机广泛地用于工业生产中,在其控制中采用加载-卸载阀来控制空压机的供气。由于用气设备的工作周期或是生产工艺的差别,使得用气量发生波动,有时会造成空压机频繁加载、卸载。空压机卸载后电机仍然工频运转,不仅浪费电能而且增加设备的机械磨损;空压机加载过程是突然加载,也会对设备和电网造成较大的冲击。因此对空压机进行变频改造具有改善电机的启动和运行方式、减少设备的机械磨损、在一定范围内节约电能等效果。 一、螺杆式空压机的工作原理 以单螺杆空压机为例说明空气压缩机工作原理,如图1所示为单螺杆空气压缩机的结构原理图。螺杆式空气压缩机的工作过程分为吸气、密封及输送、压缩、排气四个过程。当螺杆在壳体内转动时,螺杆与壳体的齿沟相互啮合,空气由进气口吸入,同时也吸入机油,由于齿沟啮合面转动将吸入的油气密封并向排气口输送;在输送过程中齿沟啮合间隙逐渐变小,油气受到压缩;当齿沟啮合面旋转至壳体排气口时,较高压力的油气混合气体排出机体。 二、压缩气供气系统组成及空压机控制原理 1、压缩气供气系统组成 工厂空气压缩气供气系统一般由空气压缩机、冷干机、过滤器、储气罐、管路、阀门和用气设备组成。如图2所示为压缩气供气系统组成示意图。 2、空气压缩机的控制原理 在工厂的空气压缩机控制系统中,普遍采用后端管道上安装的压力继电器来控制空气压缩机的运行。空压机启动时,加载阀处于不工作态,加载气缸不动作,空压机头进气口关闭,电机空载启动。当空气压缩机启动运行后,如果后端设备用气量较大,储气罐和后端管路中压缩气压力未达到压力上限值,则控制器动作加载阀,打开进气口,电机负载运行,不断地向后端管路产生压缩气。如果后端用气设备停止用气,后端管路和储气罐中压缩气压力渐渐升高,当达到压力上限设定值时,压力控制器发出卸载信号,加载阀停止工作,进气口关闭,电机空载运行。图3为某品牌空气压缩机的系统原理图。

空压机节能变频技术

空压机节能变频技术 市蓝海华腾技术有限公司是一家致力于变频器的研发、设计、生产与销售的高新技术企业,拥有丰富的行业经验和雄厚的技术实力。 针对空压机行业电能浪费严重,节能需求迫切的现状,公司经过深入研究,结合V5-K空压机专用变频器,推出了完整的空压机变频控制解决方案。 一、行业分析 据中国空压机网调查: 全国有180亿元/年的空压机市场,有超过400万台的空压机在工作,22KW以上功率等级的空压机超过100万台,22kw以下中小空压机以活塞式为主。年新增数十万台。 空压机一般按工厂最大负荷加10-20%余量设计,另外工厂实际需求存在季节性及时间性波动,也导致用气量波动较大,所以空压机多数时间并非满载运行,节能空间很大。 空压机的用电量约占全部工业用电设备的9%,节能降耗利国利民。 国家提供专项资金大力扶持节能降耗,这也进一步推动了空压机等产业的升级。变频空压机也越来越为广大用户接受。变频空压机已经成为未来的主流发展方向。 二、传统空压机的问题传统空压机的工作图: 传统空压机的问题: 1、电能浪费严重 传统的加卸载式空压机,能量主要浪费在: 1)加载时的电能消耗 在压力达到所需工作压力后,传统控制方式决定其压力会继续上升直到卸载压力。在加压过程中,一定会产生更多的热量和噪音,从而导致电能损失。另一方面,高压气体在进入气动元件前,其压力需要经过减压阀减压,这一过程同样耗能。 2)卸载时电能的消耗 当达到卸载压力时,空压机自动打开卸载阀,使电机空转,造成严重的能量浪费。空压机卸载时的功耗约占满载时的30%~50%,可见传统空压机有明显的节能空间。 2、工频启动冲击电流大

直流变频涡旋和数码涡旋区别

直流变频涡旋压缩机和数码涡旋压缩机是目前变容量技术(根据负荷变化要求来调节 制冷剂流量)的两大标志性代表。两种压缩机的主要应用领域都为多联机空调系统,但较 之已经进入市场多年的变频多联机系统,数码涡旋多联机系统只能算作一种新型产品。 区别: 一、工作原理 1、直流变频涡旋压缩机是由电机定子产生 的旋转磁场与转子的永磁场直接作用实现压缩机运转的。通过直流变频器来改变输入电压 和频率,从而对电机进行调速。 2、数码涡旋压缩机是通过一个外接的电磁阀将旁通管和吸气管相连来实现变容量的。可以实现0%-100%调节。 二、可靠性:数码涡旋压缩机使用寿命比较短。涡旋盘的频繁开闭会极大地损伤其使用寿命。 三、节能:数码涡旋较好,不过数码最高能力是100%,变频最高频率可达120HZ,范围大。 四、环保:直流变频压缩机电磁干扰较交流变频小的多;数码涡旋属于机械操作,电磁干扰可以忽略不计。 综上所述,性价比高的肯定是直流变频压缩机,比较开发的早,现在比较稳定,数码涡旋还属于新产品,是否能长久稳定运行还不能确定,而且价格也比较高,不划算。建议用变频的,现在是市场的主导产品,开发早,价格也比较透明,运行稳定,质量有保证。 数码涡旋是爱默生谷轮(copeland)独有技术的产品,实际上是属于变容量技术,是将压缩机排出的工质(制冷剂)的一部分或全部回流来控制系统的制冷剂循环量的,电机采用的是定速型式,谷轮为此也花费了较长时间来进行推广,产品比较成熟,应用一度也挺广泛。 变频压缩机主要特点是电机采用变频电动机,它的特点是转速范围较大,一般超过工频对应转速(如50hz对应为2850转左右,60hz对应为3400转左右)较多,所以适应负荷变化的可调节能力较强,如果电机采用无刷直流电动机,电机的效率也要高出较多(5-8个百分点)。 变频压缩机因其宽能力运行范围和较佳的运行效率,应用已越来越普遍,谷轮本身也开发了变频涡旋压缩机向客户推广,从趋势上讲,数码涡旋终究会被变频压缩机取代的。

螺杆空气压缩机变频节能改造

空压机变频与SMART智能集中控制节能改造方案 一、概况 目前在我国各工矿企业运行着大量的螺杆空气压缩机,而这些设备往往都是企业的耗电大户。根据我们对设计院所的了解和对用户的实际调查,这些大功率的耗能系统实际运行效率普遍较低,总体仅为50%~70%左右,这主要是由于两个方面的原因造成的: (1)设计院所和用户在选型时往往考虑较大裕量,一般都在30%以上,这就使螺杆空压机实际运行时经常处于关闭进气的低负荷运行状态,从而降低了运行效率; 2)普通螺杆空气压缩机都是处于恒速运转状态,而实际生产中的气量需求却经常处于变动状态,当用户用气量减小时,压缩机组只能通过全部或部分关闭进气来进行调节,这样,压缩机组就会经常处于空运转、部分负荷(高压比状态)和满负荷交替运行的低效率状态,从而造成大量的能源浪费。 3)大多数工矿企业根据自己生产用气量配备多台中小型的压缩机,而这压缩机都采用独立运行同时进行对生产并联供气,而生产用气量是根据各压缩机自己进行加载和减载进行排气量的调节,理想化的是所运行的整个压缩机系统的排气量满足生产线最大生产负荷用气量,实际上这个理想化是很难实现的,一般的是用户当看到启动的压缩机长期处于加载状态,而排气量不能满足生产需要,就再由人工启动一台压缩机,这样就可能造成所有运行的压缩机不同程度的进行频繁加载和减载,使能大量电能浪费。 因此,螺杆空气压缩机的运行节能问题主要表现为排气量的调节问题,而压缩机的排气量与压缩机的转速成正比关系,所以,归根到底螺杆空气压缩机的

节能问题就是:第一,压缩机所配电机的调速问题。目前,中小型交流异步电机的最佳调速方式为变频调速方式。第二,多台压缩机供气并联运行采用的是人工启动和停止,而很多厂矿企业都没有配备专门的压缩机操作人员来精心操作,都是启动压缩机后只要排气量满足生产就不管了,所以多台空压机运行下,我们根据生产线用气量对压缩机采用SMART智能集中优化启动操作方式。 二、系统改造方案 1、设备情况 目前整个厂的供气压缩机为三台:1#配备电机75KW的压缩机一台、2#配备电机55KW一台、3#配备电机37KW一台。一般的两开一备,正常情况下,75KW 的空压机和37KW的空压机是长期运行的,对生产线供气。 2、改造思想 1)我们根据配备电机75KW的空压机电机功率大小进行加装变频器系统,保持原压缩机的工频系统,真正实现空压机变频-工频转换,也就是说当变频系统出现故障时候,可以人工切换到工频系统运行,这样可以保证生产的正常进行。 2)所加装的变频系统为一拖二控制,也就是说1#配备电机75KW的压缩机和2#配备电机55KW空压机都为变频系统控制;当1#为变频驱动时候,2#只能为工频运行,反之,当2#为变频器驱动时候,1#只能在工频下运行。 3)由于压缩机供气出口配备了储气罐,所以生产线实际供气的压力主要以储气罐里压力为基准。我们在储气罐上装一压力传感器来检测系统供气压力指示和调节,其压力量程为1MP,传感器精度:0.1%。 4)三台压缩机进行我们设计的SMART智能集中控制操作系统,本系统控制模式采用两种,一种是节能模式,另外一种是轮换模式,所谓节能模式就是主

中国部分涡旋压缩机企业概况

中国部分涡旋压缩机企业概况-电气论文 中国部分涡旋压缩机企业概况 艾默生环境优化技术(苏州)有限公司 随着生活水平的提高,人们对冬季采暖的要求越来越高。而采暖方式的便捷、高效、节约和环保等高要求把艾默生环境优化技术的E V I 涡旋强热技术带到了人们的面前。谷轮E V I 涡旋强热技术是艾默生环境优化技术推出的专利技术之一。在谷轮涡旋压缩机中搭载E V I 喷气增焓技术使空气能热泵在-20℃的气候条件下仍能正常工作。凭借强劲的制热能力,解决低温环境下制热不足的一系列难题,谷轮E V I 涡旋强热技术成为人们冬季采暖的新时尚。 谷轮E V I 涡旋强热技术的原理与汽车的涡轮增压发动机类似,通过在涡旋盘上增加一个吸气回路,增加制冷剂流量并加大主循环制冷剂的焓差,将以往压缩机只有一次的压缩过程升级为两次,显著减轻压缩机负担,大幅提升压缩效率,有效扩展空气源热泵机组的运行范围,使空气源热泵机组可以在-20℃的低温环境下制热并稳定运行,在-15℃时可达到额定制热能力,制热不衰减,制热量提高40% 以上,COP 提升5%。 艾默生环境优化技术在推出E V I 涡旋强热技术的同时还进行了一系列项目实测,测试结果均显示采用E V I 涡旋强热技术的低温热泵机组可以替代北方传统燃煤集中供热,能在寒冷地区的低温环境下稳定运行,节能高效,结合其碳排放量低、应用灵活的特点,是供热制冷的优选方案。下面是几个采暖成功应用谷轮TMEVI 涡旋强热技术解决方案的实测项目。 1、家用篇——北京密云司马台新村冬季供暖实测项目 司马台新村建设工程是北京市政府和密云县政府新农村建设的重点项目,

位于风光秀丽的北京密云县。密云县冬季寒冷而漫长,采暖期一般自11 月中旬延续到次年3 月中旬,加之气温有时低至-20℃,所以冬季采暖必不可少,采暖设备需要即能保证适宜的室内温度,又要运行费用低廉。 项目建设之初考虑了多种解决方案。司马台及周边地区作为北京市的水源保护区、生态涵养区和传统文化展示区,传统的烧煤采暖方式污染大,已经不再适用;单独为新村建设集中供热设施或者铺设燃气管道费用太高;若采用直接电采暖方式,耗电量太大。普通的空气源热泵在室外低于-5℃时已难以正常运行,而司马台地区冬季温度低于-15℃非常普遍,因此,新的采暖设备需要满足温暖、舒适、节能3 方面要求。经过反复比较,项目最终选定清华同方人环的“低环温空气源热泵+ 地暖”系统方案,机组采用艾默生环境优化技术的谷轮E V I 涡旋强热空调压缩机,确保机组能在-20℃的环境温度下正常工作,突破了空气源热泵在北方冬季采暖受气候条件制约的技术难题。同时,地暖采暖方式舒适健康,能为居民提供怡人的冬季室内环境。该机组各项性能指标均符合国家最新标准,通过先进的空气源热泵技术从空气中提取能量,相比电采暖,能耗节省75%,并能减少二氧化碳排放和雾霾。 应用E V I 涡旋强热技术采暖给村民们带来了显著的经济效益。以蔡女士家的一户210m2 的南向房屋为例,该住宅装载了一套使用谷轮E V I 涡旋强热空调压缩机且额定制热能力为23k W 的空气源热泵系统,末端使用地暖。采暖开始于11 月初,总使用天数约为140 天,根据测试监控,室内平均温度一直维持在20℃左右,最低温度为18℃,最高温度为24℃。而记录到的室外最低温度达到-20℃,整个采暖季的平均耗电量为38 度/ m2,按照北京农村实施的峰谷电价,即平电元/kWh 和谷电元/kWh 计算,整个采暖季总费用仅为3368

空压机变频改造方案

由于空压机不排除在满负荷状态下长时间运行的可能性,所以,选型时只能按最大需求来确定电机容量,造成空压机系统余量一般偏大。传统空压机都采用星三角降压启动,但工频启动时电流仍然能达到额定电流的2~3倍,冲击大,会影响到电网的稳定性。且大多数空压机是连续运行,由于一般空压机的电机本身不能根据压力需求的变动来实现降速,使电机输出功率与现场实际压力需求量相匹配,导致在用气量少的时候仍然要空载运行,造成巨大的电能浪费。据统计,空压机占大型工业设备(风机、水泵、锅炉等)几乎所有的耗电量的15%。空压机的节能改造势在必行。若能采用变频调速技术,当流量需要量减少时,就可以降低电动机的转速,从而较大幅度减小电动机的运行功率,实现节能的目的。 1.变频器应用方案 根据招标要求,我方为该空压机组安装一台变频器,并且采用一拖二的方式启动两台ZR250型空压机,我公司选用的是丹佛斯FC102型250KW变频器,此变频器可以软启动两台空压机,正常工作时,启动一台ZR110空压机,此时压力并不能满足需求,需要变频器启动一台ZR250空压机,并根据压力需求自行调节电机转速,当ZR110 变频器出现故障时,可以同时启动两台ZR250空压机,并可以实现工变频切换。 节能原理:变频调速系统以输出压力作为控制对象,由PLC、变频器、压力传感器、电机组成闭环恒压控制系统,工作压力值可由触摸屏直接设置,现场压力由传感器来检测,转换成4~20mA电流信号后反馈到PLC,PLC通过检测值和设定值进行比较,

进行PID调节控制变频器转速,达到空压机恒压供气和节能的目的。变频节能表现在: 1、变频器通过调整电机的转速来调整气体流量,使电机的输出功率与流量需求成正比,保持电机高效率工作,功率因数高,无功损耗小,节电效果明显; 2、按严格的EMS标准设计,高速低耗的IGBT以及采用了高效的失量控制算法,使得V&T变频器谐波失真和电机的电能损耗最小化; 3、自动快速休眠使得空载时间变短,电机完全停止,最大程度节能。无冲击启动及低频大转矩特性保证变频器随时带载起停。 节能空间: 灰色:变频空压机功耗曲线 绿色:节能部分A,变频空压机比普通空压机节省的能量 浅蓝色:节能部分B,变频空压机可能节省的能量。B为当变频空压机已进入空久停机休眠阶段,而普通空压机没有进入休眠时,变频空压机节省的能量。如果变频空压机也没有进入休眠,则B=0。 刚启动或休眠后启动时,普通空压机和变频空压机均运行在额定功率附近。因此变频空压机可以保证充气的快速性。 2.1、启动电流小,对电网无冲击 变频器可使电机起动、加载时的电流平缓上升,没有任何冲击;可使电机实现软停,避免反生电流造成的危害,有利于延长设备的使用寿命; 2、输出压力稳定 采用变频控制系统后,可以实时监测供气管路中气体的压力,使供气管路中的气体的压力保持恒定,提高生产效率和产品质量; 3、设备维护量小 空压机变频启动电流小,小于2倍额定电流,加卸载阀无须反复动作,变频空压机根据用气量自动调节电机转速,运行频率低,转速慢,轴承磨损小,设备使用寿命延长,维护工作量变小。 4、噪音低 变频根据用气需要提供能量,没有太多的能量损耗,电机运转频率低,机械转动噪音因此变小,由于变频以调节电机转速的方式,不用反复加载、卸载,频繁加卸载的噪音也没有了,持续加压,气压不稳产生的噪音也消失了。总之,采用变频恒压控制系统后,不但可节约一笔数目可观的电力费用,延长压缩机的使用寿命,还可实现恒压供气的目的,提高生产效率和产品质量。

压缩机接线原理图

压缩机的接线原理图 RSIR CSR 1.在压缩机的上面有3根接线柱、分别是S、M、C,其中S是启动绕组、M是 运行绕组、C是公共端. 运行与启动端阻值最大; 启动与公共端阻值中等; 运行与公共端阻值最小 注:1 ---- 热保护继电器 2 ---- 启动继电器 3 ---- 工作电容 4 ---- 启动电容M—C ---- 主线圈M---C ---- 启动线圈

接线时用万能表找出电阻最大的两个脚,剩下的那一只脚是中心抽头接零线,再找出与中心抽头电阻小的那一个脚,接保护器至电源,剩下的那只脚接电容。 维修中常遇到压缩机用四线接双电容的PTC启动器损坏,在买不到原机配件情况下,完全可以自己代换。原机启动器是两个ptc组合在一起的。图中ptc1和运转电容c1(容量小的是运转电容)并联,ptc2和启动电容c2(容量大的是启动电容)串联。弄清了接线原理就可以动手改制了,实际代换可用2只普通的ptc接到电路中,处理好绝缘即可。 压缩机好坏测量: 2.用万用表测量其阻值、其中SC和MC之间的阻值加起来等于MS之间的阻值就是正常了,比如SC之间的阻值是5欧、MC之间的阻值是 3.5欧、那么MS之间的阻值就是8.5欧(允许有一点偏差,但不会很大)。如果阻值偏移过大,或者3者之间没有阻值、那么这个压缩机肯定是坏的!! 3.有的时候、用万用表测量是正常的、但压缩机内部短路是测量不出来的。最简单的办法就是、用万用表量一下有没有通上电,如果通上电了不启动的话、你可以更换一个启动电容(50UF)的、如果还不启动的话、那么就是压缩机坏 了! 压缩机三端端子 的判定 4压缩机是一个单相的。如果说明书中电路图没有标明,那只能用万用表测量电阻了。万用表电阻低档,分别每两个头测量电阻共三次,有一次电阻最大,那剩下的那个就是公共线,接电源零线。和公共线电阻小的是主绕阻,接电源火线,和电容的一端。剩下那个是运行绕阻,接电容剩的那端。

空压机变频节能及余热回收方案

节能项目方案设计 1空压机变频节能改造 1.1企业空压机系统基本情况介绍 某某科技(深圳)有限公司共有五台空气压缩机,其中三台用于A栋厂房,两台螺杆式空压机37kW、型号:OGFD37;一台活塞式空压机15kW、型号:AW19008。供A栋厂房冲压车间、自动组装机以及研发部门用气。另外两台螺杆式空压机22kW、型号:OGFD22,供C栋厂房注塑车间、机加工车间、组装、包装车间用气。 1.2空压机变频节能改造分析 一:原空压机系统工况的问题分析 1.主电机虽然以星-角降压起动,但起动时的电流仍然很大,会影响 电网的稳定及其它用电设备的运行安全。 2.主电机时常空载运行,属非经济运行,电能浪费最为严重。 3.主电机工频运行致使空压机运行时噪音很大。 4.主电机工频起动设备的冲击大,电机轴承的磨损大,所以对设备 的维护量大。 空压机节能改造的必要性: 鉴于以上对空压机的原理说明以及目前的工况分析,我们认为对空压机的节能降噪改造是必要的,这样不仅能够节约大量的运行费用,降低生产成本,同时还可以降低空压机运行时产生的噪音,减少设备维护费用。 二:螺杆式空压机的工作原理介绍 单螺杆空压机空气压缩机工作原理,如图1所示为单螺杆空气

压缩机的结构原理图。螺杆式空气压缩机的工作过程分为吸气、密封及输送、压缩、排气四个过程。当螺杆在壳体内转动时,螺杆与壳体的齿沟相互啮合,空气由进气口吸入,同时也吸入机油,由于齿沟啮合面转动将吸入的油气密封并向排气口输送;在输送过程中齿沟啮合间隙逐渐变小,油气受到压缩;当齿沟啮合面旋转至壳体排气口时,较高压力的油气混合气体排出机体。 图1 单螺杆空气压缩机原理图 三:压缩气供气系统组成及空压机控制原理 ⑴、压缩气供气系统组成 工厂空气压缩气供气系统一般由空气压缩机、过滤器、储气罐、干燥机、管路、阀门和用气设备组成。如图2所示为压缩气供气系统组成示意图。

螺杆式空气压缩机变频改造方案

螺杆式空气压缩机变频改造方案 1、空气压缩机系统的一般控制过程: 按下启动按钮,控制系统接通启动器线圈并打开断油阀,空气压缩机在卸载模式下启动,这时进气阀处于关闭位置,而放气阀则打开以排放油气分离器内的压力。等降压2秒后空压机开始加载运行,系统压力开始上升。如果系统压力上升到压力开关上限值,即起跳压力时,控制器使进气阀关闭,油气分离器放气,压缩机空载运行。当系统压力下降至压力开关下限值,即回跳压力时,控制器使进气阀打开,油气分离器放气阀关闭,压缩机满载运行。 2、加装变频器进行节能改造方法: 2.1、空压机的改造主要是电路的改造,通过替代原工频供电方式,同时备用工频供电方式。空压机主电路采用星三角降压启动方式,将变频输出直接串接入星三角输入回路上端,注意空压机压缩机散热风机输入电源及控制器回路电源的此时应与变频器的输入电源向并联。加装变频器后工变频回路同时存在,应做工变频电气互锁控制,避免误操作情况下损坏变频器。 2.2、根据不同的控制要求,控制方式介绍以下2种。 2.2.1、变频恒压供气模式 实现方式:取系统压力信号,由储气罐压力值作为恒压供气系统参考值,通过加装压力变送器将气压值转化为电信号传送至变频器,设置变频器PID控制数据,变频器根据压力变化自动调节电动机转速实现节能运行。 特点:控制容易实现,变频调节范围窄系统响应快;空压机主要运行在加载状态,电磁阀开关频率低,调度平滑,系统噪音小。 2.2.2、变频器上下限运行模式 实现方式:变频器根据空压机进气电磁阀状态设置上限和下限运行频率状态。或者是加装压力检测控制器,根据所需压力大小设置上下限关断点,控制变频器的运行频率。空压机启动及系统压力达上限值时为空压机空载状态,电磁阀状态为关断,对应变频器下限频率运行;系统压力达下限值时空压机加载状态,电机满载运行,电磁阀状态为打开,对应变频器上限频率运行。

空调用涡旋压缩机的优化研究

半;o热气除霜的同时可以带回沉积在系统中的冷冻油,便于回油。因此这种除霜方式特别适用于长距离的分体展示柜系统。我们采用的热气除霜与传统常用的方法有差别,该系统特点如下: 把由压缩机排出的高压热气不经过冷凝器,直接经热力膨胀阀与蒸发器间的旁通送入蒸发器进行除霜。由于热气在蒸发器除霜后变为制冷剂液体,流向压缩机方向,因此必须安装气液分离器。 我们分别按上述计算值进行试验,试验过程主要通过视液镜观察压缩机油位及展示柜温度变化情况。试验表明,按上述管道管径及长度连接压缩冷凝机组和展示柜,制冷系统运行24h后,压缩机油位保持正常,并且展示柜温度能够满足要求,这说明上述管径选择方法是正确可行的。 6结论 (1)对于分体展示柜制冷系统,当压缩冷凝机组与蒸发器间有较大高差时,为了满足小负荷时回油要求,采用双回气立管设计能取得很好的效果。 (2)随着制冷量的下降,或随着压缩冷凝机组与展示柜间的垂直距离和水平距离的减小,应相应地减小管道直径。 (3)对于管道较长的分体展示柜制冷系统来说,回油的好坏除了与油在制冷剂中的溶解度有关外,主要是由回气管径的选择决定的。 本文给出了高位差分体一拖二展示柜制冷系统管道管径的选择计算方法,并通过试验证明了该方法的可行性,对研究分体一拖多展示柜高位差、长管道的管径选择具有指导作用。 参考文献 1Gosney.WB Principles of Refrigeration.Cambrige Un-i versity Press,1982 2COPELAND压缩冷凝机组产品样本.1996 3郭庆堂主编.实用制冷工程设计手册.中国建筑工业出版社,1994 作者简介:刘占杰,男,30岁,青岛大学制冷与空调教研室讲师,现在上海理工大学攻读博士学位。通讯地址:200093上海市军工路516号上海理工大学制冷与低温技术研究所。 空调用涡旋压缩机的优化研究* 江苏理工大学张立群 大连三洋压缩机有限公司刘永波 摘要讨论了涡旋压缩机的几个主要结构参数的优化方法,为了提高能效比,对涡旋圈数N、背压孔位置角B、涡旋齿厚t进行了优化并得到了满意的结果。 关键词涡旋压缩机优化能效比 1前言 涡旋压缩机在原理上具有许多优点,然而要使这些优点真正反映在产品中,则必须有正确合理的设计方案和高精度的加工及严格的装配工艺,其中设计方案是否合理对压缩机的性能影响很大,是开发产品时首先要解决的问题。压缩机的传统设计方法是经验、半经验方法,费时、费工、效率低,而且最终方案并不是最佳方案,需进一步改进。而优化设计方法是随着计算机的广泛应用发展起来的一种新型工程设计方法,它以能够正确反映压缩机实际工作过程的数学模型为基础,利用计算机求解,得到压缩机性能参数与各设计变量间的相互关系,再运用适当的寻优方法,借助计算机得出最优的设计方案。 2压缩机工作过程数学模型 51 Vol.28,No.1,2000FLUID MACHINERY *收稿日期:1999-08-09

空调压缩机接线端子安装方法

空调坏了如果判断不出是哪里坏了那可是个十分头痛的问题,弄个几天都修不好一台空调,所以怎样判断空调压缩机是否正常的方法,怎么判断空调压缩机的好坏,空调压缩机接线端子以及空调压缩机的接线方法。 不同厂家的压缩机其接线柱方位虽然不同,但在每个接线柱旁都标有字母;对于单相压缩机而言,C表示公共端,R表示主绕组端,S表示付绕组端。各绕组接线一定要按图示方法,否则压缩机不能正常工作,甚至烧毁。 单相压缩机公共接线端C、主绕组端R 、付绕组端S的判定方法: 根据单相压缩机的主副绕组线径、匝数不一样其直流电阻值也不一样的原理(主绕组C~R阻值较小,副绕组C~S阻值略大,R~S 阻值是主副绕组阻值之和),用万用表电阻档,假设任一接线端子为

C端,将万用表一只表笔与假设公共端接触,另一支表笔分别与另外两个端子接触,测量阻值若分别为:3.5Ω、4.2Ω。则假设正确,那么,电阻值较小的另一端为主绕组端R,电阻值略大的另一端为付绕组端S。用同样的方法最多假定三次就可以找出公共端C、主绕组端R和付绕组端S。 空调压缩机是3个接线点,分别是启动绕组和运行绕组,你可以用万用表把以上绕组区分开来,公共点找出来,启动绕组的电阻小于运行绕组,3个点区分开来以后下一步就是接线,记住公共点一般用字母标注为C,用零线接公共点C,用火线接电容的其中的一个点,电容的另一个点接空调压缩机的启动绕组的一个点,压缩机的运行绕组的点连接到刚才一开始电容的火线上就可以了。 蚌埠富源电子科技有限责任公司是一家专业从事金属—玻璃封装类产品的研发、生产和销售的高科技企业。目前已开发出的主要产

品有密封连接器、金属封装外壳、传感器基座、锂电池盖组、大功率LED灯支架等五大类几百种产品,广泛应用于航空、航天、雷达、船舶、医疗、高档汽车等领域,产品已销往国内大型军工企业及欧美发到国家的民用航空航天厂家。公司内具有完善的质量管理体系,拥有高素质的管理人才,对内实行全面质量管理,严把质量关,尽最大努力为顾客提供高质量的产品。

直流变频涡旋压缩机和数码涡旋压缩机对比副本

直流变频涡旋压缩机和数码涡旋压缩机对比副 本 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

直流变频涡旋压缩机和数码涡旋压缩机对比 直流变频涡旋压缩机和数码涡旋压缩机是目前变容量技术(根据负荷变化要求来调节制冷剂流量)的两大标志性代表。两种压缩机的主要应用领域都为多联机空调系统,但较之已经进入市场多年的变频多联机系统,数码涡旋多联机系统只能算作一种新型产品。下面仅就上述两种压缩机及其空调系统进行比较。 1.工作原理 1)直流变频涡旋压缩机是由电机定子产生的旋转磁场与转子的永磁场直接作用实现压 缩机运转的。通过直流变频器来改变输入电压和频率,从而对电机进行调速。当 室内负荷要求提高时,压缩机的电机转速加快,容量增大;当室内负荷要求降低 时,压缩机的电机转速放慢,从而使容量减小。 2)数码涡旋压缩机是将吸气旁通的卸载控制应用于涡旋压缩机上开发出来的变容量压 缩机。其原理是在定涡旋盘顶部加装一个可以上下移动的活塞,活塞顶部为调节 室,通过直径的排气孔与排气腔相通,此外还通过设有外接电磁阀的旁通管和吸 气管相连。电磁阀开启时,调节室内的排气被释放至低压吸气管,导致活塞上移 (仅为1mm),定涡旋盘也随之上移,使动、定涡旋盘分离“卸载”,形成了无制 冷剂蒸气被压缩机的状态;电磁阀关闭时,活塞上下侧的压力为排气压力,压缩 机“加载”,恢复压缩过程,这样就可实现0和100%两档容量调节。通过改变电 磁阀的开闭时间,就可以实现压缩机10%~100%容量调节。 2.可靠性 1)直流变频涡旋压缩机是由日本空调厂家于上世纪80年代首次推出的产品。至今已 有20多年的开发、使用经验,成熟度较高,而且价格也在逐渐下降。在日本,直 流变频技术的应用逐年增加,到2002年已占到整个空调器产品的%。 2)数码涡旋压缩机是美国谷轮公司于1995年推出的产品,产品应用于整机系统中的 运行特性目前仍然存在许多争议,相关研究水平和应用成果远不如变频压缩机系 统那么丰富。最明显的缺陷是因为动、定涡旋盘要通过沿轴向脱离分开一段距离 来实现变容量调节功能,而这种涡旋盘的频繁开闭会极大地损伤其使用寿命。例 如,按照20s一个“加载/卸载”周期、连续工作10年的使用寿命来计算,其 动、定涡旋盘的开闭次数将达到上千万次。如此频繁的开闭会加速动、定涡旋盘

相关文档
最新文档