温度对混凝土性能的影响

温度对混凝土性能的影响
温度对混凝土性能的影响

1.温度与混凝土性能的关系

1.1温度变化对水泥水化及混凝土强度的影响

混凝土拌合物是由水泥、集料、拌和用水及外加剂等组成的混合物。在混合物拌制过程中主要发生的化学变化是水泥的水化反应,水泥水化速度与水泥细度有关,同时也是随着温度的变化而变化的,温度越高,反应越快。其间的关

系服从普遍适用于各种物理化学反应的通用的Arrhenius定律。

根据许多学者研究,硅酸盐水泥在常温下水化时的激活能E值约在30—40kJ/mol之间变化。设E=40kJ/mol,则温度从20℃上升至40℃时反应速率k 值将增加185%,温度上升至60℃时k值将增加624%。反之,如果温度降低至10℃和0℃(273K),则k值将分别减小44.6%和7.03%。简言之,如果说温度是按算术级数升高的话,那么反应速率是在实用的温度范围内以每升高10℃大约增长70%的速率按几何级数增长的,反之亦然。由此可见水化速率要比温度的变化强烈的多。这给低温条件下混凝土的强度增长速率提供了研究依据。

在上世纪80年代初,Carino在美国国家标准局做了一项试验,用水灰比等于0.43的标准试件在指定温度下浇制、密封和养护,直至指定龄期测定其抗压强度,不同温度下的混凝土强度增长如图1所示。

试验说明,混凝土浇筑后强度的增长速率是随着养护温度的增高而加快的,也是随着龄期的增长而渐减的。温度对混凝土强度的影响主要是在形成强度

的前10d左右的时间,而对混凝土在28天后的强度影响比较小。

1.2温度对混凝土坍落度的影响

混凝土拌和物的和易性施工经验告诉我们,在炎热天气下同样材料制成同等稠度的混凝土拌和物总要比寒冷天气多用一些水。同样拌和物的坍落度确实是随着它的温度升高而减小的。试验结果显示,为了使一般混凝土拌和物具有相

等的坍落度(75mm),拌和物的温度每升高10℃,每1m3就需要增加约7kg的拌和用水(见图2)。

拌和物的稠度(坍落度)主要取决于固体颗粒间的相互摩擦,除了水对这种内摩擦有一定的润滑作用以外,还与其中所含气泡有关,空气的存在等于增加了水泥浆含量而减少了集料含量,因此可以较为明显地削减稠度。

气泡的形成与水的黏滞度有关,而水的黏滞度是随着温度的升高而减小的。因此,在较高温度下为使拌和物获得同样稠度通常需要较常温多用一些水,以增加气泡含量,从而增加拌合物的流动性。同样,在低温条件下拌和混凝土时要相应减少拌和用水,以防止用水过多产生泌水或坍落度过大的现象。

1.3低温下的混凝土强度研究

在混凝土浇筑后尚未硬化前,低温下内部水在结冰时体积会发生9%左右的增长,同时产生约2500kg/cm2的冰胀应力。这个应力值常常大于水泥石内部

形成的初期强度值,使混凝土受到不同程度的破坏(即早期受冻破坏)而降低强度。此外,当水变成冰后,还会在骨料和钢筋表面上产生颗粒较大的结晶,减弱水泥浆与骨料和钢筋的黏结力,从而影响混凝土的抗压强度。当冰凌融化后,又

会在混凝土内部形成各种各样的空隙,而降低混凝土的密实性及耐久性。由此可见,在冬季混凝土施工中,水的形态变化是影响混凝土强度增长的关键。

国内外许多学者对水在混凝土中的形态进行大量的试验研究结果表明,新浇混凝土在冻结前有一段预养期,可以增加其内部液相,减少固相,加速水泥的水化作用。试验研究还表明,混凝土受冻前预养期愈长,强度损失愈小。混凝土化冻后(即处在正常温度条件下)继续养护,其强度还会增长,不过增长的幅

度大小不一。对于预养期长,获得初期强度较高(如达到R28的35%)的混凝土

受冻后,后期强度几乎没有损失。而对于安全预养期短,获得初期强度比较低的混凝土受冻后,后期强度都有不同程度的损失。由此可见,混凝土冻结前,要使其在正常温度下有一段预养期,以加速水泥的水化作用,从而避免产生混凝土早期冻害。随着混凝土龄期增加,混凝土抗冻性能也得到提高。因水泥不断水化,可冻结水量减少,水中溶解盐浓度随水化深入而浓度增加,冰点也随龄期而降低,抵抗冻融破坏的能力也随之增强。所以延长冻结前的养护时间可以提高混凝土的抗冻性。使混凝土获得不遭受冻害的最低强度,一般称临界强度,我国规定临界

强度为不低于设计标号的30%,即不得低于35kg/cm2。

2.冬季混凝土施工注意事项

2.1混凝土冬季施工应注意的问题

从以上分析可以看出,温度在混凝土的拌制和浇注后强度的形成过程中有着十分重要的作用。一般说来混凝土的养护温度宜热不宜冷,浇灌入模时的温度宜冷不宜热,冬季施工亦是如此。对于大体积结构物,为了防止拌和物冻结、凝结过缓,入模温度也不宜过低。为了防止混凝土受冻和保证强度增长,应对施工地点进行临时性的围护,并对混凝土的表面和模板用隔热材料掩盖保温养护,必要时可用蒸汽或电热加温。浇灌后宜用成熟度法或其他测试方法时时监测混凝土强度,直至达到预定的强度要求(例如临界防冻强度、脱模强度、预应力张拉强度),方可停止上述措施。为了保证混凝土的浇灌温度,可将集料贮存在温暖的场所,必要时可对集料和水进行加热。

2.2混凝土冬季施工方法的选择

在实践中,要根据施工时的气温情况,工程结构状况(工程量、结构厚大程度与外露情况),工期紧迫程度,水泥的品种及价格,早强剂、减水剂、抗冻剂的性能及价格,保温材料的性能及价格,热源的条件等,来选择合理的施工方法。一般来说,对于同一个工程,可以有若干个不同的冬季施工方案。一个理想的方案,应当用最短的工期、最低的施工费用,来获得最优良的工程质量,也就是工期、费用、质量最佳化。目前,基本上采用以下几种方法。

(1)调整配合比法。主要适用于0℃左右的混凝土施工。具体做法:一

是选择适当品种的水泥是提高混凝土抗冻的重要手段。试验结果表明,应使用早

强硅酸盐水泥。该水泥水化热较大,且在早期放出强度最高,一般3d抗压强度大约相当于普通硅酸盐水泥7d的强度,效果较明显。二是尽量降低水灰比,稍

增水泥用量,从而增加水化热量,缩短达到龄期强度的时间。三是掺用引气剂。在保持混凝土配合比不变的情况下,加入引气剂后生成的气泡,相应增加了水泥浆的体积,提高拌和物的流动性,改善其黏聚性及保水性,缓冲混凝土内水结冰所产生的水压力,提高混凝土的抗冻性。四是掺加早强外加剂,缩短混凝土的凝

结时间,提高早期强度。应用较普遍的有硫酸钠(掺用水泥用量的2%)和复合早强试水剂(掺水泥用量的5%)。五是选择颗粒硬度高和缝隙少的集料,使其热膨胀系数和周围砂浆膨胀系数相近。

(2)蓄热法。主要用于气温-10℃左右,结构比较厚大的工程。做法是:

对原材料(水、砂、石)进行加热,使混凝土在搅拌、运输和浇灌以后,还储备有相当的热量,以使水泥水化放热较快,并加强对混凝土的保温,以保证在温度

降到0℃以前使新浇混凝土具有足够的抗冻能力。此法工艺简单,施工费用不多,

但要注意内部保温,避免角部与外露表面受冻,且要延长养护龄期。

(3)外部加热法。主要用于气温-10℃以上,而构件并不厚大的工程。

通过加热混凝土构件周围的空气,将热量传给混凝土,或直接对混凝土加热,使混凝土处于正温条件下能正常硬化。火炉加热:一般在较小的工地使用,方法简单,但室内温度不高,比较干燥,放出的二氧化碳会使新浇混凝土表面碳化,影响质量。蒸汽加热:用蒸汽使混凝土在湿热条件下硬化。此法较易控制,加热温度均匀。但因其需专门的锅炉设备,费用较高,且热损失较大,劳动条件亦不理想。电加热:将钢筋作为电极,或将电热器贴在混凝土表面,使电能变为热能,以提高混凝土的温度。此法简单方便,热损失较少,易控制,不足之处是电能消耗量大。红外线加热:用高温电加热器或气体红外线发生器对混凝土进行密封辐射加热。

(4)使用外加剂法。在-10℃以上的气温中,对混凝土拌和物掺加一种

能降低水的冰点的化学剂,使混凝土在负温下仍处于液相状态,水化作用能继续进行,从而使混凝土强度继续增长。目前常用有氧化钙、氯化钠等单抗冻剂及亚硝酸钠加氯化钠复合抗冻剂。

上述4种冬季施工方法都有其利弊,适用范围也都受一定条件的制约,

应根据现场条件,采用一种或两种以上施工方法结合作用。

混凝土强度与温度和龄期增长曲线图精编版

混凝土强度与温度和龄期增长曲线图 组混凝土立方体试件,在标准条件下养护的1、2、3、7、28d的强度值。 3、用估算法估算混凝土强度的步骤: 1)用标准养护试件1~7d龄期强度数据,经回归分析拟合成下列形式曲线方程:f=aeb/D 式中f——混凝土立方体抗压强度(N/mm2); D——混凝土养护龄期(d); a、b——参数。 2)根据现场实测混凝土养护温度资料,用下式计算已达到的等效龄期(相当于20℃标准养护的时间)。 t=ΣαT·tT(2) 式中t——等效龄期(d); αT——温度为T℃时的等效系数,按下表使用; tT——温度为T℃的持续时间(h)。 3)以等效龄期t代替D带入公式(1)可算出强度。 等效系数αT 温度等效温度系数αT温度等效温度系数αT温度等效温度系数αT 50 3.16 28 1.45 6 0.43 49 3.07 27 1.39 5 0.40 48 2.97 26 1.33 4 0.37 47 2.88 25 1.27 3 0.35 46 2.80 24 1.22 2 0.32 45 2.71 23 1.16 1 0.30 44 2.62 22 1.11 0 0.27 43 2.54 21 1.05 1 0.25 42 2.46 20 1.00 -2 0.23 41 2.38 19 0.95 -3 0.21

40 2.30 18 0.91 -4 0.20 39 2.22 17 0.86 -5 0.18 38 2.14 16 0.81 -6 0.16 37 2.07 15 0.77 -7 0.15 36 1.99 14 0.73 -8 0.14 35 1.92 13 0.68 -9 0.13 34 1.85 12 0.64 -10 0.12 33 1.78 11 0.61 -11 0.11 32 1.71 10 0.57 -12 0.11 31 1.65 9 0.53 -13 0.10 30 1.58 8 0.50 -14 0.10 29 1.52 7 0.46 -15 0.09 一、普通混凝土达到1.2N/mm2强度所需龄期参考对照表

浅谈影响型钢混凝土结构抗震性能的因素

浅谈影响型钢混凝土结构抗震性能的因素 浅谈影响型钢混凝土结构抗震性能的因素 摘要:由于型钢混凝土具有刚度大,防火、防腐性能好及重量轻、延性好等优点,因此在土木工程中具有广阔的应用前景。从抗震性能来讲,型钢混凝土结构适用于抗震烈度为6度至9度的多层、高层和一般构筑物。本文总结出了影响型钢混凝土结构抗震性能的六大因素:轴压比、剪跨比、型钢含量和型钢形式、 配箍率、混凝土强度、型钢的锚固形式。 关键字:型钢混凝土;轴压比;剪跨比;配箍率;型钢的锚固形式 中图分类号:TU528文献标识码: A 文章编号: 型钢混凝土组合结构是一种优于钢结构和钢筋混凝土结构的新 型结构,它分别继承了钢结构和钢筋混凝土结构的优点,克服了两者的缺点而产生的一种新型结构体系。型钢混凝土结构充分利用钢(抗拉性能好)和混凝土(抗压性能好)的特点,按照最佳几何尺寸,组成最优的组合构件,这种组合构件具有刚度大的特点,与钢结构相比,防火、防腐性能好,具有较大的抗扭和抗倾覆能力,而且,与钢筋混凝土结构相比,具有重量轻,构件延性好,增加净空高度和使用面积,同时缩短施工期,节约模板,特别是在高层和超高层建筑及桥梁结构中使用组合构件,更加体现了它的承载能力高和能克服混凝土结构施工困难的特点。 由于型钢混凝土结构具有上述特点,因此在土木工程中具有广阔的应用前景。从抗震角度来讲,型钢混凝土结构适用于抗震烈度为6度至9度的多层、高层和一般构筑物。 通过实验,总结出了影响型钢混凝土抗震性能的主要因素为: 1、轴压比 实验和工程实践表明,轴压比是影响型钢混凝土偏心受压构件破坏形式、延性、变形能力和抗震性能的最重要因素。当轴压比超过一定限值时,无论配箍率如何提高,框架柱的延性都不能得到明显改善,

混凝土强度等级对照表

混凝土强度等级对照表 混凝土的抗压强度是通过试验得出的,我国最新标准C60强度以下的采用边长为150mm的立方体试件作为混凝土抗压强度的标准尺寸试件。按照《普通混凝土力学性能试验方法标准》GB/T50081-2002,制作边长为150mm的立方体在标准养护(温度20±2℃、相对湿度在95%以上)条件下,养护至28d龄期,用标准试验方法测得的极限抗压强度,称为混凝土标准立方体抗压强度,以fcu表示。按照GB50010-2010《混凝土结构设计规范》规定,在立方体极限抗压强度总体分布中,具有95%强度保证率的立方体试件抗压强度,称为混凝土立方体抗压强度标准值(以MPa计),用fcu 表示。 依照标准实验方法测得的具有95%保证率的抗压强度作为混凝土强度等级。 按照GB50010-2010《混凝土结构设计规范》规定,普通混凝土划分为十四个等级,即:C15,C20,C25,C30,C35,C40,C45,C50,C55,C60,C65,C70,C75,C80。例如,强度等级为C30的混凝土是指30M Pa≤fcu<35MPa 影响混凝土强度等级的因素主要与水泥等级和水灰比、骨料、龄期、

养护温度和湿度等有关。 混凝土质量的主要指标之一是抗压强度,从混凝土强度表达式不难看出,混凝土抗压强度与混凝土用水泥的强度成正比,按公式计算,当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。一般来说,水灰比与混凝土强度成反比,水灰比不变时,用增加水泥用量来提高混凝土强度是错误的,此时只能增大混凝土和易性,增大混凝土的收缩和变形。 所以说,影响混凝土抗压强度的主要因素是水泥强度和水灰比,要控制好混凝土质量,最重要的是控制好水泥质量和混凝土的水灰比两个主要环节。此外,影响混凝土强度还有其它不可忽视的因素。 粗骨料对混凝土强度也有一定影响,所以,工程开工时,首先由技术负责人现场确定粗骨料,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度比卵石高。 因此我们一般对混凝土的粗骨料粒径控制与不同的工程部位相适应;细骨料品种对混凝土强度影响程度比粗骨料小,但砂的质量对混凝土质量也有一定的影响,施工中,严格控制砂的含泥量在3%以内,因此,砂石质量必须符合混凝土各标号用砂石质量标准的要求。

影响混凝土强度的主要因素

影响混凝土强度的主要因素 硬化后的混凝土在未受到外力作用之前,由于水泥水化造成的化学收缩和物理收缩引起砂浆体积的变化,在粗骨料与砂浆界面上产生了分布极不均匀的拉应力,从而导致界面上形成了许多微细的裂缝。另外,还因为混凝土成型后的泌水作用,某些上升的水分为粗骨料颗粒所阻止,因而聚集于粗骨料的下缘,混凝土硬化后就成为界面裂缝。当混凝土受力时,这些预存的界面裂缝会逐渐扩大、延长并汇合连通起来,形成可见的裂缝,致使混凝土结构丧失连续性而遭到完全破坏。强度试验也证实,正常配比的混凝土破坏主要是骨料与水泥石的粘结界面发生破坏。所以,混凝土的强度主要取决于水泥石强度及其与骨料的粘结强度。而粘结强度又与水泥强度等级、水灰比及骨料的性质有密切关系,此外混凝土的强度还受施工质量、养护条件及龄期的影响。 1)水灰比 水泥强度等级和水灰比是决定混凝土强度最主要的因素。也是决定性因素。 水泥是混凝土中的活性组成,在水灰比不变时,水泥强度等级愈高,则硬化水泥石的强度愈大,对骨料的胶结力就愈强,配制成的混凝土强度也就愈高。如常用的塑性混凝土,其水灰比均在0.4~0.8之间。当混凝土硬化后,多余的水分就残留在混凝土中或蒸发后形成气孔或通道,大大减小了混凝土抵抗荷载的有效断面,而且可能在孔隙周围引起应力集中。因此,在水泥强度等级相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土强度也愈高。但是,如果水灰比过小,拌合物过于干稠,在一定的施工振捣条件下,混凝土不能被振捣密实,出现较多的蜂窝、孔洞,将导致混凝土强度严重下降。参见图3—1。 图3—1混凝土强度与水灰比的关系 a)强度与水灰比的关系 b)强度与灰水比的关系 2)骨料的影响 当骨料级配良好、砂率适当时,由于组成了坚强密实的骨架,有利于混凝土强度的提高。如果混凝土骨料中有害杂质较多,品质低,级配不好时,会降低混凝土的强度。 由于碎石表面粗糙有棱角,提高了骨料与水泥砂浆之间的机械啮合力和粘结力,所以在原材料、坍落度相同的条件下,用碎石拌制的混凝土比用卵石拌制的混凝土的强度要高。 骨料的强度影响混凝土的强度。一般骨料强度越高,所配制的混凝土强度越高,这在低水灰比和配制高强度混凝土时, 特别明显。骨料粒形以三维长度相等或相近的球形或立方体

影响混凝土强度的主要因素

影响混凝土强度的主要因素 1.影响混凝土强度的因素很多,从内因来说主要有水泥强度、水灰比和骨料质量。 水泥强度和水灰比: 混凝土的强度主要来自水泥石以及与骨料之间的粘结强度。水泥强度越高,则水泥石自身强度及与骨料的粘结强度就越高,混凝土强度也越高。试验证明,混凝土与水泥强度成正比关系。水泥完全水化的理论需水量约为水泥重的23%左右,但实际拌制混凝土时,为获得良好的和易性,水灰比大约在0.40--0.65之间,多余水分蒸发后,在混凝土内部留下孔隙,且水灰比越大,留下的孔隙越大,使有效承压面积减少,混凝土强度也就越小。另一方面,多余水分在混凝土内的迁移过程中遇到粗骨料时,由于受到粗骨料的阻碍,水分往往在其底部积聚,形成水泡,极大地削弱砂浆与骨料的粘结强度,使混凝土强度下降。因此,在水泥强度和其他条件相同的情况下,水灰比越小,混凝土强度越高,水灰比越大,混凝土强度越低。但水灰比太小,混凝土过于干稠,使得不能保证振捣均匀密实,强度反而降低。试验证明,在相同的情况下,混凝土的强度( Mpa)与水灰比呈有规律的曲线关系,而与灰水比则成线性关系。 2 影响强度的其它因素

为了使混凝土能达到预定的强度,还必须在施工中搅拌均匀、捣固密实,养护良好并使之达到规定的龄期。 (一)施工条件的影响:施工条件是确保混凝土结构均匀密实、硬化正常、达到设计要求强度的基本条件。在施工过程中必须把拌合物搅拌均匀,浇注后必须捣固密实,且经良好的养护才能使混凝土硬化后达到预定的强度。采用机械搅拌比人工搅拌的拌合物更均匀,同时采用机械捣固的混凝土更密实,因此机械捣固可适用于更低水灰比的拌合物;能获得更高的强度。改进施工工艺性能也能提高混凝土强度,如采用分次投料搅拌工艺、高速搅拌机搅拌、高频或多频振捣器振捣、二次振捣工艺都会有效的提高混凝土的强度。 (二)养护条件的影响:为了获得质量良好的混凝土,混凝土成型后必须在一定的养护条件下(包括养护温度)进行养护,目的是保证水泥水化的正常进行,以达到预定的强度和其他性能。周围环境湿度是保证水泥正常水化、混凝土顺利成型的一个重要条件。在适当的湿度下,水泥能正常水化,使混凝土强度充分发展。如果湿度不足,混凝土表面会发生失水干燥现象,迫使内部水分向表面迁移,造成混凝土结构疏松、干裂,不但降低强度,而且还将影响混凝土的耐久性能。环境温度对水泥水化作用的影响是显著的。养护温度高,可以加快水泥水化速度,混凝土早期强度高;反之,混凝土在低温下强度发展相应迟缓,尤其温度在冰点以下

温度对混凝土质量的影响

现场试验 20±5℃ 便于操作的场地:整理资料的工作室(用于记录、台账等);制作试件的操作室(混凝土预养护温度20±5℃);标准养护室(温度20±2℃,相对湿度95%以上);值班休息室等。同时应制定相应的规章制度上墙。一般试验操作室(含工作室)要求使用面积10~15m2。标准养护室根据工程的大小建立,面积一般为5~15m2,室内墙面、顶面做聚苯材料保温,安装温湿度自动控制器(制冷制热、喷水),保证养护室温度20±2℃,相对湿度95%以上。 600℃ 实体检测强度:以前工程结构验收时,往往采用回弹的方法对结构构件进行强度检测。由于回弹是利用构件表面硬度换算为构件抗压强度,受各种外界因素影响较大(平整度、光洁度、密实度、碳化)所以评定验收存在较多误差。现在采用实体验收,即:在建筑结构安全重要部位浇注混凝土时多成型一组试件,与结构同时进行养护,当养护温度与时间积累计达到600℃×天的积时,将此试件送交有资质的试验室进行抗压强度检测,数理统计后再乘1.1系数取用。

外加剂配制 80℃ 外加剂在配置大体积混凝土中有至关重要的作用:有效减水,减少混凝土中自由水,从而减小后期的收缩;延缓混凝土的凝结时间,使混凝土水化速度放慢,使强度增长推迟,应力产生也会持后;适当加入膨胀剂在充分湿热养护的条件下,能产生部分膨胀值,以抵消硬化后的部分收缩(内部最高温度小于80℃时才有此效果)。 配合比 水化热温度 水泥是混凝土产生热源的最根本的材料,用量的多少与温度高低有直接的关系。利用外加剂的作用,在水灰比不变的前提下尽量降低水泥用量,减少水化热,降低温度。采取增加掺合料的方法,用低水胶比保证强度混凝土。 混凝土中总用水量的20%左右用于水泥水化,其余均为工作性要求。当总用水量越多时,水泥水化的量就会增加,前期水化会越充分,速率也会越快,对整体控制温升值很不利。所以有效减少水的用量,也是很关健的措施。 浇注温度

粉煤灰对混凝土性能有何影响

粉煤灰具有三大效应: (1)表面效应:粉煤灰表面可吸附浆体中的某些离子,有利于粉煤灰固化混凝土中的某些有害离子以及作为晶核形成水化产物。 (2)填充效应:粉煤灰与水泥颗粒粒径的差异可以填充水泥和骨料孔隙中,减小混凝土的孔隙率,增加混凝土密实性; (3)火山灰活性效应:粉煤灰中的活性SiO2与水泥水化产物CH发生二次反应,生成C-S-H凝胶填充骨料—水泥浆体界面层孔隙,改善混凝土界面结构,提高强度和耐久性。 劣质粉煤灰的主要特点是: 玻璃珠体少,需水量大,使用后易造成混凝土泌水或滞后泌水,降低混凝土的工作性能,易导致混凝土28d强度不足,后期强度增长低,造成混凝土工程质量不合格。 优质粉煤灰对混凝土的性能影响 (1)工作性能 粉煤灰可以改善胶凝材料体系的颗粒级配,降低空隙率,释放水泥颗粒间的“填充水”,改善混凝土工作性。 粉煤灰中含有大量球形玻璃体,起到“滚珠、轴承”润滑效应,减少颗粒间的摩擦力,改善混凝土的工作性。 粉煤灰活性大大低于水泥活性,可以降低混凝土坍落度损失。优质粉煤灰对外加剂的吸附低于水泥,使用优质粉煤灰相当于增加外加剂用量,混凝土初始坍落度及保持能力都有提高。 粉煤灰的密度小于水泥,等量取代水泥后,混凝土中的浆体量增加,改善混凝土的粘聚性,提高抗离析能力,减水泌水,改善混凝土工作性能,使混凝土具有更好的流动性、密实性、匀质性,便于混凝土的施工。 (2)力学性能 粉煤灰自身不能进行水化反应,只能与水泥水化产物进行二次水化,因此,用粉煤灰等量替代水泥后,早期强度将会降低,随着二次水化的进行,中后期会达到甚至超过不掺粉煤灰的混凝土。随着粉煤灰替代水泥量的增加,早期强度逐渐降低,但掺加粉煤灰的混凝土后期强度增长较快,而且在一定范围内(<50%)随粉煤灰掺量增加而增大。(3)

混泥土强度与温度的关系曲线

混泥土强度与温度的关系曲线

————————————————————————————————作者:————————————————————————————————日期:

22-5-4 混凝土强度估算 1.在冬期施工中,需要及时了解混凝土强度的发展情况。例如当采用蓄热养护工艺时,混凝土冷却至0℃前是否已达到抗冻临界强度;当采用人工加热养护时,在停止加热前混凝土是否已达到预定的强度;当采用综合养护时,混凝土的预养时间是否足够等。在施工现场留置同条件养护试件做抗压强度试验,固然可以解决一部分问题,但所做试件很难与结构物保持相同的温度,因此代表性较差。又由于模板未拆,也不能使用任何非破损方法进行测试。因此,运用计算的方法对混凝土强度进行估计或预测是很有实用价值的。 2.用普通硅酸盐水泥和矿渣硅酸盐水泥拌制的混凝土,在各种养护温度下的强度增长率分别如图22-22和图22-23。 图22-22 用普通硅酸盐水泥拌制的混凝土 图22-23 用矿渣硅酸盐水泥拌制的混凝土 3.用普通硅酸盐水泥和矿渣硅酸盐水泥拌制并掺有早强减水剂的混凝土,在各种养护温度下的强度增长率分别如图22-24和图22-25。

图22-24 用普通水泥拌制并掺有早强减水剂的混凝土 图22-25 用矿渣水泥拌制并掺有早强减水剂的混凝土 4.采用负温混凝土工艺,用普通硅酸盐水泥和矿渣硅酸盐水泥拌制,并掺有适量防冻剂的混凝土,在负温条件下的强度增长率分别如图22-26和图22-27。

图22-26 用普通硅酸盐水泥拌制并掺有防冻剂的混凝土 图22-27 用矿渣硅酸盐水泥拌制并掺有防冻剂的混凝土 5.当混凝土的养护温度为一变量时,混凝土的强度可用成熟度的方法来估算。其原理是:相同配合比的混凝土,在不同的温度、时间下养护,只在成熟度相等,其强度大致相同。计算方法如下: (1)适用范围 本法适用于不掺外加剂在50℃以下正温养护和掺外加剂在30℃以下正温养护的混凝土,亦可用于掺防冻剂的负温混凝土。 本法适用于估算混凝土强度标准值60%以内的强度值。 (2)前提条件 使用本法估算混凝土强度,需要用实际工程使用的混凝土原材料和配合比,制作不少于5组混凝土立方体标准试件,在标准条件下养护,得出1、2、3、7、28d 的强度值。 使用本法同时需取得现场养护混凝土的温度实测资料(温度、时间)。 (3)用计算法估算混凝土强度的步骤 1)用标准养护试件1~7d 龄期强度数据,经回归分析拟合成下列形式曲线方程: D b ae f (22-14) 式中 f ——混凝土立方体抗压强度(N/mm2); D ——混凝土养护龄期(d ); a 、b ——参数。 2)根据现场的实测混凝土养护温度资料,用式(22-15)计算混凝土已达到的等效龄期(相当于20℃标准养护的时间)。 t =ΣαT ·t T (22-15)

温度对混凝土性能的影响讲课教案

温度对混凝土性能的 影响

1.温度与混凝土性能的关系 1.1温度变化对水泥水化及混凝土强度的影响 混凝土拌合物是由水泥、集料、拌和用水及外加剂等组成的混合物。在混合物拌制过程中主要发生的化学变化是水泥的水化反应,水泥水化速度与水泥细度有关,同时也是随着温度的变化而变化的,温度越高,反应越快。其间的关系服从普遍适用于各种物理化学反应的通用的Arrhenius定律。 根据许多学者研究,硅酸盐水泥在常温下水化时的激活能E值约在30— 40kJ/mol之间变化。设E= 40kJ/mol,则温度从20C上升至40C时反应速率k 值将增加185%,温度上升至60C时k值将增加624%。反之,如果温度降低至10C和 0C (273K,则k值将分别减小44.6 %和7.03 %。简言之,如果说温度是按算术级数升高的话,那么反应速率是在实用的温度范围内以每升高10C大约增长70%的速率按几何级数增长的,反之亦然。由此可见水化速率要比温度的变化强烈的多。这给低温条件下混凝土的强度增长速率提供了研究依据。 在上世纪80年代初,Carino在美国国家标准局做了一项试验,用水灰比等于0.43的标准试件在指定温度下浇制、密圭寸和养护,直至指定龄期测定其抗压强度,不同温度下的混凝土强度增长如图1所示。

(I 51并护盟度匀震夏土豈厦必%速皇矣系隔 试验说明,混凝土浇筑后强度的增长速率是随着养护温度的增高而加快 的,也是随着龄期的增长而渐减的。温度对混凝土强度的影响主要是在形成强 度的前10d左右的时间,而对混凝土在28天后的强度影响比较小。 1.2温度对混凝土坍落度的影响 混凝土拌和物的和易性施工经验告诉我们,在炎热天气下同样材料制成同等稠度的混凝土拌和物总要比寒冷天气多用一些水。同样拌和物的坍落度确实是随着它的温度升高而减小的。试验结果显示,为了使一般混凝土拌和物具有相等的坍落度(75mm,拌和物的温度每升高1O C,每1m3就需要增加约7kg 的拌和用水(见图 2)。 W 列30 40 .50 fiO

矿粉对混凝土性能的影响

矿粉对混凝土性能的影响 双击自动滚屏发布者:admin 发布时间:2009-6-5 阅读:652 次【字体:大中小】 矿粉对混凝土性能的影响 矿粉对混凝土性能的影响的研究可以由“矿粉+水泥浆体”到“矿粉+水泥胶砂”再到“矿粉混凝土”逐步进行。但对于普通应用单位,如商品混凝土搅拌站,就不必遵循此规律,可借鉴有关研究成果,直接进行混凝土试验,找出特定条件下的合理配合比。 1. 矿粉对混凝土工作性能和力学性能的影响 1)矿粉比表面积在430m2/kg~520m2/kg之间,掺量在30%~40%范围,增强效应表现得最为显著。 2)单掺矿粉会使混凝土的粘聚性提高,凝结时间有所延长,泌水量有增大的迹象,可能对混凝土泵送带来一定的不利影响; 3)矿粉和Ⅰ级粉煤灰复配配制混凝土,可以充分发挥二者的“优势互补效应”,使混凝土的坍落度增加,和易性好,粘聚性好,泌水得到改善。同时混凝土成本可显著降低。 4)针对水泥-粉煤灰-矿粉胶凝材料体系,在等量取代的前提下,粉煤灰的掺量以不超过20%为宜,粉煤灰和矿粉掺量以不超过40%为宜,同时建议采用60d或90d 强度作为混凝土评定标准,以充分利用混凝土的后期强度。 2. 矿粉对混凝土耐久性的影响 1)混凝土水化热。掺加矿粉,可降低浆体水化热,单掺量小于50%时,水化热降低不明显。当达到70%掺量时,3d和7d水化热分别降低约36%和29%;矿粉和粉煤灰复配,可显著降低浆体3d、7d水化热,采用20%矿粉和20%粉煤灰复配,浆体3d和7d水化热分别降低38%和20%,对要求严格控温的大体积混凝土,矿粉和粉煤灰复配是理想的矿物掺合料组合,可以有效减少混凝土早期温缩裂缝的危险。 2)抗渗性能。混凝土中掺加矿粉或矿粉和粉煤灰复配,发挥掺合料的微集料效应和二次水化反应,可以使混凝土孔径细化,连通孔减少,混凝土密实性提高,从而大幅提高混凝土的抗渗性能。采用库仑电量方法评价,矿粉、粉煤灰和引气剂均

混凝土的养护温度对混凝土的强度的影响曲线图

整体式结构拆模时所需的混凝土强度 混凝土养护温度对混凝土强度的影响

0 3 7 14 21 28龄期 二、自然养护条件下不同温度与龄期的混凝土强度参考百分率(%) 水泥品种和强度硬化 龄期 /d 混凝土硬化时的平均温度/℃ 1 5 10 15 20 25 30 35 32.5级普通水泥2 --19 25 30 35 40 45 3 1 4 20 2 5 32 37 43 48 52 5 24 30 3 6 44 50 5 7 63 66 7 32 40 46 54 62 6 8 73 76 10 42 50 58 66 74 78 82 86 15 52 63 71 80 88 ---

28 68 78 86 94 100 --- 32.5级矿渣水泥、火山灰质水 泥2 ---15 18 24 30 35 3 --11 17 22 26 32 38 5 12 17 22 28 3 4 39 44 52 7 18 24 32 38 4 5 50 55 63 10 25 34 44 52 58 63 67 75 15 32 4 6 5 7 67 74 80 86 92 2 8 48 64 83 92 100 --- 注:本表自然养护指在露天温度(+5℃以上)条件下,混凝土表面进行覆盖,浇水养护或在结构平面上使混凝土在潮湿条件下,强度正常发展的养护工艺。 钢筋下料长度计算

钢筋因弯曲或弯钩会使其长度变化,在配料中不能直接根据图纸中尺寸下料;必须了解对混凝土保护层、钢筋弯曲、弯钩等规定,再根据图中尺寸计算其下料长度。各种钢筋下料长度计算如下: 直钢筋下料长度=构件长度-保护层厚度+弯钩增加长度 弯起钢筋下料长度=直段长度+斜段长度-弯曲调整值+弯钩增加长度 箍筋下料长度=箍筋周长+箍筋调整值 上述钢筋需要搭接的话,还应增加钢筋搭接长度。 下料长度:是按钢筋弯曲后的中心线长度来计算的,因为弯曲后该长度不会发生变化。 外包标注:简图尽寸或设计图中注明的尺寸不包括端头弯钩长度,它是根据构件尺寸、钢筋形状及保护层的厚度等按外包尺寸进行标注的,他有几种不同的标注方法,具体见下图。

影响高性能混凝土工作性能的因素.

随着科学技术和生产力的发展,高性能混凝土应用越来越广泛,如高速铁路、高层建筑,跨海大桥、海底隧道等,高性能混凝土具有独特的优越性,高工作性、高耐久性,在工程中安全使用寿命、经济合理性、环境条件的适应性等方面产生了明显的效益。 高性能混凝土的工作性能主要是保证混凝土结构成型时无原始缺陷,从而保证混凝土的耐久性。良好的工作性能是使混凝土质量均匀、获得高性能,从而安全可靠的前提。 高性能混凝土的工作性能主要包括三部分内容: 1. 流动性:表征拌和物流动的难易程度。 2. 粘聚性:拌和物在搅拌、运输、泵送、浇注、振实过程中不容易出现泌水和离析分层的性能。 3. 可泵性:拌和物在泵压下在管道中移动摩擦阻力和弯头阻力之和的倒数。 影响高性能混凝土的工作性能的因素: 一、砂 砂的粗细程度、细颗粒含量、级配均严重影响高性能混凝土的工作性,高性能混凝土应采用细度模数在 2.6-3.0之间的 II 区砂, 细颗粒含量 0.315mm 筛以下达到15%, 含泥量控制在 2%以下。往往受资源的局限不容易找到上述要求的砂,偃师西梁场使用的砂细度模数在 2.8-3.3之间满足Ⅰ区和Ⅱ区颗粒级配,但 0.315mm 筛以下颗粒含量在 5%以内,混凝土施工过程中经常出现堵管、爆管现象。在保证混凝土的抗压强度、弹性模量、耐久性的前提下,通过提高砂率和细砂与粗砂掺配的方法,满足了混凝土的工作性。二、碎石 碎石的粒径、形状、级配对混凝土所需的水泥浆量有重大影响,从而影响混凝土的工作性能。高性能混凝土应选择针片状含量少、级配良好、石粉含量少的碎石。颗粒级配良好可以减少混凝土所需水泥浆量。高性能混凝土碎石中的泥和石

钢筋混凝土温度作用分析

钢筋混凝土温度作用分析 1概述 温度问题是长期以来困扰超长混凝土结构设计的一大问题,这方面人们已做了大量的研究,但至今没有得到良好的解决。目前越来越多的在建百万机组的火力发电厂主厂房采用现浇钢筋混凝土框架结构,其主厂房每台机一般至少有10个跨度,长度100米左右。现行的《混凝土结构设计规范》规定,室内现浇框架结构的最大适宜伸缩缝间距为55米,当有充分依据和可靠措施时可适当增加间距。弱设置伸缩缝则需采用双柱,增加了工程造价的同时还给工艺布置带来一系列问题。此外设缝带来耐久性、耐火性、水密性、施工性和维修性等方面的问题。对于火力发电厂主厂房来说,在同二台机范围内设置三条伸缩缝在工艺上来说也是可以的,但目前常规的做法大多还是在两台机之间设伸缩缝而同一台机择连为一体,如何解决百万机组火力发电厂钢筋混凝土主厂房温度作用问题成为电厂结构设计的一大课题。 2温度问题的综述 2.1温度作用的分类 结构上的温度作用按温差产生的不同分为三种:季节温差、日照温差、骤然温差。季节温差作用是指结构施工闭合时的温度与使用状态下的温度差值引起的结构反应;日照温差作用指同一天太阳辐射在结构不同部位引起的反应;骤然温差作用指强冷空气的作用引起的结构反应。目前普遍的观点是:对钢筋混凝土结构,季节温差是引起结构温度裂缝的主要原因。 2.2温度作用的计算原理 梁在温度作用下的自由膨胀获收缩均不会产生内力,引起结构破坏的温度作用主要是梁的温度自由变形收到柱子刚度的限制,从而引起柱子的侧向变形,导致产生结构内力。 温度应力或内力的计算与外荷载作用下的内力计算不同,温度应力的大小直接取决于框架柱康侧移刚度的大小,两者互为因果关系。当结构的温度应力过大时,不得不加大柱子的断面尺寸,然而这同时有导致结构的温度内力进一步加大,如此循环导致温度问题很难解决。 框架爱结构温度作用的计算原理如下:在温度作用下,框架梁产生变形并收到柱子的约束,从而产生如图所示的框架整体变形。温度作用引起的结构轴力和弯矩如图所示。 梁柱节点的变形协调方程组为: 求解变形协调方程和内力平衡方程即可完成对结构上温度作用的解。 大量的分析计算都表明,温度对结构的影响主要集中在底层,三层以上接近自由变形,分析时可简单地只考虑结构的下部两层。结构上的温度作用可分为轴力作用和局部弯矩作用。两种作用均关于结构中线对称分布,轴力最大值在结构的第一层梁中间跨; 框架柱局部弯矩最大值在端柱柱底。温度轴力的作用是的结构的第一层梁的受力状态由弯曲变为拉弯,局部弯矩则是叠加了弯曲作用,对于柱子的影响尤为明显。 2.3 温度作用实验研究 小尺寸试件温度试验表明:温度裂缝分为浅层裂缝和深层裂缝,至钢筋表面,其对温度应力的影响程度很小。深层裂缝一旦开展就很宽,且会使温度应力发生很大松弛,一般来说第一条的松弛程度更大。结构在温度变化反复作用下,将在新的部位出现新的裂缝;原有的裂缝进一步开展或闭合。配筋对分散温度裂缝,减小裂缝开展宽度有较明显的作用,但其定量关系尚待进一步研究。 2.3常见的温度作用分析方法 常见的考虑温度应力的计算方法综合起来有如下几种:

砂率对混凝土性能的影响

砂率对混凝土性能的影响 砂率:SP= 砂的用量S/(砂的用量S+石子用量G)×100% 是质量比 砂率的变动,会使骨料的总表面积有显著改变,从而对混凝土拌合物的和易性有较大影响。 和易性概念和易性是指新拌水泥混凝土易于各工序施工操作(搅拌、运输、浇灌、捣实等)并能获得质量均匀、成型密实的性能。 和易性是一项综合的技术性质,它与施工工艺密切相关,通常,包括有流动性、保水性和粘聚性三方面的含义。 流动性是指新拌混凝土在自重或机械振捣的作用下,能产生流动,并均匀密实地填满模板的性能。 粘聚性是指新拌混凝土的组成材料之间有一定的粘聚力,在施工过程中,不致发生分层和离析现象的性能。 保水性是指在新拌混凝土具有一定的保水能力,在施工过程中,不致产生严重泌水现象的性能。 新拌混凝土的和易性是流动性、粘聚性和保水性的综合体现,新拌混凝土的流动性、粘聚性和保水性之间既互相联系,又常存在矛盾。因此,在一定施工工艺的条件下,新拌混凝土的和易性是以上三方面性质的矛盾统一。 确定砂率的原则是:在保证混凝土拌合物具有的粘聚性和流动性的前提下,水泥浆最省时的最优砂率。 砂率对和易性的影响非常显著。 ① 对流动性的影响。在水泥用量和水灰比一定的条件下,由于砂子与水泥浆组成的砂浆在粗骨料间起到润滑和辊珠作用,可以减小粗骨料间的摩擦力,所以在一定范围内,随砂率增大,混凝土流动性增大。另一方面,由于砂子的比表面积比粗骨料大,随着砂率增加,粗细骨料的总表积增大,在水泥浆用量一定的条件下,骨料表面包裹的浆量减薄,润滑作用下降,使混凝土流动性降低。所以砂率超过一定范围,流动性随砂率增加而下降 ② 对粘聚性和保水性的影响。砂率减小,混凝土的粘聚性和保水性均下降,易产生泌水、离析和流浆现象。砂率增大,粘聚性和保水性增加。但砂率过大,当水泥浆不足以包裹骨料表面时,则粘聚性反而下降。

高温对混凝土抗压强度的影响

高温对混凝土抗压强度的影响 摘要:由于混凝土材料中粗细骨料和水泥等材料的热工性能不同,在高温作用下,这些材料间的物理化学作用使混凝土力学性能产生变异,进而导致混凝土力学性能劣化。实验采用液压伺服试验系统对经历相同时间恒温加热,不同温度作用后的C30普通硅酸盐混凝圆柱体试块进行抗压强度试验,详细描述高温后试块的外观特征及抗压破坏特征,探讨分析了不同加热温度对混凝土的抗压强度力学性能的影响。本试验结果表明:高温后,混凝土的力学性能随温度的升高而劣化,表现为随着受热温度的升高,混凝土的抗压强度降低。此外,还探讨了混凝土抗压强度随温度变化的规律,得到了混凝土抗压强度随温度变化的试验曲线。 关键词:混凝土;高温;抗压强度

Effect of temperature on the compressive strength of concrete Abstract:The thermal properties of concrete material of coarse aggregate and cement and other materials, under the condition of high temperature, the physical and chemical effects of these materials to make the mechanical properties of concrete mutation, resulting in deterioration of mechanical properties of concrete. The experiment adopts hydraulic servo test system to experience the same constant temperature heating time, different temperature after interaction of C30 ordinary portland concrete cylinder specimens were subjected to compressive strength tests, described in detail after high temperature test appearance characteristics and compressive block failure characteristics, to explore the effect of compressive strength of different heating temperature on mechanical properties of concrete is analyzed. In addition, also discusses the rule of concrete compressive strength varies with temperature, a regression formula of compressive strength of concrete with temperature changes, comparing the regression curve with the test results, the regression curve can be simulated well test curve. keywords:concrete; elevated temperature; compression strength

温度对混凝土性能的影响

1.温度与混凝土性能的关系 1.1温度变化对水泥水化及混凝土强度的影响 混凝土拌合物是由水泥、集料、拌和用水及外加剂等组成的混合物。在混合物拌制过程中主要发生的化学变化是水泥的水化反应,水泥水化速度与水泥细度有关,同时也是随着温度的变化而变化的,温度越高,反应越快。其间的关 系服从普遍适用于各种物理化学反应的通用的Arrhenius定律。 根据许多学者研究,硅酸盐水泥在常温下水化时的激活能E值约在30—40kJ/mol之间变化。设E=40kJ/mol,则温度从20℃上升至40℃时反应速率k 值将增加185%,温度上升至60℃时k值将增加624%。反之,如果温度降低至10℃和0℃(273K),则k值将分别减小44.6%和7.03%。简言之,如果说温度是按算术级数升高的话,那么反应速率是在实用的温度范围内以每升高10℃大约增长70%的速率按几何级数增长的,反之亦然。由此可见水化速率要比温度的变化强烈的多。这给低温条件下混凝土的强度增长速率提供了研究依据。 在上世纪80年代初,Carino在美国国家标准局做了一项试验,用水灰比等于0.43的标准试件在指定温度下浇制、密封和养护,直至指定龄期测定其抗压强度,不同温度下的混凝土强度增长如图1所示。

试验说明,混凝土浇筑后强度的增长速率是随着养护温度的增高而加快的,也是随着龄期的增长而渐减的。温度对混凝土强度的影响主要是在形成强度 的前10d左右的时间,而对混凝土在28天后的强度影响比较小。 1.2温度对混凝土坍落度的影响 混凝土拌和物的和易性施工经验告诉我们,在炎热天气下同样材料制成同等稠度的混凝土拌和物总要比寒冷天气多用一些水。同样拌和物的坍落度确实是随着它的温度升高而减小的。试验结果显示,为了使一般混凝土拌和物具有相 等的坍落度(75mm),拌和物的温度每升高10℃,每1m3就需要增加约7kg的拌和用水(见图2)。 拌和物的稠度(坍落度)主要取决于固体颗粒间的相互摩擦,除了水对这种内摩擦有一定的润滑作用以外,还与其中所含气泡有关,空气的存在等于增加了水泥浆含量而减少了集料含量,因此可以较为明显地削减稠度。 气泡的形成与水的黏滞度有关,而水的黏滞度是随着温度的升高而减小的。因此,在较高温度下为使拌和物获得同样稠度通常需要较常温多用一些水,以增加气泡含量,从而增加拌合物的流动性。同样,在低温条件下拌和混凝土时要相应减少拌和用水,以防止用水过多产生泌水或坍落度过大的现象。 1.3低温下的混凝土强度研究 在混凝土浇筑后尚未硬化前,低温下内部水在结冰时体积会发生9%左右的增长,同时产生约2500kg/cm2的冰胀应力。这个应力值常常大于水泥石内部 形成的初期强度值,使混凝土受到不同程度的破坏(即早期受冻破坏)而降低强度。此外,当水变成冰后,还会在骨料和钢筋表面上产生颗粒较大的结晶,减弱水泥浆与骨料和钢筋的黏结力,从而影响混凝土的抗压强度。当冰凌融化后,又

新拌混凝土的性能

4.1工作性的定义: 新拌混凝土的工作性包括流动性、充填性、粘聚性、保水性、可泵性等,是混凝土拌合物运输、浇捣、抹面等主要操作工序能够顺利地进行的保证,故又称和易性。 流动性是指混凝土拌合物在自重或机械振捣力的作用下,能产生流动并均匀密实地充满模型的性能。流动性的大小,反映拌合物的稠度,它直接影响施工的难易和混凝土的质量。 粘聚性则是指混凝土拌合物内部组分之间具有一定的粘聚力,在运输和浇注过程中不会发生分层离析现象,能使混凝土保持整体均匀性。 保水性是指混凝土拌合物具有一定的保持内部水分的能力,在施工中不致产生严重的泌水现象。保水性好的新拌混凝土,在混凝土振实后,一部分水容易从内部析出至表面,在渗流之处留下许多毛细管孔道,成为混凝土内部的透水通道。 4.2 影响工作性的因素 (1).用水量 用水量的大小是影响新拌混凝土工作性的决定性因素。 (2)水泥 混凝土拌合物在自重或外界振动力的作用下要产生流动,必须克服其内部的阻力。拌合物内部阻力主要来自两个方面,一是骨料间的摩阻力,二是水泥浆的粘聚力。 (3) 骨料 骨料对新拌混凝土工作性的影响较大。在混凝土骨料用量一定的情况下,采用卵石和河砂拌制的混凝土拌合物,其流动性比用碎石和山砂拌制的好。这是因为前者骨料表面光滑,摩阻力小,而后者骨料摩阻力相对较大;骨料级配的好坏也影响着混凝土拌合物的工作性。 砂率对混凝土拌合物的工作性也有显著影响。 (4)拌和物存放时间和环境温度的影响 混凝土拌合物随着时间的延长会变得越来越干稠,这是由于拌合物中的水分一部分被蒸发,另一部分则是水泥水化所消耗,因此拌合物逐渐失去可塑性而凝结硬化。混凝土工作性还受温度的影响。随着环境温度的升高,混凝土的工作性降低很快,因为这时的水分蒸发及水泥的化学反应将进行得更快。 4.3工作性的表征 混凝土拌合物工作性的内容比较复杂,通常是采用一定的实验方法测定混凝土拌合物的流动性,再辅以直观经验,综合评定其粘聚性和保水性。按《混凝土质量控制标准》(GB50164—92)规定,混凝土拌合物的流动性以坍落度或维勃稠度作为指标。坍落度适用于流动性较大的混凝土拌合物,维勃稠度适用于干硬性混凝土。 5、硬化混凝土的强度 混凝土强度包括立方体抗压强度、轴心抗压强度:抗拉强度、抗弯强度和抗剪强度等,其中以立方体抗压强度值为最大。 5.1混凝土立方体抗压强度与强度等级 根据国家标准规定,我国采用标准立方体抗压强度作为混凝土强度特征值。制作边长为150mm 的立方体标准试件,在标准养护条件(温度20±30C,相对湿度大于90%)下,养护至28天龄期,用标准试验方法测得的抗压强度值称为混凝土立方体抗压强度。 混凝土强度等级采用符号“C”与立方体抗压强度标准值(以N/mm2计)表示。混凝土立方体抗压强度标准值是指用标准方法制作并养护的边长为150mm的立方体试件,在28天龄期,用标准试验方法测得的具有95%保证率的抗压强度。普通混凝土按立方体强度标准值“划分为C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60共12个强度等级。 5.2混凝土轴心抗压强度:混凝土轴心抗压强度又称棱柱体抗压强度。是以150mm×150mm×300mm的棱柱体作为标准试件。标准棱柱体试件的制作、养护条件与标准立方

混凝土养护温度对混凝土强度的影响曲线图

抗压强度% 整体式结构拆模时所需的混凝土强度 项次结构类型结构跨度(m)按设计混凝土强度的标准值百分率计(% 1< 250 板> 2, < 875 > 8100 2< 875 梁、拱、壳> 8100 3 悬臂梁构件100 混凝土养护温度对混凝土强度的影响

二、自然养护条件下不同温度与龄期的混凝土强度参考百分率 (%) 水泥品种硬化混凝土硬化时的平均温度/ 注:本表自然养护指在露天温度(+ 5 以上)条件下,混凝土表面进行覆盖, 浇水养护或在结构平面上使混凝土在潮湿条件下,强度正常发展的养护工艺<

钢筋下料长度计算 钢筋因弯曲或弯钩会使其长度变化,在配料中不能直接根据图纸中尺寸下料;必须了解对混凝土保护层、钢筋弯曲、弯钩等规定,再根据图中尺寸计算其下料长度。各种钢筋下料长度计算如下: 直钢筋下料长度二构件长度-保护层厚度+弯钩增加长度 弯起钢筋下料长度二直段长度+斜段长度-弯曲调整值+弯钩增加长度箍筋下料长度=箍筋周长+箍筋调整值 上述钢筋需要搭接的话,还应增加钢筋搭接长度。 下料长度:是按钢筋弯曲后的中心线长度来计算的,因为弯曲后该长度不会发生变化。 外包标注:简图尽寸或设计图中注明的尺寸不包括端头弯钩长度,它是根据构件尺寸、钢筋形状及保护层的厚度等按外包尺寸进行标注的,他有几种不同的标注方法,具体见下图。 弯曲量度差:钢筋弯曲时,其外壁伸长,内壁缩短,而中心线长度并不改变,计算钢筋的下料长度是按中心线的长度计算的。显然外包尺寸大于中心线长度,它们之间存在一个差值,我们称之为“量度差值”。 弯钩增加长度:当使用不同的外包标注方法时,有可能外包标注的长度没有弯钩按中心线长度增加的大,这样就存在一个实际下料长度和外包标注之间的一个差值,这个差值就是下料时应按外包标注所增加的长度,具体右图。

影响混凝土和易性的主要因素有哪些

影响混凝土和易性的主要因素 作者:李春芳 摘要:和易性是指混凝土易于搅拌、运输、浇筑、捣实等施工作业,并能获得质量均匀和密实的混凝土性能。和易性为一综合技术性能,它包括流动性、黏聚性、保水性三方面的含义,和易性有时也称工作性。 Abstract:workability refers to the concrete mixing easily, transportation, casting, ramming construction work, performance of concrete and to obtain uniform quality and dense. And as a comprehensive technical performance, including liquidity, cohesiveness, water retention of three aspects, and is also sometimes referred to the work of. 关键词:和易性、流动性、粘聚性、保水性 1)水泥浆的数量 混凝土拌合物水泥浆赋予混凝土拌合物一定的流动性。在水灰比不变的情况下,单位体积拌合物内,如果水泥浆愈多,则拌合物的流动性愈大。若水泥浆过多,将会出现流浆现象,使拌合物粘聚性变差,同时对混凝土耐久性也会产生一定影响,且水泥用量也大。水泥浆过少,不能填满骨料空隙或不能很好地包裹骨料表面时,就会产生崩坍现象,粘聚性变差。混凝土拌合物水泥浆的含量应以满足流动性要求为度,不宜过量。 2)水泥浆的稠度 水泥浆的稠度是由水灰比决定的。保持混凝土拌合物的水灰比不变增加用水量,这种情况下拌合物中的水泥浆增多,当水泥浆增加量在一定范围内时,骨料周围水泥浆润滑作用增强,减少了骨料间的摩擦力,使拌合物流动性增大,可以改善混凝土的和易性。但是,当水泥浆增加量过多时,骨料用量必然相对减少,这时混凝土拌合物就会出现流浆及泌水现象,致使黏聚性和保水性变差,反而使混凝土的和易性变坏。 保持混凝土的水泥用量不变增加用水量,当用水量增加不太多时,混凝土拌合物的黏聚性和保水性不受影响,流动性增大,这时混凝土的和易性得到改善。但当加水量过多时,拌合物的水灰比过大,水泥浆过稀,这时混凝土的流动性虽然增大,但将会产生严重的分层离析和泌水现象,致使混凝土的和易性变差,并严重影响混凝土的

相关文档
最新文档