多自由度机械臂控制算法设计..

多自由度机械臂控制算法设计..
多自由度机械臂控制算法设计..

摘要

机器人是一种能够进行编程并在自动控制下执行某些操作和移动作业任务的机械装置。而机械臂作为机器人最主要的执行机构,是一个十分复杂的多输入多输出非线性系统,它具有时变、强耦合和非线性的动力学特征,因其控制的复杂性引起了相关从业人员的广泛关注。随着时代的进步,像军事制造、工业生产、日常生活及教育娱乐等各个领域对机器臂控制技术应用需求逐渐加大,从而使得设计一套工作空间大,运动灵活的多自由度机器臂尤为重要。

机械手臂运行轨迹追踪控制技术有包括:adaptive control(自适应控制)、smvsc(滑模变结构控制)、Robust adaptive control(鲁棒自适应控制)、Fuzzy adaptive(模糊自适应)等四大类。本文主要运用模糊PID控制设计二自由度机械臂控制算法,该控制方法具有模糊控制灵活和适应性强的优点,也具有经典PID控制精度高的特点。

本文围绕二自由度机械臂控制算法设计,首先建立二自由度关节型机械臂的数学模型,即二自由度机械臂输入驱动力矢量和输出转动角度矢量之间的函数关系。然后运用模糊PID控制设计一套机械臂轨迹规划算法,能够根据使用者的作业任务要求,求出二自由度机械臂终端执行器的轨迹。并研究如何对于给定的系统设计出PID控制器,实现控制系统的输出对参考输入跟踪,以及对扰动输入响应具有较小的振幅,且能够衰减到零即无稳态误差。最后给出了基于MATLAB/SIMULINK软件的案例分析,阐释模糊PID控制算法行之有效性。

关键词:多自由度,机械臂,PID算法控制,数学模型

Abstract

Robot is a kind of programming and perform certain operations and mobile task mechanism in automatic control. And robot arm as the main executive body, is a very complex multi input and multi output nonlinear system, it has a time-varying, strong coupling and nonlinear dynamic characteristics, due to the complexity of the control caused wide attention of practitioners. With the progress of the times, like military manufacturing, industrial production, daily life and entertainment, education and other fields of a robot arm control technology application requirements gradually increase, from the design a large working space, the flexible movement of the multi degree of freedom robot arm is particularly important.

Mechanical arm trajectory tracking control technology including: adaptive control, SMVSC, robust adaptive control, fuzzy adaptive etc.. In this paper, the use of fuzzy PID control design for two degree of freedom manipulator control algorithm, the control method with fuzzy control of a flexible and adaptable advantages, also has the classic PID control the characteristics of high precision.

This paper focuses on the design of control algorithm of two degrees of freedom manipulator, a mathematical model of two-DOF Manipulator, namely two-DOF Manipulator driving force and rotation angle between the output function. Then use the control to design a manipulator trajectory planning arithmetic of fuzzy PID method, according to the user's task requirements and for two degrees of freedom manipulator end effector trajectory. And study how to design a system for PID controller is given, to achieve the output of the control system of the reference input tracking, and disturbance input response amplitude is smaller, and can decay to zero no steady state error. Finally, a case analysis based on MATLAB/SIMULINK software is presented to illustrate the effective of PID fuzzy control algorithm.

Key Words: Multi degree of freedom, manipulator, control, PID algorithm, mathematical mode

目录

摘要.............................................................................................................................. I Abstract........................................................................................................................ II 1 绪论 ......................................................................................................................... III

1.1 本文研究的目的与意义 (1)

1.2 机械臂控制算法研究现状 (1)

1.3 本论文的工作总结 (3)

2 机械臂控制系统概述 (4)

2.1 二自由度机械臂的动力学控制模型 (4)

2.2 二自由度机械臂运动学正解 (5)

2.3 二自由度机械臂运动学中的反解 (7)

2.3.1 运动学反解的不唯一性 (8)

2.3.2 在运动学反解中出现的个别情形 (9)

3 控制算法设计 (10)

3.1 PID的概述 (10)

3.2 模糊PID控制 (12)

3.3 二自由度运动路径规划 (13)

3.3.1 直角坐标空间中规划算法 (13)

3.3.2 直线插补和圆弧插补算法 (16)

3.4 模糊PID控制算法设计 (17)

4 算例分析 (20)

4.1 二自由度机械臂PID模糊控制器的建模 (20)

4.1.1 模糊PID控制 (20)

4.1.2 PID模糊建模 (21)

4.1.3 PID模糊控制 (22)

4.2 设计模糊控制器规则以及其仿真分析 (22)

4.2.1 模糊控制器规则 (22)

4.2.2 PID参数的模糊整定 (25)

4.3 仿真结果分析 (30)

总结 (32)

致谢 (33)

参考文献 (34)

1 绪论

1.1 本文研究的目的与意义

机器人是一种能够进行编程并在自动控制下执行某些操作和移动作业任务

的机械装置。机械臂作为机器人最主要的执行机构,对它的研究越来越受到工程技术人员的关注。它涉及的学科有材料科学、控制技术、传感器技术、计算机技术、微电子技术、通讯技术、人工智能、仿生学等等很多学科。

一个机械臂系统主要包括机械、硬件和软件、算法这四个部分。到具体设计需要考虑结构设计、控制系统设计、运动学分析、动力学分析、轨迹规划研究、路径规划研究、运动学动力学仿真等部分。对于一套轻便型机械臂的研发,需要把各个部分紧密联系,互相协调设计。随着时代的进步,机器臂技术的应用越来越普及,已逐渐渗透到军事、航天、医疗、日常生活及教育娱乐等各个领域。目前实际应用的绝大多数机器臂都是固定在基座上的,它们只能固定在某一位置上进行操作,因而其应用范围多限于工业生产中的重复性工作。于是实际生产生活中迫切需要一种活动空间大,能适用于各种复杂环境和任务的可移动机器人。由于移动机器人工作空间大、运动灵活等优点,对它们的研究也是越来越多,但是这种机器人很多都是实现移动的,并没有可控制的手臂,所以没有抓取物体的功能。为了让移动机器人能够完成简单的作业,在它上面安装两只轻型服务型机械臂显的尤其必要。

1.2 机械臂控制算法研究现状

最早的机械臂是1962年美国联合公司制造的名为Unimate的机械臂,该系统的设计参照坦克塔台,其应用于将一些配件传送到生产线,其控制系统是一个大型计算机[7]。在文献[8]中,Liu Xinjun等人对二自由度并联机器人的运动学和动力学进行建模分析,并对二自由度并联机器人的综合性能做了深刻探讨,并提出新的研究方法。Kim J Y对二自由度五连杆机械臂进行运动学的研究分析[9]。在对机械臂实现控制时,控制器的设计过程采用无模型的控制思想,例如可以通

过神经网络滑模变结构控制(NN-SMVSC)等方法实现,即能够保障控制器的效率,同时,又能避免惯量矩阵或逆矩阵的计算[10]。

在文献[11]中,Su考虑了在执行器约束的情况下,针对两关节机械臂,研究了机械臂的全局输出反馈整定问题,并结合PID控制与补偿措施方法,通过Lyapunov方法证明了闭环系统的全局渐近稳定性。

Liuzzo等[I2]提出了一种不依赖于模型的控制器,该控制器在对机械臂实现控制时,仅依赖于输入的周期信号值及机械臂的动力学的常数界限。通过对每个关节的输入信号进行傅立叶级数展开,判断控制系统的全局稳定性和局部稳定性。当给定的输入信号的傅立叶级数展开有界时,可以获得全局稳定和局部指数稳定的误差动力学,使跟踪轨迹的误差达到任意精度。同时,自适应PID瓜控制器通过辨识输入信号的傅立叶系数来学习输入信号。

Purwar等[13]超出了Chebyshev自适应神经元控制器,该控制器的设计主要考虑了机械臂执行器的约束,并估计系统负载变化、未知非线性LJ及带干扰的输入力矩等结构化或非结构化的不确定性。该方法设计的控制器避免了速度信号通过位置微分获得而容易掺入噪声的缺点,只依赖于关节位置信息,能够实现神经网络逼近与动态滤波器的融合。

文献[14]主要针对系统在具有结构不确定性和非结构不确定性时,提出一种模糊自适应控制方法,并对机械臂的轨迹跟踪控制进行实验。当机械臂的关节速度不可测时,引入速度观测器,设计了自适应输出反馈控制器。通过研究机械臂的动力学特性,并对不确定性项进行解稱,就能够降低模糊控制器模糊规则的数目,简化控制器。当机械臂的关节速度可测时,通过设计全状态模糊自适应反馈控制器,可保证系统闭环动力学稳定。

国内的许多单位自从上世纪80年代开始,也开始重点研究机械臂的控制系统。例如,清华大学、浙江大学、沈阳自动化研究所及上海交通大学等学校或研究所在国家高新技术计划自动化领域智能机器人专题中做了很好的带头作用,且收获颇多[15-16],促进了国内对机械臂的研究。

在文献[17]中,王启明和汪劲松对二自由度的并联机器人操作臂进行了运动学和动力学建模,并进行仿真。在文献[18]中,北京工业大学的刘善增对平面二自由度并联机器人进行了动力学设计研究,但是并没有对并联机器人作控制研

究。陈国栋等[19],在对机器人的研究中,采用经过滤波器作用的位置误差信号作为反馈信号,并用"参考速度"来替代非线性部分输出端的实际速度信号,仿真结果中取得了满意的跟踪效果,该文献的缺点是该方法必须基于精确的动力学模型。目前国内已提出很多抑制抖振的方法[20],例如,滑模控制通常与模糊控制、神经网络控制等方法相结合,来消除机械臂控制输入的抖振现象。新的滑模面及控制方式也被不断提出并应用到机械臂轨迹跟踪控制领域。

1.3 本文主要工作内容

本论文第二章主要就是构建二自由度机械臂动力学控制模型,首先详细分析二阶机械臂运动学解,定义各个目标变量,然后寻找输入机械臂驱动力矩矢量和输出机械臂转动矢量的数学约束关系。第三章主要就是介绍二自由度机械臂控制算法设计,详细介绍了PID控制和模糊PID控制的基本理论,比较二者优缺点,以及各自适宜的情况和约束条件。第四章主要就是叙述基于MATLAB/SIMULINK软件的案例分析,在Simulink仿真环境下搭建完整控制系统得到给定轨迹曲线、跟踪轨迹曲线、以及误差轨迹曲线。对仿真结果和误差来源进行分析,得出结论,并阐释模糊PID控制方法的有效性和可行性。

2 机械臂控制系统概述

因为机械臂随着自由度个数的增大,控制系统的复杂程度加大,但是其基本

原理类似,所以本文主要以二自由度机械臂为例阐释多自由度的基本原理,

2.1 二自由度机械臂的动力学控制模型

机械臂的运动方式在运动空间上来分一般而言有两大类,即关节型和直角

型。各个关节的的运动直接取决于它的运动坐标,把全部的关节变量设为一个关

节矢量,全部的关节矢量组成的集合则为它的关节空间。通过控制所有关节的移

动来控制机器人的移动便为关节空间运动模式。机械臂终端对象的具体地点和角

度一般在直角坐标空间中表现出来,这种模式就是称为直角坐标运动模式,在这

种运动模式中,机械臂用户规定的任务是由机械臂末端对象在直角坐标空间中的

移动来实现的。

就操作者而言,直角坐标空间更为人们接受,故而在直角坐标空间中进行对

机械臂的操作。因此我们就要在关节坐标和直角坐标之间建立一一对应的数学约

束关系。换言之,如知道机械臂每一个关节的坐标常数,就需要求解它的终端在

直角坐标空间中的具体位置坐标,这个被叫做为运动学正解;反之,如知道它末

端在直角坐标空间的坐标就需要求解各个运动关节的坐标参数,这个则被称为运

动学反向解。

设],...,,[21n q q q q =为机械臂在关节坐标空间中的变量, ...],,,[θz y x x =为它

的终端对象在直角坐标空间中的具体位置坐标,那么它们两个之间的关系为:

0),(=q x F (2.1)

上式是一个隐式方程,若能够从中求解出:

)(q f x = (2.2)

那么直角坐标变量由关节坐标变量来定量表达,就能够得到机械臂的运动学正

解。通常而言,可以从式(2.1)得到它的的惟一正解,得到的正解为:

)(x g q = (2.3)

然而一般情况下,我们不容易获得它的运动学反解,是因为它的反解通常就是多

解,所以在现实情况下,通常运用几何机械臂的运动学解。

2.2 二自由度机械臂运动学正解

已知:关节1连杆长度1l ,关节的值为1q (如下图所示);关节2连杆长度2l ,

关节的值为2q (角度如下图所示)

求解:记下图中关节连杆末端对象固定点的直角空间坐标:],[y x x =

图2.1 机械臂运动学的正解

机械臂操作端的位置方程为:

???++=++=)sin(sin )cos(cos 21211

21211q q l q l P q q l q l P y x (2.4) ()????????=???????

?21θθθ J P P y x (2.5) 上述方程的Jacobian 矩阵()θJ 为

()()()()()??????++++-+--=21221211

21221211cos cos cos sin sin sin θθθθθθθθθθθl l l l l l J 机械臂的动力学方程为

()()()τθG θθN θθM =++, (2.6) 其中,[]T 21ττ=τ为总的驱动力矩矢量,[]T 21θθ=θ为转动角度矢量;

()θM 为转动惯量矩阵,()

θθ

N , 为Coriolis 离心转矩,()θG 为重力矢量。()θM

()θθ

N , 、()θG 的数学表达式如下: ()()()()()θJ θJ θM T 3223223221

cos 2cos 2cos m a a a a a a a +??????+++=θθθ (2.7)

()()()()()()θθθJ θJ θθN ,,T 2122222122m sian a sian a +??????+-=θθθθθθ (2.8)

()()()()g θJ θG T 21521514cos cos cos m a a a +??????+++=θθθθθ (2.9)

其中 []

T 21212251211422232122212222211181.90 ,10 ,432.0 ,36.11,19.15 ,2

1 ,2131 , ,3131=======+===++=g kg m m l l kg m kg m gl m a gl m gl m a l m a l l m a l m l m l m a 定义状态变量

[][]4321T 2124132211,,,,x x x x x x x x x x ======X X θθθθ (2.10) 设

()()()()()[]2

1 ,,, ,τττθθθθθθθ==--==u G N E M D (2.11)

则机械臂模型的状态方程可以写成 ()()()()()∑+=????????????+??????????=????????????--i

i u x g x f u u x D x E x D x x x

x x x 021******** (2.12)

系统输出方程为

()()()()()()??

????++++=??????=??????=??????==21211212112121sin sin cos cos x x l x l x x l x l x h x h P P x x h y x X h X y (2.13)

2.3 二自由度机械臂运动学中的反解

已知:记关节1连杆长度为1l ,关节2连杆长度为2l ,关节连杆末端的点在平

面坐标空间的坐标为:],[y x x =

求解:记关节值为1q (角度如下图所示),关节值为2q (角度如下图所示)。

图2.2 机械臂运动学的反解

如上图所示,在不考虑奇异点的情况下,得到如下公式:

22y x r += (2.14) 2

1212132cos l l r l l -+=? (2.15) 323cos 1sin ?-=? (2.16) r

l 321sin sin ?=? (2.17) 1

212112c o s rl r l l ++=? (2.18) )cos ,(sin 2tan 111??=?a (2.19) ),(2tan 2x y a =? (2.20)

))cos (),sin ((2tan 11113q l x q l y a --=? (2.21)

求解可知运动学的反解计算公式:

???-?=?-?=1

42121q q q (2.22) ),tan(y x a 是用来计算y x 的反正切值(单位为弧度)的数学函数。从得知的运动学

反解上来看,可以获得是非线性系统。

2.3.1 运动学反解的不唯一性

图2.3 机械臂的两个反解

它的运动学反解一般多解,会存在有好几组关节变量终端在用户要求的位置

点。图2-3很好的反应二自由度机械臂会在工作空间中运动时有两组运动学反解

这一情况。

综上所述,在实际操作中从反解中的多解问题找到一组最优解是一个重要问

题。通常情形下可以用优化算法来处理这种多组反解问题。当设置此算法的优化

准则时,可以选取的优化准则有两种情况:

①当没有障碍物的时候,就用“最短”原理。由于机械臂的动作是持续存在

的而非间断的,可以根据之前机械臂运动反解获得的关节坐标值,能够得到机械

臂关节运动最短的解确定为反解,所以使之保持连续。

②当有障碍物的时候,沿“最短”轨迹原则会发生碰撞,那么就综合选用机

械臂的有障碍路径轨迹,算法等方法来得到反解。

2.3.2 在运动学反解中出现的个别情形

当目标点位置),(y x 在机械臂运动空间范围之外,就用下面的公式判断: 2

12222212)(l l y x l l +-+=? (2.7) 如果满足: ε+>?1 (2.8) 就能够判断特定地点在机械臂的运动空间范畴之外,换句话就是说运动学反解无

解,式(2.8)ε为一无穷小正分数,譬如选取

8

10-=ε (2.9) 有一个特殊情况就是目标位置正好落在机械臂工作空间边界上,在这种情况

下(奇异位置),机械臂的移动情况就变得差了,控制的轴移动也许会发生跳变

的情况。这种情况下奇异情况的判别条件为:

)1(ε--

图2.4 反解中的特殊情况

根据以上可得到在特殊情况的反解为:

???==0)

,(2tan 2

1q x y a q (2.11)

3. 控制算法设计

3.1 PID 的概述

从ziegler 还有Nichols 提出PID 参数整定概念起,把PID 控制器的自动和手

动整定的思想理念用在诸多科学技术之上。并且PID 控制为目前最常用的方法,

被用于很多反馈控制亦或是其不大的变形控制。PID 调节器跟它的优化型在工业

的控制中最普遍。迄今为止,百分之八十四的依旧是单纯的PID 调节器,然而

优化型就包括在其中的就在百分之九十以上。

PID 控制器作为使用最广泛的控制器,为微分、比例、积分并联控制器。PID

控制器的数学模型可以用下式表示: ])()(1)([)(?++

=dt

t de T dt t e T t e Kp t u d i (3.1) 其中:)(t u 一控制器的输出

)(t e 一控制器输入,即误差信号。

Kp 一控制器的比例系数。 Ti 一控制器的积分时间。

Td 一控制器的微分时间。

在PID 控制器中,其数学模型由微分(D )、比例(P )、积分(I )三部分

组成。这三部分分别是:

①比例部分数学式表示如下:

)(t e Kp ? (3.2)

控制器的功能随着偏差的出现而出现,并且让其偏差朝向减小的方向变动。

控制功能的程度由比例系数Kp 决定。随着比例系数增大,那么过渡过程就会减

短,伴随着控制结果的稳态误差也减小;然而Kp 愈大,其超调量愈大,产生振

荡的可能性加大,致使动态性能变坏的劣势,更有甚者会令其闭环系统不稳定。

为了达到过渡时间少和稳态误差小的良好实验结果,比例系数Kp 的择取是一定要非常合适。

②积分部分数学表达式表示如下式所示: ?dt t e T K i p

)( (3.3)

根据式(3.3)可知,只要存在误差,控制功能一直积累,输出控制量是很难去消除误差当存在误差的时候。可知积分部分的功能是可以消除系统的误差。但因为它具有滞后性,会使得积分控制功能很强将使系统超调不能够往变小的方向变化,其动态机能变弱,甚至会造成闭环系统不稳定的情况。Ti 对积分部分有着极大的控制能力,Ti 愈大积分功能愈弱。这种情况下对于变小系统超调有着极大的优势,过渡过程很难产生振荡。却会使得消除误差所需时间增长。当Ti 愈小积分功能愈强。这种情况下系统过渡过程中会产生振荡,使得消除误差所需的时间减少。

③微分部分数学表达式表示如下: dt

t de Td kp )(? (3.4) 微分部分能够有效掌控误差的变动趋向,加大其控制功能能使系统更快地反应,震荡不变大,系统的稳定性增强,其劣势就是降低了系统抵制外界扰动的功能。微分时间Td 长短决定微分部分的功能强弱。Td 愈大它抑制)(t e 变化的能力愈强;否则,Td 愈小它反抗)(t e 变化的能力愈弱。在数字控制的计算机系统中,计算机PID 控制算法程序可以达到计算机数字控制器的掌控。通常而言,这种控制系统就是一种采样数据系统。并且在处理数字信号的问题中,均需要用数值计算来无限逼近。

因此,PID 控制规律的实现,一定要数值逼近的方法。若只有很短的采样周期,则利用积分被求和取代,差商取代微分,让PID 算法使其离散化。表述连续时间PID 算法的微分方程,替换成表述离散时间PID 算法的差分方程式,便是数字PID 位置型算式,即式(3.5):

])1()()()([)(0Ts k e k e Td i e Ti Ts k e Kp k u k i -+++=∑= (3.5)

式中:

)(k u 一 k 采样周期时的输出

)(k e 一 k 采样周期时的误差

Ts 一采样周期

其中 Ti Ts K K P

I = (3.6) Ts Td K K P

D = 即为

)]1()([)()()(0-+++=∑=k e k e K i e K k e K k u D k i I P (3.7)

其中Kp 为比例系数,KI 为积分系数,KD 为微分系数

3.2 模糊PID 控制

在常规的二维模糊控制器中,其输入变量是偏差和输入变量的变化量。所以通常而言,就把这种控制器认为拥有Fuzzy 比例和微分两种控制功能,但是缺乏Fuzzy 积分控制功能。然而,线性控制理论的积分控制功能是抵消稳定偏差,可是动态运行反应缓慢;比例控制功能动态响应快速;然而高的稳态精度以及快速的动态响应可由比例积分控制功能来获取。所以模糊控制器中增添了PI (PID )控制策略,从而组成PI Fuzzy -(或PID )复合型控制,除了让动静态性均能有可观的提高外,也有有动态响应的速度快、超调小、稳扰动偏差小的优点。 确定PID 参数是PID 控制的重点部分,这种方法就是通过模糊控制来确定PID 参数,即利用误差变化率ec 和系统误差e 。在线修改PID 参数并且运用模糊控制规则。实现思想就是找到PID 各个参数与误差变化率ec 和误差e 之间的联系,从实验之中一直检测误差变化率ec 和误差e 。进行在线修改各个物理参数,从而可以符合在不同e 和ec 时满足对控制参数的不同用户要求。因此可以让控制对象有良

好的动性能、静态性能、计算量小,易于用单片机实现的多种优势等。其原理框图如图3.1所示:

图3.1 模糊PID控制算法流程图

3.3 二自由度运动路径规划

在得到机械臂的运动学解的情况下,当它向目标轨迹运动时,需要设计一下它的运动路径。这里有直角坐标空间中的和关节空间中的路径规划这两种路径规划算法。

3.3.1 直角坐标空间中规划算法

关节值是终极控制着机械臂终端的移动,要是可以设计关节空间中的轨迹,那么就能有效阻止发生雅可比矩阵的奇异所造成的速度不受控制的情况,还可以大大减少计算的时间。然而多数情况下,关节坐标空间跟直角坐标空间这两者非线性关系。因此能在关节空间中进行直接规划的就只能够是对路径没有要求的作业,,像是连续弧焊的对运动路径要求较高的作业,就一定只能在直角坐标空间中设计。之后便是将设计获得的直角坐标空间中的轨迹序列,利用所对应反解算法换算解得,如下图所示。

图3.2 路径规划控制流程图

有必要的话在用运动学求反解得到的关节变量空间序列来进行关节坐标空间中的路径插补。通常而言,运动控制器在执行运动轴伺服控制时,会进而对关节指定变量作插补,插补速率曲线采用的方式有两种,分别是梯形图形方式、S 形图形方式。

记在直角坐标空间中,二自由度机械臂终端对象路径空间曲线方程为:

??

???===)()()(t z z t y y t x x (3.8) 上式中,记x,y,z 分别表示机械臂在三维直角坐标空间中的位置坐标值,记t 为时间。为方便实际当中的控制,通常会选择弧长参数表示的曲线表达式,则知道起点的初始值为A s 的曲线函数为:

?????+=+=+=)()()()()()(s z s z z s y s y y s x s x x A A A (3.9) 上式中S 表示为弧长参数,由积分公式: ?++=1

0222)()()(t t dt t z t y t x s (3.10)

得到)(s t t =,然后代入式(2.12)就可以得到式(2.13)所示曲线函数。

记t ?为运动轨迹的更新时间,即每隔t ?时间就会有一个插值点生成, T 为轨迹期望的运动时间,那么所得轨迹插补序列的长度为:

t T

n ?= (3.11)

当弧长给出的速率移动曲线段,每个插补弧长的增量n s s /=?已知,就能够获得轨迹插补序列表达式:

??????+=?+=?+=)()()()()()(s k z s z z s k y s y y s k x s x x A k

A k A k ),...,1,0(n k = (3.12)

若在梯形速度曲线模式下(路径段是由减速、等速和加速构成),则使得加速度和减速度大小相等,加速和减速时间相同,如图2-6所示,取a t 为加速和减速的时间。便能够得到的路径长度表达式为:

????

??????<≤?+-+=?-<≤+?=?≤≤?=)0(;)(21)2(21)20(;21)()0(;)(212232221t t k t k a t T v at s t t T j at t j v s t t i t i a s a a a j a a j a j (3.13)

图3.3 梯形模式的路径规划

时间点不同时,遵循式子(3.13)路径的不同分段,将结果

i s 代入式(3.9),

就能解出轨迹插补位置后序列的坐标值。

在解出轨迹插补位置序列的坐标值后,会由于轨迹更新周期t ?短暂的原因

在实际操作可能使用相邻位置序列点的差分近似来进行轨迹插补速度。

3.3.2 直线插补和圆弧插补算法

在平面直角坐标系之中,二自由度机械臂只有Y X 、的两维参数值。直线插补和圆弧插补这两种方法技巧在运动控制系统中采用最广泛,一些繁杂曲面可以由直线段和圆弧段近似逼近。本文会给出直线插补和圆弧插补技术在二自由度机械臂平面直角坐标内的一个简单运用。

①直线插补算法

在平面二维直角坐标中,t ?为轨迹校正时间周期, T 为轨迹理想的的运动时间,),(00y x 为起始点, ),(11y x 为指定点。

在等速度规则之下,每一次插补弧长的进给量为22y x s ?+?=?,直线插补序列的长度为t T n ?=,对于直线规划,等弧长进给等效于等y ??、x 的进给,每一次插补Y X 、方向的变化量:

n y y y n x x x 01

01,-=?-=? (3.10)

直线位置插补序列为:

),...,1,0(,00n k y k y y x k x x k k =????+=?+= (3.11)

②圆弧插补算法

如图2-7所示,需要在平面X-Y 内作出一个从),(A A y x 到),(B B y x 、圆心角为的圆弧、r 为半径、θ以),(00y x 为圆心。求圆弧插补位置序列。

多自由度机械手设计说明书

本科毕业设计(论文) 题目:多自由度机械手设计 系别:机电信息系 专业:机械设计制造及其自动化 班级: 学生: 学号: 指导教师: 2013年4月

本科毕业设计(论文) 题目:多自由度机械手设计 系别:机电信息系 专业:机械设计制造及其自动化 班级: 学生: 学号: 指导教师: 2013年4月

多自由度机械手设计 摘要 随着现代科学技术的发展,机器人技术越来越受到广泛关注,在工业生产日益现代化的今天,机器人的使用变得越来越普及。因此,对于机器人技术的研究也变得越来越迫切,尤其是工业机器人方面。本论文作者针对这一领域,设计了一款液压机械机械手,该机器人拥有五个自由度。首先,作者针对该机器人的设计要求,对结构设计选择了一个最优方案,对关键零件设计并进行校核。 本课题是一个机械、液压紧密的实用性项目,文中对机械手机械结构的设计、液压系统的设计。最后,总结了全文,指出了机械手的改进措施、应用前景和发展方向。 关键词:机械手;液压系统;五个自由度

Many degrees of freedom manipulator design Abstract With the development of modern science and technology, the robot technology has been paid more and more attention, in an increasingly modernized industrial production, the use of robots is becoming more and more popular. Therefore, the research of robot technology becomes more and more urgent, especially industrial robots. The author of this thesis in this field, design of a hydraulic mechanical manipulator, the robot has five degrees of freedom. First of all, the author according to the requirement of the design of this robot, an optimal scheme of the structure design of the selection, the design of key parts and checked. This topic is a mechanical, hydraulic close practical project, design of mechanical design, mechanical structure of the hydraulic system of the mobile phone in. Finally, summarized the full text, points out the improvement measures, manipulator application prospect and development direction. Keywords: manipulator; hydraulic system; five degrees of freedom

机械系统动力学作业---平面二自由度机械臂运动学分析资料讲解

机械系统动力学作业---平面二自由度机械 臂运动学分析

平面二自由度机械臂动力学分析 [摘要]机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字]平面二自由度机械臂动力学拉格朗日方程 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: ■ ■■ (1)给出已知的轨迹点上的■J- ■■■■■■,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q。这对实现机器人动态控制是相当有用的。 (2)已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩 ■ ■■ 向量T求机器人所产生的运动風&及&。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1)选取坐标系,选定完全而且独立的广义关节变量O r , r=l, 2,…,n。 (2)选定相应关节上的广义力F r :当O r是位移变量时,F r为力;当O r是角度变量时, F r为力矩。 (3)求出机器人各构件的动能和势能,构造拉格朗日函数。 (4)代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。 1平更二自由度机械臂

自由度机械手设计

设计说明书 课题:凸轮轴加工自动线机械手 班级:数控69902 设计:沈晓春 审核: 二00五年九月

目录 一、目录 (2) 二、前言 (3) (一)机械手的用途说明 (3) (二)设计机械手的目的、意义 (3) (三)设计指导思想应达到的技术性能要求 (4) 三、设计方案论证 (5) (一)机械手的原始依据 (5) (二)机械手的运动方案论证 (6) 四、机械手各组成部件设计计算 (8) (一)抓取机械设计 (8) (二)手腕机构 (12) (三)手臂设计 (14) (四)缓冲装置设计 (22) (五)定位机构设计…………………………………………………………………………………

25 (六)机械手驱动系统设计 (25) 五、机械手控制系统设计 (25) 六、设计总结 (26) 七、参考文献 (27) 二、前言 (一)机械手的用途说明 机械手是模仿人手工作的机械设备。实验用机械手的设计,是指机械手臂在一定范围内的摆动,手臂的垂直方向的上下移动及手爪的伸缩运动组成。由启动系统实现各运动的驱动。它的主要作用是将工件按预定的程序自动地搬运到需要的位置,或者保持工具进行工作。机械手是利用PLC控制整个系统实现各种运动的自动化控制,且能用于教学演示。 (二)机械手的目的、意义 机械手是模仿人手的动作,生产中应用机械手可以提高自动化水平和劳动生产率,可以减轻劳动强度,保证产品质量,实现安全生产,尤其在恶劣的劳动条件下,它代替人作业的意义更加重大。因此,在机械加工中得到越来越广泛的应用。

目的是,我们对机械手的设计步骤有一定的平衡了解;也能基本掌握机械设计的方法;综合运用学过的理论知识;全面复习绘图技巧,并较好的运用于毕业设计绘图上。通过这次设计,使我了解到,自动控制的对象主要是单机或某个生产过程,智能控制则包括控制对象及整个工作环境或整个生产过程;自动控制的目标是使在系统控制的某个状态下,尽量消除环境对系统的影响,智能控制关心的使最终状态或现行状态是否合乎要求。因此,要充分考虑环境的影响;自动控制的学习来源重要是对象的状态的反馈,所以智能控制需要一个庞大的数据库;自动控制理论着重描述对象的数学模型,然后,通过各种控制算法进行控制,以达到目的,智能控制着重直接控制经验。(三)设计的指导思想,应达到的技术性能要求 结构简单:设计为三自由度的机械手臂,运动形式简单,可以把手臂设计成为沿导向装置运动,直接选用标准规格的液压缸和内胀式机械手爪,无须另行设计。 外观不要有手臂堵塞外形:设计尽量要求安装方便,各非标准件加工方便。因此,不必设计成套形式,管道也不必安排在手臂内部,可以采用软管直接连接。 本次设计的手臂不要光用于工业生产,因此,对各部件的加工精度及安装要求不高,可以在通用机床上加工完成。

6自由度机械臂控制系统设计(软件)本科本科毕业论文

本科毕业论文(设计) ( 2014 届) 6自由度机械臂控制系统设计(软件)院系电子信息工程学院专业电子信息工程 姓名许克伟 指导教师范程华讲师 2014年4月

摘要 本文设计了一种以STC89C52单片机为主控元件的六自由度机械臂抓取系统。文中给出了系统的硬件设计方案以及各个功能原理图,同时给出了软件系统设计方法。系统实现了自动寻找目标并自动实施抓取目标且可通过PC上位机实时显示和控制机械手臂的功能,并能实现自动探测手臂与目标之间距离。在设计时,由于需要测量的距离范围从几厘米到几十厘米,针对超声波在传播时振幅呈指数衰减的特性,为了最大限度地提高驱动能力,采用对回波进行多级放大,以达到了设计要求,由于各个模块供电要求不同,电源电路模块通过稳压芯片输出7.2V、5V和3.3V电压。软件主要分为超声波距离测量模块和无线通信模块、数据处理模块这三大模块。软件的这种“自顶向下”的模块化软件编程方法,能使软件的结构更清晰,并有利于软件的调试和修改。经过调试,达到能够实现自动抓取目标和手动控制抓取目标功能。 关键词:超声波;VB上位机;六自由度机械手臂;STC89C52

This paper designs a mechanical arm whose main control component is STC89C52 single-chip microcomputer and based on the six degrees of freedom to control scraping system. Hardware design scheme of the system and each functional machine schematic diagram are also given in this paper , software program design method is given at the same time, the system realizes the automatic searching target and the implementation of automatic grab and real-time display by PC ,and realizes the function of controlling mechanical arm, and can realize to automatically detect the distance between the arm and target, then implement real-time display on the upper machine. .When designing, due to the distance need to measure ranges from several centimeters to tens of centimeters, aiming at the characteristics of ultrasonic wave amplitude decay exponentially in transmission, in order to develop the drive ability maximally, the echo multistage amplifier is be adopted. Due to the different requirements for each module power supply, in order to achieve the design requirements, power supply circuit module output voltage 7.2V, 5V and 3.3V through the voltage regulator chip. The software is mainly divided into three modules : the ultrasonic distance measuring module and wireless communication module, data processing module. The "top-down" modular software programming method of software can make the software structure more clearly, and benefit in the debugging and modification of software. After debugging, it can realize the function of grabbing the target though automatically add manually control. Key words: Ultrasonic wave;VB;Six degrees of freedom robotic arm;STC89C52

3个自由度机械手

优秀设计 引言 机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。 机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。

1.1 机械手的分类 机械手一般分为三类:第一类是不需要人工操作的通用机械手。它是一种独立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规定的操作。它的特点是具备普通机械的性能之外,还具备通用机械、记忆智能的三元机械。第二类是需要人工才做的,称为操作机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机来进行探测月球等。工业中采用的锻造操作机也属于这一范畴。第三类是用专用机械手,主要附属于自动机床或自动线上,用以解决机床上下料和工件送。这种机械手在国外称为“Mechanical Hand”,它是为主机服务的,由主机驱动;除少数以外,工作程序一般是固定的,因此是专用的。 在国外,目前主要是搞第一类通用机械手,国外称为机器人。本课题所做的机械手是属于第三类机械手。 1、简史 机械手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机械手。它的结构是:机体上安装一个回转长臂,顶部装有电磁块的工件抓放机构,控制系统是示教形的。 1962年,美国联合控制公司在上述方案的基础上又试制成一台数控示教再现型机械手。商名为Unimate(即万能自动)。运动系统仿照坦克炮塔,臂可以回转、俯仰、伸缩、用液压驱动;控制系统用磁鼓作为存储装置。不少球坐标通用机械手就是在这个基础上发展起来的。同年该公司和普鲁曼公司合并成立万能自动公司,专门生产工业机械手。 1962年美国机械制造公司也实验成功一种叫Vewrsatran机械手。该机械手的中央立柱可以回转、升降采用液压驱动控制系统也是示教再现型。虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。 1978年美国Unimate公司和斯坦福大学,麻省理工学院联合研制一种Unimate-Vicarm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差小于±1毫米。联邦德国机械制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业。 联邦德国KnKa公司还生产一种点焊机械手,采用关节式结构和程序控制。 日本是工业机械手发展最快、应用最多的国家。自1969年从美国引进两种机械手后大力从事机械手的研究。 前苏联自六十年代开始发展应用机械手,至1977年底,其中一半是国产,一半是进口。

多自由度机械臂控制算法设计..

摘要 机器人是一种能够进行编程并在自动控制下执行某些操作和移动作业任务的机械装置。而机械臂作为机器人最主要的执行机构,是一个十分复杂的多输入多输出非线性系统,它具有时变、强耦合和非线性的动力学特征,因其控制的复杂性引起了相关从业人员的广泛关注。随着时代的进步,像军事制造、工业生产、日常生活及教育娱乐等各个领域对机器臂控制技术应用需求逐渐加大,从而使得设计一套工作空间大,运动灵活的多自由度机器臂尤为重要。 机械手臂运行轨迹追踪控制技术有包括:adaptive control(自适应控制)、smvsc(滑模变结构控制)、Robust adaptive control(鲁棒自适应控制)、Fuzzy adaptive(模糊自适应)等四大类。本文主要运用模糊PID控制设计二自由度机械臂控制算法,该控制方法具有模糊控制灵活和适应性强的优点,也具有经典PID控制精度高的特点。 本文围绕二自由度机械臂控制算法设计,首先建立二自由度关节型机械臂的数学模型,即二自由度机械臂输入驱动力矢量和输出转动角度矢量之间的函数关系。然后运用模糊PID控制设计一套机械臂轨迹规划算法,能够根据使用者的作业任务要求,求出二自由度机械臂终端执行器的轨迹。并研究如何对于给定的系统设计出PID控制器,实现控制系统的输出对参考输入跟踪,以及对扰动输入响应具有较小的振幅,且能够衰减到零即无稳态误差。最后给出了基于MATLAB/SIMULINK软件的案例分析,阐释模糊PID控制算法行之有效性。 关键词:多自由度,机械臂,PID算法控制,数学模型

Abstract Robot is a kind of programming and perform certain operations and mobile task mechanism in automatic control. And robot arm as the main executive body, is a very complex multi input and multi output nonlinear system, it has a time-varying, strong coupling and nonlinear dynamic characteristics, due to the complexity of the control caused wide attention of practitioners. With the progress of the times, like military manufacturing, industrial production, daily life and entertainment, education and other fields of a robot arm control technology application requirements gradually increase, from the design a large working space, the flexible movement of the multi degree of freedom robot arm is particularly important. Mechanical arm trajectory tracking control technology including: adaptive control, SMVSC, robust adaptive control, fuzzy adaptive etc.. In this paper, the use of fuzzy PID control design for two degree of freedom manipulator control algorithm, the control method with fuzzy control of a flexible and adaptable advantages, also has the classic PID control the characteristics of high precision. This paper focuses on the design of control algorithm of two degrees of freedom manipulator, a mathematical model of two-DOF Manipulator, namely two-DOF Manipulator driving force and rotation angle between the output function. Then use the control to design a manipulator trajectory planning arithmetic of fuzzy PID method, according to the user's task requirements and for two degrees of freedom manipulator end effector trajectory. And study how to design a system for PID controller is given, to achieve the output of the control system of the reference input tracking, and disturbance input response amplitude is smaller, and can decay to zero no steady state error. Finally, a case analysis based on MATLAB/SIMULINK software is presented to illustrate the effective of PID fuzzy control algorithm. Key Words: Multi degree of freedom, manipulator, control, PID algorithm, mathematical mode

二自由度机械臂动力学分析培训资料

二自由度机械臂动力 学分析

平面二自由度机械臂动力学分析 姓名:黄辉龙 专业年级:13级机电 单位:汕头大学 摘要:机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过分析,得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 关键字:平面二自由度 动力学方程 拉格朗日方程 相关介绍 机器人动力学的研究有牛顿-欧拉(Newton-Euler )法、拉格朗日 (Langrange)法、高斯(Gauss )法等,但一般在构建机器人动力学方程中,多采用牛顿-欧拉法及拉格朗日法。 欧拉方程又称牛顿-欧拉方程,应用欧拉方程建立机器人机构的动力学方程是指研究构件质心的运动使用牛顿方程,研究相对于构件质心的转动使用欧拉方程,欧拉方程表征了力、力矩、惯性张量和加速度之间的关系。 在机器人的动力学研究中,主要应用拉格朗日方程建立机器人的动力学方程,这类方程可直接表示为系统控制输入的函数,若采用齐次坐标,递推的拉格朗日方程也可以建立比较方便且有效的动力学方程。 在求解机器人动力学方程过程中,其问题有两类: 1)给出已知轨迹点上? ??θθθ、及、 ,即机器人关节位置、速度和加速度,求相应的关节力矩矢量τ。这对实现机器人动态控制是相当有用的。 2)已知关节驱动力矩,求机器人系统相应各瞬时的运动。也就是说,给出关节力矩矢量τ,求机器人所产生的运动? ??θθθ、及、 。这对模拟机器人的运动是非常有用的。 平面二自由度机械臂动力学方程分析及推导过程 1、机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: 1) 选取坐标系,选定完全而且独立的广义关节变量n r ,,2,1,r ???=θ。 2) 选定相应关节上的广义力r F :当r θ是位移变量时,r F 为力;当r θ是角度变量时,r F 为力矩。 3)求出机器人各构件的动能和势能,构造拉格朗日函数。 4) 代入拉格朗日方程求得机器人系统的动力学方程。 2、下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

机械工程及自动化专业毕业设计论文-多自由度机械手设计

前言 1.1 课题背景及意义 机械手通过运动控制芯片、单片机、可控制编程器等来控制电机、气缸、液压缸的运动,从而模仿人手和臂的某些动作,按固定程序实现物体的抓取。它可代替人的劳动,也可以在有害环境下保护人身安全,因而广泛应用于机械制造、电子、原子能等部门。目前机械手主要用于以下几个方面。 (1).恶劣的工作环境和危险的工作 在核工业中,核产品具有较强的放射性,为了人员的安全,需要机械手来完成相关的清理工作。 (2).自动化生产领域 主要用于生产上实现自动化。如当机械手末端夹持焊枪时,可以对汽车或摩托车的车体进行点焊或弧焊作业。 (3).在特殊作业场合进行极限作业 在一些高危领域经常要用到机器人去探索。目前研制出了螃蟹机器人,用于水下勘测、海洋搜寻及石油天然气的勘测。 (4).农业生产 目前研制出了太阳能农用机器人,他可以找到隐藏在农作物中的杂草,通过机械手隔断杂草,同时还可以利用机械手喷洒除草剂。 (5).军事应用 在军事应用中,军人执勤经常会遇到危险,这就需要机器人帮助完成执勤任务,当今世界机器人竞争很激烈,要在这个激烈的国际竞争中立于不败之地,就需要有我国自己的机器人产业,未来世界高科技的竞争更重要的则是人才的竞争。因此,从现在开始就应该注意培养后备力量。机械手是机器人产业的典型代表,因此可以用来作为教学应用的示例。 机械手为典型的机电产品,包含了驱动元件,控制元件,信息处理元件,执行机构,传动机构,机械本体等组成元素,并且具有控制能力强,改变控制程序灵活方便、可靠性高等特点,为学生提供了良好的学习工具。它将现代工业与教学联系在了一起,通过控制—执行这整个的过程使学生对所学的知识有一个更好的认识,从而激发学生的学习兴趣。随着当今计算机技术的飞速发展,它已突破纯开关量控制的局限,进入模拟量控制等领域。通过该机械手的教学开拓了学生专业视野,为他们迎接就业和深造的挑战打下坚实的基础。

三自由度机械手臂设计说明书

SHANDONGUNIVERSITYOFTECHNOLOGY 课程设计说明书 三自由度机械手臂设计 学院:农业工程与食品科学学院 专业:农业机械化及其自动化 学生姓名:赵国0911034036 学生姓名:李继飞0911034030 学生姓名:程小岩0912034039 指导教师:程卫东 2013 年1 月

摘要 在当今大规模制造业中,企业为提高生产效率,保障产品质量,普遍重视生产过程的自动化程度,工业机器人作为自动化生产线上的重要成员,逐渐被企业所认同并采用。工业机器人的技术水平和应用程度在一定程度上反映了一个国家工业自动化的水平,目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动强度极大的工作,工作方式一般采取示教再现的方式。 本文将设计一台四自由度的工业机器人,用于给冲压设备运送物料。首先,本文将设计机器人的底座、大臂、小臂和机械手的结构,然后选择合适的传动方式、驱动方式,搭建机器人的结构平台;在此基础上,本文将设计该机器人的控制系统,包括数据采集卡和伺服放大器的选择、反馈方式和反馈元件的选择、端子板电路的设计以及控制软件的设计,重点加强控制软件的可靠性和机器人运行过程的安全性,最终实现的目标包括:关节的伺服控制和制动问题、实时监测机器人的各个关节的运动情况、机器人的示教编程和在线修改程序、设置参考点和回参考点。

目录 第1章绪论 (5) 1.1 机器人概述 (5) 第2章机器人实验平台介绍及机械手的设计 (6) 2.1自由度及关节 (6) 2.2 基座及连杆 (6) 2.2.1 基座 (6) 2.2.2 机械臂 (6) 2.3 机械手的设计 (6) 2.4 驱动方式 (8) 2.5 传动方式 (9) 2.6 制动器 (10) 第3章控制系统硬件 (11) 3.1 控制系统模式的选择 (11) 3.2 控制系统的搭建 (11) 3.2.1 工控机 (12) 3.2.2 数据采集卡 (12) 3.2.3 伺服放大器 (13) 3.2.4 端子板 (14) 3.2.5电位器及其标定 (15) 3.2.6电源 (16) 第4章控制系统软件 (16) 4.1预期的功能 (16) 4.2 实现方法 (16) 4.2.1实时显示各个关节角及运动范围控制 (16) 4.2.2直流电机的伺服控制 (16) 4.2.3电机的自锁 (16) 4.2.4示教编程及在线修改程序 (17) 第5章总结 (18)

两自由度机械手动力学问题

两自由度机械手动力学问题 1题目 图示为两杆机械手,由上臂AB、下臂BC和手部C组成。在A处和B处安装 有伺服电动机,分别产生控制力矩M 1和M 2 。M 1 带动整个机械手运动,M 2 带动下臂 相对上臂转动。假设此两杆机械手只能在铅垂平面内运动,两臂长为l 1和l 2 , 自重忽略不计,B处的伺服电动机及减速装置的质量为m 1 ,手部C握持重物质量 为m 2 ,试建立此两自由度机械手的动力学方程。 图1 图2

2数值法求解 拉格朗日方程 此两杆机械手可以简化为一个双摆系统,改双摆系统在B 、C 出具有质量m 1,m 2,在A 、B 处有控制力矩M 1和M 2作用。考虑到控制力矩M 2的作用与杆2相对杆1的相对转角θ2有关,故取广义力矩坐标为 2211,θθ==q q 系统的动能为二质点m 1、m 2的动能之和,即 由图2所示的速度矢量关系图可知 以A 处为零势能位置,则系统的势能为 由拉格朗日函数,动势为: 广义力2211,M Q M Q == 求出拉格朗日方程中的偏导数,即

代入拉格朗日方程式,整理得: 给定条件 (1)角位移运动规律 ()231*52335.0*1163.0t t t +-=θ,()232*52335.0*1163.0t t t +-=θ 21θθ和都是从0到90°,角位移曲线为三次函数曲线。 (2)质量 m 1=4㎏ m 2=5kg (3)杆长 l 1= l 2= MATLAB 程序 t=0::3; theta1=*t.^3+*t.^2; w1=*t.^2+*t; a1=*t+; theta2=*t.^3+*t.^2; w2=*t.^2+*t; a2=*t+; m1=4; m2=5; l1=; l2=;

3个自由度机械手设计

第一章引言 机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。 机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。 1.1 机械手的分类 机械手一般分为三类:第一类是不需要人工操作的通用机械手。它是一种独立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规定的操作。它的特点是具备普通机械的性能之外,还具备通用机械、记忆智能的三元机械。第二类是需要人工才做的,称为操作机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机来进行探测月球等。工业中采用的锻造操作机也属于这一范畴。第三类是用专用机械手,主要附属于自动机床或自动线上,用以解决机床上下料和工件送。这种机械手在国外称为“Mechanical Hand”,它是为主机服务的,由主机驱动;除少数以外,工作程序一般是固定的,因此是专用的。

多自由度机械手课程设计

机电一体化系统设计课程设计 设计题目: 内装: 1. 设计说明书 2. 装配图 3. 控制电路原理图 4. ……. 专业: 姓名: 学号: 指导教师: 完成日期: 成绩: 福建农林大学机电工程学院

机电一体化系统设计课程设计说明书 设计题目: 学院: 专业年级: 学号: 学生姓名: 指导教师: 年月日

一、机械手的概述 (1) 1.1 机械手的组成和分类 (1) 1.2 应用机械手的意义 (1) 二、总体方案设计 (3) 2.1 设计任务 (3) 2.2 总体方案确定 (3) 2.2.1机械手基本形式的选择 (3) 2.2.2机械手的主要部件及运动 (3) 2.2.3驱动机构的选择 (4) 三、机械系统设计 (5) 3.1机械手手部的设计计算 (5) 3.1.1手部设计基本要求 (5) 3.1.3机械手手抓的设计计算 (5) 3.1.4.机械手手抓夹持精度的分析计算 (8) 3.1.5弹簧的设计计算 (9) 3.2腕部的设计计算 (11) 3.2.1 腕部设计的基本要求 (11) 3.2.3 腕部结构和驱动机构的选择 (12) 3.2.4 腕部的设计计算 (12) 3.3臂部的设计及有关计算 (15) 3.3.1 臂部设计的基本要求 (15) 3.3.2 手臂的典型机构以及结构的选择 (16) 3.3.3 液压缸工作压力和结构的确定 (18) 3.4机身的设计计算 (19) 3.4.1 机身的整体设计 (19) 3.4.2 机身回转机构的设计计算 (20) 3.4.3 机身升降机构的计算 (22) 3.4.4 轴承的选择分析 (25) 四、控制系统硬件电路设计 (26) 4.1可编程序控器的简介 (26) 4.2 PLC的结构,种类和分类 (26) 4.3 FX2n系列三菱PLC特点 (30) 4.4 接近开关传感器 (28) 4.5 I/O接口简介 (29) 4.6 行程开关的介绍 (30) 4.6.1 行程开关的概念 (30) 4.6.2 行程开关的作用及原理 (30) 4.7电路的总体设计 (30) 4.7.1回路的设计 (30) 4.7.2 系统输入/输出分布表 (31) 4.7.3机械手的程序设计 (33) 4.7.4 步进电机的运行控制 (33) 五、参考文献 (34)

【精品毕设】基于单片机的多自由度机械手臂控制器设计

唐山学院 毕业设计 设计题目:基于单片机的多自由度机械手臂控制器设计 系别:信息工程系 班级:11电气工程及其自动化3班 姓名:刘亮 指导教师:田红霞 2015年6月1日

基于单片机的多自由度机械手臂控制器设计 摘要 机械臂控制器作为机械臂的大脑,对于它的研究有着十分重要的意义。随着微电子技术和控制方法的不断进步,以单片机作为控制器的控制系统越来越成熟。本课题正是基于单片机的机械臂控制系统的研究。 本文首先介绍了国内外机械臂发展状况以及控制系统的发展状况。其次,阐述了四自由度机械手臂控制系统的硬件电路设计及软件实现。详细阐述了机械臂控制系统中单片机及其外围电路设计、电源电路设计和舵机驱动电路设计。在程序设计中,着重介绍了利用微分插补法进行PWM调速的程序设计。并给出了控制器软件设计及流程图。最后,给出了系统调试中出现的软硬件问题,进行了详细的分析并给出了相应的解决办法。 关键词:机械臂单片机自由度舵机PWM

Design of Multi DOF Manipulator Controller Based on MCU Abstract As the brain of robot arm, manipulator controller is very important for its research.With the development of microelectronics technology and control method, the control system of MCU is becoming more and more mature.This thesis is based on the research of the manipulator control system of MCU. Firstly,it is introduced the development of the manipulator and the control system at home and abroad. Secondly,it is given the circuit and software design for the four DOF manipulator in this disertation.it is expatiated the Single Chip Microcomputer(SCM),the relative circuit design ,Power circuit design,and driver circuit design of manipulator control system.In the design of the program, the design of PWM speed regulation by differential interpolation is introduced emphatically. The software design and flow chart of the controller are given.Finally,it is presented the problems of hardware and software in practive given resolves. Key word: Manipulator;MCU;DOF;Steering engine;PWM

六自由度机械臂

VME 运动控制器 六自由度机器人 概 述 六自由度机器人是一种典型的工业机器人,在自动搬运、装配、焊接、喷涂等工业现场中有广泛的应用。固高科技GRB 系列六自由度机器人是固高成熟完备的运动控制技术与先进的设计和教学理念有机结合的产物,既满足工业现场要求,也是教学、科研机构进行运动规划和编程系统设计的理想对象。 该机器人采用六关节串联结构,各个关节以“绝对编码器电机+精密谐波减速器”为传动。在小臂处留有安装摄像头、气动工具等外部设备的接口,并提供备用电气接口,方便用户进行功能扩展。 机器人的控制方面,采用集成了PC 技术、图像技术、逻辑控制及专业运动控制技术的VME 运动控制器,性能可靠稳定,高速高精度。 主要特点 开放式控制实验平台 z 基于VME 总线高性能工业运动控制器的开放式平台,支持用户自主开发; z 通用智能运动控制开发平台,采用VC++或OtoStudio 计算机可编程自动化控 制系统开发工具 z 配备图形示教功能,便于机器人的编程操作和应用培训; z 配套内容详尽的操作手册和学生实验指导书,通过实例演示,引导用户操作并学习如何基于运动控制器开发各种应用软件系统。 工业化设计与制造 z 按照工业标准设计和制造; z 机构设计成6轴串联旋转式关节,各关节采用绝对型编码盘交流伺服电机驱 动,谐波减速器传动; z 模块化结构,简单、紧凑,预留电气与气动标准接口; z 较高的负载、更快的轴动作速度、大的许用扭矩和转动惯量使机器人应用广 泛,可用于搬运,点焊,装配,点胶,切割,喷涂等行业; z 具备最大的工作半径和最小的干涉半径,工作范围大,在系统设计上提供较 大的灵活性,夹具、剪丝机等设备可以采用更高效的安装方式;

六自由度机械手设计

机械设计课程设计说明书 六自由度机械手 TOPWORK 上海交通大学机械与动力工程学院专业机械工程与自动化 设计者: 李晶(5030209252) 李然(5030209316) 潘楷 (5030209345) 彭敏勤 (5030209347) 童幸 (5030209349) 指导老师:高雪官 2006616

、八— 刖言 在工资水平较低的中国,制造业尽管仍属于劳动力密集型,机械手的使用已经越来越普及。那些电子和汽车业 的欧美跨国公司很早就在它们设在中国的工厂中引进了自 动化生产。但现在的变化是那些分布在工业密集的华南、 华东沿海地区的中国本土制造厂也开始对机械手表现出越 来越浓厚的兴趣,因为他们要面对工人流失率高,以及交 货周期缩短带来的挑战。 机械手可以确保运转周期的一贯性,提高品质。另 外,让机械手取代普通工人从模具中取出零件不仅稳定, 而且也更加安全。同时,不断发展的模具技术也为机械手 提供了更多的市场机会。 可见随着科技的进步,市场的发展,机械手的广泛应用已渐趋可能,在未来的制造业中,越来越多的机械手将 被应用,越来越好的机械手将被创造,毫不夸张地说,机 械手是人类是走向先进制造的一个标志,是人类走向现代化、高科技进步的一个象征。因此如何设计出一个功能强大,结构稳定的机械手变成了迫在眉睫的问题。

目录 一.设计要求和功能分析 4 - ?- ■基座旋转机构轴的设计及强度校核 5 三.液压泵俯仰机构零件设计和强度校核 8 四.左右摇摆机构零件设计和强度校核 11五.连腕部俯仰机构零件设计和强度校核 14六.旋转和夹紧机构零件设计和强度校核 19七.机构各自由度的连接过程 25八.设计特色 28九.心得体会 28十.参考文献30 一. 任务分工31 十二.附录(零件及装配图)31

相关文档
最新文档