化学反应热力学(总结)

化学反应热力学(总结)
化学反应热力学(总结)

化学反应热力学

本章基本要求

1、了解规定焓及标准生成焓、标准生成自由能等基本概念,能运用赫斯定律、基尔霍夫定律计算化学过程的热力学函数的改变量。

2、准确理解化学反应的θ

m m rG rG ??和间的关系、区别,掌握化学反应自发方向和限度的判据。

3、熟练掌握气相反应、液相反应及多相反应标准平衡常数K θ

的热力学表达式,掌握K

θ

与各实验平衡常数间的关系及相互换算。

4、会用标准热力学数据、平衡转化率及平衡体系组成等计算K θ

及其它实验平衡常数。 化学中讨论物质的变化可分为三个层次。物理变化(相变)是一种物理过程,其分子运

动形态及聚集方式发生变化,但分子本量不改变。即分子的种类、数目是守恒的。化学反应则是分子的变革过程,它是分子内部原子结合方式及运动形态发生改变,但原子实(原子核加内层电子)基本不变。即原子种类及数目是守恒的,但分子种类及数目是改变的。核化学研究的核反应为原子核的变革过程,原子种类及数目发生改变,但更为基本的粒子是守恒的。

前面两章讨论的主要是物理变化,本章阐述化学反应系统热力学。本章分为两大部分,第一部分是化学反应热效应,即热力学,解决化学反应的能量衡算问题。第二部分是化学反应平衡规律,解决化学反应的方向、限度及影响平衡因素等。显然,这些问题与国计民生息息相关。

§3.1

在物理化学数据手册中所载的热化学数据是研究化学反应系统热力学性质最为重要的依据,它在理论研究及化工生产中都具有十分重要的价值。为正确使用这些数据,必须清楚其来源与有关规定。

为便于交流、收集与使用热化学数据,热力学规定了物质在不同聚集态的标准态(standard state )。对纯气、液、固体只规定压力为P θ

,未对温度作统一限制。由于热力学量是与温度密切相关的,化学热力学不得不选择某一温度下的标准态作为参考态(通常选298.15K ),并规定了物质在参考态下的热力学函数值。据此,人们便可确定物质热力学函数在任何状态下的相对值(相对于参考态)。由于参考态的数值是人为规定的,所以这些相对值又称为规定值。

1.1 Conventional enthalpy(H θ

)

人为规定物质在参考态下的焓值称为规定焓,记为H θ

(B ,298.15K )。可分为以下几种类型。

1、单质的规定摩尔焓

在化学热力学中,规定稳定纯单质B 在298.15K (25℃)及标准态下的规定焓值为零:H θ

(B ,298.15K )=0。显然单质B 的物质的量为1mol ,其焓为规定摩尔焓,相应值为零:H θ

m (B ,298.15K )=0。由于此参考态也是标准态,所以规定摩尔焓也称为standard molar enthalpy 。

纯单质(含化合物)的参考态是P θ

、298.15K 时的最稳定物态,可以是纯固体、液体,若为气体则应具有理气性质。由于物质的焓是温度的函数,所以在其他温度下稳定单质:H θ

m (B ,T )≠0。尚需注意:(1)H θ

m (B ,298.15K )=0是指其其最稳定物态;如碳应指石墨而非金刚石,液溴为零,气态溴则不为零。(2)此式中的B 只可为单质,而不是化合物,即化合物的标准焓在参考态下不为零。

2、化合物的规定摩尔焓和标准摩尔生成焓

化合物在参考态下最稳定物态的焓称为规定摩尔焓,记为H θ

m (B ,298.15K )。化合物B 的标准生成焓(热)(standard enthalpy of formation )是由单独处于各自标准态下,温度为T 的稳定单质生成单独处于标准态下,温度为T 的1mol 化合物B 过程的焓变(θ

m rG ?)。如液态水的θ

m fH ?是指下列假想过程的焓变:

),,(),,,(2

1),,,(222l P T O H id g P T O id g P T H θθθ→+、)(T rH m

θ

?而 ),,(2T l O H H m f θ?=),,(21

2T l O H H H H rH m m m m θ

θθθ=-=? -)],,2

1

(),,([22T g O H T g H H m m θ

θ+ 由于参考态时最稳定单质的H θ

m =0,所以:

)15.298,,()15.298,,(22K l O H H K l O H H m m f θθ=?。

据此,最稳定单质的θ

m f H ?(单质,298.15K )=0。因此,在参考态下,不论是单质还是化合物,均存在θm f H ?)15.298,(K B =)15.298,(K B H m θ

3.standard enthalpy of combusion

它被定义为1mol 物质B 和氧气在单独处于温度为T 的各自标准态下,完全氧化生成单独处于温度为T 的各自标准态下的产物之焓变。所谓完全氧化是指该物质中的C 变为CO 2(g )、H 变成H 2O (l ),N 变成N 2(g ),S →SO 2(g ),Cl →HCl (水液)。例如:C 2H 6的

1560)15.298,(-=?K g cH m θKJ ·mol -1。

4、水溶液中离子的标准生成焓

其定义是由处于标态下,温度T 时的稳定单质溶于大量水中生成处于标准态下,温度为T 时1mol 离子的过程之焓变。

2

1Cl 2(g,T)+∞H 2O →Cl - (aq,∞), θm f H ?(Cl -,aq,T)=θm rH ?。显然,水液中单独离子是不可能生成的,而是符合电中性条件配对产生的。故由实验是无法测定单独离子的

θm

f H ?。这就需要选定一种离子作为比较基准,此即θm f H ?(H +,298.15K ,∞,aq )=0,按此便可确定其它离子的θ

m rH ?(B ),这是相对值。

2

1H 2(T,P θ,g,id)+∞H 2O →H + (T,P θaq,∞), θ

m rH ?=0。 1.2 Conventional entropy

1、The third law of thermodynamics

1902年,Richards (雷查兹)在研究一些原电池的电动势与温度关系时,发现温度愈低同一电池反应的H G ??和愈接近。当时他未认识到此结果的重要意义。直到1906年,H.W.Nernst 在此研究基础上认为:当T K 0→时,0=?-?H G 。据此提出一个大胆假设:

0lim lim =??? ?????=??? ?????→→P o T P o T T H T G 。又因S T G P

?-=??? ?????,所以:0lim =?→S o T 。该式表述为:在凝聚体系中的一个恒温反应,当温度趋于绝对零度时,反应的熵变为零。此称为奈斯特热定理。后经G .N.Lewis 、M.Plank 、Randall 等人修正:在绝对零度时,任何纯物质完美晶体的熵值为零。0)(lim =→T S o

T 。此为普朗克说法。也有人把热三律表述为:不能用有限的

手段达到绝对零度,即绝对零度是不能达到的。

应该强调,热三律只是给熵规定了一个起点,并不意味着0K 下一切纯物质完善晶体的熵值确实为零,此值目前仍无法求出。

2、规定熵与标准熵

纯物质在恒压下的△S :dT T

C dS p =

从0K 至TK 积分上式得:

?

+=T

O

p dT T

C K S T S )0()(。据热三律,S (OK )=0,所以?=T

O

p T C T S ln )(。按此式求

出1mol 纯物质在TK 时熵值称为规定熵S m (B ,T ,P),若在标态下则为标准摩尔熵

),,(??P T B S m 。获得),(T B S m ?的方法有二:其一是量热法,利用量热数据热力学方法计算,

称为量热熵;其二是用光谱数据通过统计热力学计算,称为统计熵或光谱熵。物质在298.15K 时的),(T B S m ?

可查表。

量热熵的计算实例见例3-1。

1.3 Gibbs 函数的规定值 1、规定Gibbs 自由能

物质B 在温度T 时的规定自由能G m (B,T,P):G m (B,T,P)=H m (B,T,P)-TS m (B,T,P) 若在参考态下,应在G 、H 、S 的右上角加“θ”。据此可得:单质B 的

);()()()(B TS B TS B H B G m m m m θθθθ-=-=对于化合物B 的G )(B m θ=H )(B m θ-TS )(B m θ=

H

f ?)(B m θ

-TS )(B m θ

。 2、G

f ?)(B m

θ

由处于各自标准态下、温度T 时的稳定单质生成处于标态下、温度为T 时1mol 化合物

B 过程的Gibbs 自由能的变化称为该化合物的标准摩尔生成自由能(Standard molar Gibbbs

free energy of formation )。从生成反应可见,物质B 的),(),(T B G T B G m f m θ

θ?≠。此因单质的0),(≠T B G m θ

,而单质的0),(=?T B G m f θ,

是因其自身的生成过程的状态并未发生变化,故稳定单质的0),(=?T B G m f θ。

规定水溶液中离子的标准摩尔生成自由能是以:(θ

m f G ?H +,0),,15.298=∞aq K ,为基础的。

3、溶液中溶质的标准摩尔生成自由能

溶液中溶质B 的标准态(b B ,θμ)是该溶质在θP 、T 、b =θ

b 时仍服从享利定律的状态,该状态下溶质B 的标准摩尔生成自由能可用下法求得:

纯B ,S 或L,B P G ?→??1θ饱和溶液,?

?→??2,,,G b B bs P γθB 溶液,θ

θb b P =,显然, =?+?21G G θm f G ?(B ,298.15K,θb )(终态)- θm f G ?(B ,298.15K,θb )(始态)。

其中,01=?G ,因溶液平衡时的变化过程为可逆过程;)([)(,,2T n T n G b B B b B B θ

θμμ-=?

+RT )/ln()]/ln(,,θθγγb bs RT b bs b B b B ?-=?。所以:θm f G ?(B ,298.15K,θb )=θ

m f G ?(B ,298.15K )-)/ln(,θ

γb bs RT n b B B ?。上式表明,指定温度下,根据物质B 的饱和溶解度bs 及活度系数b B ,γ和纯B 的θm f G ?,则可计算溶液中溶质的θm f G ?(B ,298.15K,θ

b )的值。同理可求θ

c 时的θ

m f G ?。(04年5月17)

§3.2 The thermodynamics function change in chemical reactions 为研究化学反应系统的热力学性质,依据各种物质的热化学数据计算化学反应热力学函数改变值是极为重要的途径。如果以m Z (B )表示化学反应系统中1mol 物质B 对H 、S 、G 、C p 等热力学性质的贡献(偏摩尔量),那么对单位化学反应(1=ξmol ):∑B =B

ν

0,其

热力学性质改变值:()∑B

B

B Z =

Z ?m m r ν

。式中B ν为化学计量数,对于反应物其小于零,

产物大于零。若各物质均处于标态下,则有:)()(B Z T r B

m B

m ∑=

Z ?θ

θ

γ

。式中)(T rZ m

θ?为单位化学反应的标准摩尔热力学量变,如焓变、熵变等。

2.1 参考态下化学反应热力学量改变值的计算 1、标准摩尔熵变

∑=?B

m B m K B S K rS )15.298,()15.298(θθυ

式中)15.298,(K B S m θ

可查表得到。 2、标准摩尔焓变

由于参考态下,)()(B H B H m f m θθ?=,所以:

∑-?=?RT rH rU B m m υθ

3、标准摩尔Gibbs 自由能变

)(B fG rG m B m ∑?=?θθυ

按Gibbs 自由能的定义G=H-TS 可得任意温度T 及标压θ

P 下:

∑?=?B

m f B m G T rG θθυ)(),(T B =)()(),(T rS T T rH T B G m m m B θθθυ??-?=∑。

2.2化学反应标准热力学函数改变值与温度的关系

同一化学反应在不同温度下的热力学量改变值应是不同的。 1、Temperature-dependence of reaction enthalpy

在恒压下若已知温度T 1时的)(1T rH m ?,便可设计如下过程求T 2时的)(2T rH m ?:

)(1T rH m ?

1H ? 2H ?

)(2T rH m ?

显然:1212)()(H H T rH T rH m m ?-?+?=?。

1H ?、2H ?分别是反应物、产物在恒压下由T 1变化到T 2的焓变:

[]

[]

??+-+=-2

1

2

1

)()()()(,,,,12T T m p m p T T m p m p dT

B b

C A aC dT E eC

D dC H H

=

?

?2

1

,T T m p dT rC 。式中∑=?)(,,B C v rC m p B m p 。

可得:?

?+

?=?2

1

,12)()(T T m p m m dT rC T rH T rH 。若在标态下则可加“θ”

。此式揭示了

化学反应工程试题集及复习题

化学反应工程考试总结 一、填空题: 1.所谓“三传一反”是化学反应工程学的基础,其中“三传”是指质 量传递、热量传递和动量传递,“一反”是指反应动力学。 2.各种操作因素对于复杂反应的影响虽然各不相同,但通常温度升 高有利于活化能高的反应的选择性,反应物浓度升高有利于反应级数大的反应的选择性。 3.测定非理想流动的停留时间分布函数时,两种最常见的示踪物输 入方法为脉冲示踪法和阶跃示踪法。 4.在均相反应动力学中,利用实验数据求取化学反应速度方程式的 两种最主要的方法为积分法和微分法。 5.多级混合模型的唯一模型参数为串联的全混区的个数N ,轴 向扩散模型的唯一模型参数为Pe(或Ez / uL)。 6.工业催化剂性能优劣的三种最主要的性质是活性、选择性和稳 定性。 7.平推流反应器的E函数表达式为 , () 0, t t E t t t ?∞= ? =? ≠ ?? ,其无 因次方差2θσ= 0 ,而全混流反应器的无因次方差2θσ= 1 。 8.某反应速率常数的单位为m3 / (mol hr ),该反应为 2 级 反应。 9.对于反应22 A B R +→,各物质反应速率之间的关系为 (-r A):(-r B):r R= 1:2:2 。

10.平推流反应器和全混流反应器中平推流更适合于目的产 物是中间产物的串联反应。 →+,则其反应速率表达式不能确11.某反应的计量方程为A R S 定。 12.物质A按一级不可逆反应在一间歇反应器中分解,在67℃时转化 50%需要30 min, 而在80 ℃时达到同样的转化率仅需20秒,该反应的活化能为 3.46×105 (J / mol ) 。 13.反应级数不可能(可能/不可能)大于3。 14.对于单一反应,在相同的处理量和最终转化率条件下,选择反应 器时主要考虑反应器的大小;而对于复合反应,选择反应器时主要考虑的则是目的产物的收率; 15.完全混合反应器(全混流反应器)内物料的温度和浓度均一, 并且等于(大于/小于/等于)反应器出口物料的温度和浓度。 二.单项选择 10.(2) B 1、气相反应CO + 3H2CH4 + H2O进料时无惰性气体,CO与2H以1∶2 δ=__A_。 摩尔比进料,则膨胀因子CO A. -2 B. -1 C. 1 D. 2 2、一级连串反应A S P在间歇式反应器中,则目的产物P C___A____。 的最大浓度= max ,P

热力学与统计物理第三章知识总结

§3.1 热动平衡判据 当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。这些条件可以利用一些热力学函数作为平衡判据而求出。下面先介绍几种常用的平衡判据。 oisd一、平衡判据 1、熵判据 熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。如果只有体积变化功,孤立系条件相当与体积不变和内能不变。 因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。如果将熵函数作泰勒展开,准确到二级有 d因此孤立系统处在稳定平衡态的充分必要条件为 既围绕某一状态发生的各种可能的虚变动引起的熵变,该状态的熵就具有极大值,是稳定的平衡状态。 如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。如果对于某些变动,熵函数的数值不变,,这相当于中性平衡了。 熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。 2、自由能判据

表示在等温等容条件下,系统的自由能永不增加。这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。这一判据称为自由能判据。 按照数学上的极大值条件,自由能判据可以表示为: ; 由此可以确定平衡条件和平衡的稳定性条件。 所以等温等容系统处于稳定平衡状态的必要和充分条件为: 3吉布斯函数判据 在等温等压过程中,系统的吉布斯函数永不增加。可以得到吉布斯函数判据:系统在等温等压条件下,对于各种可能的变动,平衡态的吉布斯函数最小。 数学表达式为 , 等温等压系统处在稳定平衡状态的必要和充分条件为 除了熵,自由能和吉布斯函数判据以外,还可以根据其它的热力学函数性质进行判断。例如,内能判据,焓判据等。 二、平衡条件 做为热动平衡判据的初步应用,我们考虑一个均匀的物质系统与具有恒定温度和恒定压强的热源相互接触,在接触中二者可以通过功和热量的方式交换能量。我们推求在达到平衡时所要满足的平衡条件和平衡稳定条件。 1.平衡条件 现在利用熵判据求系统的平衡条件。我们将系统和热源合起来构成一个孤立系统,设系统的 熵为S,热源的熵为因为熵是一个广延量,具有可加性,则孤立系统的总熵(用) 为: (1) 当达到平衡态时,根据极值条件可得: (2)

化学动力学与化学热力学在有机化学中的应用

化学热力学与动力学在有机化学中的应用 一.化学热力学: 一个反应能否自发发生及反应平衡时反应物和产物之间的相对比例是一个化学热力学问题。可以解决,一个反应的能否自发进行及反应的限度问题,是用自由能ΔG 来判断的,ΔG<0反应可以自发进行,直到平衡即ΔG=0,相反如果大于0时,反应是不能自发进行的,由平衡常数与ΔG 的关系可以知道,此时K 很小所以往往是可逆的。S T H G ?-?=?,Δ H 反应的是反应的热效应,在反应中焓的变化反映了反应物键的断裂与生成物键的生成能量 之差(其中包括张力能,离域能等),即断裂键的键能之和减去生成键的键能之和(键能为正值)。当ΔS 可以忽略不计的时候,ΔG ≈ΔH ,当反应是放热的时候,即ΔH<0,则ΔG<0,即反应可以自发进行。ΔS 的判断:1.分子在体系中的自由度越大,她的熵值也就越大。即气>液>固。在一个反应中如果反应物都是液相的,而产物至少有一个是气相的,那么在热力 学上由于熵增大所以是有利的。2.产物的分子数目等于反应物的分子数目的反应,熵变通常是不大的,但是如果生成物的分子数增加,通常会有较大的熵值增加。所以分解,分裂的反应在热力学上是有利的。但是注意,有些时候分解反应的热焓变比较大抵消了ΔS 的增大,最终ΔG 仍>0,反应仍不自发。3.链状分子比对应的环状分子有更大的熵值,因而分子的打开是有利的,闭环意味着熵值的减少。如果弱键断裂,强健生成,则反映放热,ΔH<0,在放热反应中,焓变对G 有一个负的的贡献,所以反应易于由弱键生成强键,反之,由强键生成 弱键,会消耗能量,H>0对G 有正的贡献,不易发生。综上焓减少是反应的推动力,熵增加是反应的推动力。 化学动力学: 对反应速度的处理研究涉及到化学动力学问题。有机化学中主要应用过渡态理论。过渡态是反应途径中能量最高点时所存在的结构。它和反应物、产物或中间体不同,并不是一个化学实体,无法分离和实验观察,仅是一个有一定几何形状的和电荷分布的高度不稳定状态。 微观可逆原理::(1)一个基元反应的逆反应也必然是基元反应,即任何基元反应都是可逆的;(2)正反应与逆反应经过相同的过渡态即正逆反应途径一样,机理一样。 当我们研究一个有机反应时,最希望了解的是这一反应将向产物方向进行到什么样程度?一般来说,任何体系都有转变成它们最稳定状态的趋势(即自发的趋势都是体系自由能减小的方向,ΔG<0),因此,可以预料当产物的稳定性愈大于反应物的稳定性时,则平衡愈移向产物一侧。这句话的意思可由下式看出来。△G=-RTlnK ,当两个物质的稳定性差很大的时候,即自由能差很大,如果生成物的自由能比反应物的小,即ΔG 很负,所以K 很大,平衡常数大,说明向稳定的方向进行的趋势很大,即平衡移向产物一侧,反应进行的很完全。 要使反应发生,产物的自由能必须低于反应物的自由能,即△G 必须是负值。说白了对于一个自发反应,反应物与产物之间自由能差别越大,或者说稳定性差别越大,反应进行的趋势完全程度也越大。 过渡态理论:1.起反应的物质结合时需要通过比原始和终了的状态较高的势能,具有较高势能的状态较过渡态。即假设一个反应先达到一个过渡态,然后从过渡态以极快的速度变成产物。2.反应有几种产物时,每一种产物都从不通过过渡态过来的,主要产物是过渡态能量最低的转化而来的。3反应物与过渡态之间存在一个平衡,反应的速度(生成过渡态的速度)依赖于平衡常数,而K 又与活化自由能有关。过渡态的自由能的高低成为衡量反应速率的重要标志。 在一步反应的图中能量最高点是活化络合物,在它的左边,所有络合物都被认为同反应物处于平衡中;而在它右边,所有络合物则被认为是同产物处于平衡中。 A+B 反应物 D 产物△G 双步 反 应G ΔG 1≠ΔG 2≠ C 中间体 A+B 反应物 C 产物过渡态△G 单 步 反 应G ΔG 1≠a b

化学反应工程基础知识总结(笔记)(可编辑修改word版)

化学反应工程基础知识总结(笔记) 1、化学反应工程是一门研究涉及化学反应的工程问题的学科。如何将其在工业规模上实现是化学反应工程的主要任务。 2、理想置换反应器的特点:①由于流体沿同一方向,以相同速度向前推进,在反应器内没有物料的返混,所有物料通过反应器的时间都是相同的②在垂直于流动方向上的同一截面,不同径向位置的流体特性是一致的③在定常态下操作,反应器内状态只随轴向位置改变,不随时间改变。 3、全混流反应器的特性①物料在反应器内充分返混②反应器内各物料参数均一③反应器的出口组成与器内物料组成相同④反应过程中连续进料与出料,是一定常态过程。 4、返混的定义:物料在反应器内不仅有空间上的混合而是有时间上的混合,这种混合过程称返混。 5、非均相催化反应过程步骤①反应组分从流体主体向固体催化剂外表面传递②反应组分从外表面向催化剂内表面传递③反应组分在催化剂表面的活性中心上吸附④在催化剂表面上进行化学反应⑤反应产物在催化剂表面上解吸⑥ 反应产物从催化剂内表面向外表面传递⑦反应产物从催化剂的外表面向流体主体传递 6、兰格缪尓(Langmuir)吸附模型条件①催化剂表面上活性中心分布是均匀的②吸附活化能和脱附活化能与表面吸附的程度无关③每个活性中心仅能吸附一个气相分子④被吸附分子间互不影响,也不影响空位对气相分子的吸附。 7、焦姆金(Temkhh)吸附模型: 一般吸附活化能随覆盖率的增加而增大,脱附活化能则随覆盖率的增加而减小,因此吸附热必然随覆盖率的增加而减小。 8、催化剂颗粒内气体扩散:多孔催化剂颗粒内的扩散现象是很复杂的。除扩散路径极不规则外,孔的大小不同时,气体分子扩散机理亦有所不同。当孔径较大时,分子的扩散阻力要是由于分子间碰撞所致,这种扩散通常所称的分子扩散或容积扩散。当微孔的孔径小于分子的平均自由程时,分子与孔壁的碰撞机会超过了分子间的相互碰撞,从而使分子与孔壁的碰撞成为扩散阻力的主要因素,称为克努森(Knudson)扩散。 9、一微拟均相非理想流模型①流体在床层中流动属非理想流动,但遵循轴向扩散模型②流体沿床层径向温度、浓度是均一的,仅沿轴向变化③流体与催化剂在同一截面处的温度、浓度相同。三个基本方程:动量、物料、热量衡算方程。 10、流体床反应器的特点①流体床反应器采用的催化剂颗粒直径远小于固定床反应器选用的颗粒直径。则流化床反应器中颗粒外表面积远大于固定床反应器中颗粒的外表面积②由于流化床反应器颗粒直径较小,催化剂颗粒的内扩

热力学公式汇总

物理化学主要公式及使用条件 第一章 气体的 pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 pV (m/M )RT nRT 或 pV m p (V /n ) RT 式中p , V , T 及n 单位分别为Pa, m 3, K 及mol 。 V m V /n 称为气体的摩尔体 积,其单位为m 3?mol -1。R=8.314510 J mol -1 K 1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 ( 1) 组成 摩尔分数 式中 n A 为混合气体总的物质的 量。 V m ,A 表示在一定T , p 下纯气体A 的摩 A 尔体积。 y A V mA 为在一定T , p 下混合之前各纯组分体积的总和。 A ( 2) 摩尔质量 述各式适用于任意的气体混合物 (3) y B n B /n p B / p V B /V 式中P B 为气体B ,在混合的T , V 条件下,单独存在时所产生的压力,称为 B 的分压力。V B 为B 气体在混合气体的T , p 下,单独存在时所占的体积。 y B (或 x B ) = n B / n A A 体积分数 B y B V m,B / yAV m,A A y B M B m/n M B / n B B B B 式中 m m B 为混合气体的总质量, n B n B 为混合气体总的物质的量。上 M mix B

叮叮小文库3. 道尔顿定律 p B = y B p, p P B B 上式适用于任意气体。对于理想气体 P B n B RT/V 4. 阿马加分体积定律 V B ri B RT/V 此式只适用于理想气体。 第二章热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 U Q W 或dU 8Q SW 9Q P amb dV SW' 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中P amb为环境的压力,W为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 H U pV 3. 焓变 (1)H U (PV) 式中(pV)为pV乘积的增量,只有在恒压下(pV) P(V2v1)在数值上等于体积功。 2 (2)H 1n C p,m dT 此式适用于理想气体单纯pVT变化的一切过程,或真实气体的恒压变温过程,

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c = = = ''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 2 2 1mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++=2 21 2.gz c u e ++=22 1 3.U E = 或 u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.10 20 121 2 2 1 t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把 ()T f c v =的经验公式代入?=?2 1 dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1 1 21 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?2 1pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21 pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

统计热力学小结与习题

第9章 统计热力学初步小结与练习 核心内容:配分函数(q )及其与热力学函数(U,S …)之间的关系 主要内容:各种运动形式的q 及由q 求U,S …的计算公式 一、内容提要 1、微观粒子的运动形式和能级公式 n e r t εεεεεε++++=v 式中,ε:粒子的总能量,t ε:粒子整体的平动能,r ε:转动能,v ε:振动能, e ε:电子运动能,n ε:核运动能。 (1)三维平动子 )(8222222 2c n b n a n m h z y x t ++=ε 式中,h :普朗克常数;m :粒子的质量;a ,b ,c :容器的三个边长,n x ,n y ,n z 分别为x ,y ,z 轴方向的平动量子数,取值1,2,3……。 对立方容器 )(82 223 22z y x t n n n mV h ++= ε 基态n x = 1,n y = 1,n z = 1,简并度10,=t g ,而其他能级的简并度要具体情况具体分析,如3 2286mV h t =ε的能级,其简并度g =3。 (2)刚性转子 双原子分子)1(822+= J J I h r πε

式中,J :转动量子数,取值0,1,2……,I :转动惯量,20R I μ=, μ:分子的折合质量,2 12 1m m m m += μ,0R :分子的平衡键长,能级r ε的 简并度 g r =2J+1 (3)一维谐振子 νυεh )2 1(v += 式中,ν:分子的振动频率,υ:振动量子数,取值0,1,2……,各能级都是非简并的,g v =1 对三维谐振子,νυυυεh z y x )2 3 (v +++= 2 )2)(1(v ++=s s g , 其中s=υx + υy + υz (4)运动自由度:描述粒子的空间位置所必须的独立坐标的数目。 2、能级分布的微态数和Boltzmann 分布 (1)能级分布的微态数 能级分布:N 个粒子分布在各个能级上的粒子数,叫做能级 分布数,每一套能级分布数称为一种分布。 微态数:实现一种分布的方式数。 定域子系统能级分布微态数∏=i i n i D n g N W i !!

化学反应工程总结

、绪论 1. 研究对象是工业反应过程或工业反应器 研究目的是实现工业反应过程的优化 2. 决策变量:反应器结构、操作方式、工艺条件 3. 优化指标一一技术指标:反应速率、选择性、能耗 掌握转化率、收率与选择性的概念 4. 工程思维方法 1. 反应类型:简单反应、自催化、可逆、平行、串联反应 基本特征、分析判断 2. 化学反应速率的工程表示 3. 工业反应动力学规律可表示为: r i f c (G ) f T (T ) a )浓度效应——n 工程意义是:反应速率对浓度变化的敏感程 度。 b )温度效应——E 工程意义是:反应速率对温度变化的敏感程 度。 E ---- cal/mol , j/mol T ----- K R = 1.987cal/mol.K = 8.314 j/mol.K 化学反应动力学 反应速率= 反应量 (反应时间)(反应 已知两个温度下的反应速率常数 k , 可以按下式计算活化能 工程问题 动力学问题

三、PFR与CSTR基本方程 1.理想间歇:t V R V o c Af dC A CA0( J ) x Af dx A XA0( J ) 2.理想PFR V R V o C Af dc A C A0 ( J) C A0 x Af dx A x A 0(「A) 3. CSTR 4. 图解法 V R C A0 C A C A0X A T /C A0 0 X Af X A 四、简单反应的计算 n=1,0,2级反应特征C A C A0(1 X A)浓度、转化率、反应时间关系式 基本关系式PFR(间歇)CSTR V R C Af dC A V R C A0 C A p V。C A0 (:)m v (「A) PFF H CSTR CSTR>PFR C A0X A k p C A0 X A k p n=0 n=1 n=2 C A0 kC A . 11 k p 丁 C A C A0 k p 1吒C A0

热力学第二定律总结

第三章 热力学第二定律总结 核心内容: 不可逆或自发 02 1 < > -+ =?+?=?? amb r amb iso T Q T Q S S S δ 可逆或平衡 不可能 对于恒T 、V 、W ˊ=0过程: 不可逆或自发 0)(0,,> < ?-?=-?==?'S T U TS U A W V T 可逆或平衡 反向自发 对于恒T 、p 、W ˊ=0过程: 不可逆或自发 0)(0,,> < ?-?=-?=?='S T H TS H G W p T 可逆或平衡 反向自发 主要内容:三种过程(单纯pVT 变化、相变、化学反应)W 、Q 、ΔU 、ΔH 、△S 、△A 、△G 的计算及过程方向的判断。 一、内容提要 1、热力学第二定律的数学形式 不可逆或自发 ?<>?21T Q S δ 可逆或平衡 不可能 上式是判断过程方向的一般熵判据。将系统与环境一起考虑,构成隔离系统则上式变为: 不可逆或自发 02 1 < > -+ =?+?=?? amb r amb iso T Q T Q S S S δ 可逆或平衡 不可能

上式称为实用熵判据。在应用此判据判断过程的方向时,需同时考虑系统和环境的熵变。 将上式应用于恒T 、V 、W ˊ=0或恒T 、p 、W ˊ=0过程有: 不可逆或自发 0)(0,,> < ?-?=-?==?'S T U TS U A W V T 可逆或平衡 反向自发 此式称为亥姆霍兹函数判据。 不可逆或自发 0)(0,,> < ?-?=-?=?='S T H TS H G W p T 可逆或平衡 反向自发 此式称为吉布斯函数判据。 熵判据需同时考虑系统和环境,而亥姆霍兹函数判据和吉布斯函数判据只需考虑系统本身。熵判据是万能判据,而亥姆霍兹函数判据和吉布斯函数判据则是条件判据(只有满足下角标条件时才能应用)。 此外,关于亥姆霍兹函数和吉布斯函数,还有如下关系: r T W A =? r V T W A '=?, r p T W G '=?, 即恒温可逆过程系统的亥姆霍兹函数变化等于过程的可逆功;恒温恒容可逆过程系统的亥姆霍兹函数变化等于过程的可逆非体积功;恒温恒压可逆过程系统的吉布斯函数变化等于过程的可逆非体积功。 下面将△S 、△A 和△G 的计算就三种常见的过程进行展开。 2、三种过程(物质三态pVT 变化、相变、化学反应)△S 、△A 和△G 的计算 (1)物质三态(g 、l 或s 态)pVT 变化(无相变、无化学反应)

催化反应的热力学与动力学

第三章 催化反应的热力学和动力学 一、催化反应的热力学热力学 化学和酶催化反应和普通化学反应一样,都是受反应物转化为产物过程中的能量变化控制的。因此要涉及到化学热力学、统计学的概念。下面对催化反应热力学作简要介绍。 1.热力学第一定律(又称为能量守恒与转化定律) 实际上是能量守恒和转化定律的说明。能量有各种形式,能够从一种形式转化为另一种形式,从一个物体传递给另一个物体,但在转化和传递中,能量的总量保持不变。如果反应开始时体系的总能量是U 1,终了时增加到U 2,那么,体系的能量变化U ?为: U ?=U 2-U 1 (3-1) 如果体系从环境接受的能量是热,那么,体系还可以膨胀作功,所以体系的能量变化U ?必须同时反映出体系吸收的热`和膨胀所作的功。体系能量的这种变化还可以表示为: U ?=Q -W (3-2) Q 是体系吸收的热能,体系吸热Q 为正值,体系放热(或体系的热量受到损失)Q 为负值;W 是体系所作的功,当体系对环境作功时,W 值是正的,当环境对体系作功时,W 值是负的。体系能量变化U ?仅和始态及终态有关,和转换过程中所取得途径无关,是状态函数。 大多数化学和酶催化反应都在常压下进行,在这一条件下操作的体系,从环境吸收热量时将伴随体积的增加,换言之,体系将完成功。在常压p ,体积增加所作的功为: ??==V p pdV W (3-3) 这里,△V 是体系体积的变化值(即终态和始态时体积的差值)。因此,这时在常压下,体系只作体积功时,热力学一律的表达式为: U ?=V p Q p ?- (3-4) 对在常压下操作的封闭体系,H Q p ?=,△H 是体系热函的变化。因此,对常压下操作的体系:热力学一律的表达式为:V p U H ?+?=? (3-5) △U 和p △V 对描述许多化学反应十分重要。但对发生在水溶液中的反应有其特殊性,因为水溶液中的反应没有明显的体积变化,p △H 接近于零。△H ≈△U ,所以对在水溶液中进行的任何反应,可以用热函的变化△H 来描述总能量的变化,而这个量△H 是可以测定的。

热力学基础计算的题目-问题详解

《热力学基础》计算题答案全 1. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍. (普适气体常量R =8.31 1 --??K mol J 1,ln 3=1.0986) (1) 计算这个过程中气体对外所作的功. (2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少? 解:(1) 等温过程气体对外作功为 ??=== 000333ln d d V V V V RT V V RT V p W 2分 =8.31×298×1.0986 J = 2.72×103 J 2分 (2) 绝热过程气体对外作功为 V V V p V p W V V V V d d 0 0003003??-==γγ RT V p 1 311131001--=--=--γγγγ 2分 =2.20×103 J 2分 2.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统 对外所作的功W ,内能的增量E 以及所吸收的 热量Q . (2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和). 解:(1) A →B : ))((2 11A B A B V V p p W -+= =200 J . ΔE 1=νC V (T B -T A )=3(p B V B -p A V A ) /2=750 J Q =W 1+ΔE 1=950 J . 3分 1 2 3 1 2 O V (10-3 m 3) 5 A B C

-热力学基础总结

-热力学基础总结 一、热力学第一定律(封闭系统,任何过程)(封闭系统微变过程) 二、热力学第二定律 1、热力学第二定律的数学表达式,Clausius不等式: > 为不可逆=为可逆 2、熵的定义式 三、状态函数及其关系式 1、状态函数关系式:(定义式)H = U + pV || || G = A + pV + + TS TS 2、热力学的四个基本方程:(适用条件:恒定组成,只作体积功的封闭系统) 3、对应系数关系式: 4、Maxwell关系式: ;;;; 四、各种判据的比较: 判据熵判据(S判据)亥姆霍兹自由能判据(A判据)吉布斯自由能判据(G判据)系统孤立系统封闭系统封闭系统适用条件任何过程恒温恒容且非体积功W’=0恒温恒压且非体积功W’=0自发方向dSsio=dSsys+ dSsur>0<0<0平衡状态dSiso=dSsys+ dSsur=0

五、各种热力学函数的计算公式: 1、体积功的计算(1)、定义式: (2)、反抗恒定外压过程: (3)、可逆过程: (4)、理想气体恒温过程: (5)、有气体参加的相变过程:体系在恒温恒压下由凝聚相转变为气相(6)、绝热过程: 2、热效应的计算(1)、恒容热: (封闭系统,恒定W′= 0)(2)、恒压热: (封闭系统,恒压,)(3)、理想气体恒温可逆过程: (4)、绝热过程: 3、热力学能的计算(1)、封闭系统,任何过程: (2)、理想气体恒温过程:=0 (3)、均相物质变温过程:(4)、绝热过程: 4、焓变的计算(1)、封闭系统: (2)、理想气体恒温过程:=0(3)、均相物质变温过程:(4)、恒压过程: (5)、可逆相变过程: (6)、不可逆相变过程设计过程完成。 5、熵变的计算(1)、熵的定义式: (2)、理想气体的恒温过程: (3)、恒压变温过程的熵变:

化学反应工程复习总结

化学反应工程复习总结https://www.360docs.net/doc/7d3882368.html,work Information Technology Company.2020YEAR

一、 绪论 1. 研究对象是工业反应过程或工业反应器 研究目的是实现工业反应过程的优化 2. 决策变量:反应器结构、操作方式、工艺条件 3. 优化指标——技术指标:反应速率、选择性、能耗 掌握转化率、收率与选择性的概念 4. 工程思维方法 二、化学反应动力学 1. 反应类型:简单反应、自催化、可逆、平行、串联反应 基本特征、分析判断 2. 化学反应速率的工程表示 ) )((反应区反应时间反应量 反应速率= 3. 工业反应动力学规律可表示为: )()(T f C f r T i C i ?= a) 浓度效应——n 工程意义是:反应速率对浓度变化的敏感程度。 b) 温度效应——E 工程意义是:反应速率对温度变化的敏感程度。 已知两个温度下的反应速率常数k ,可以按下式计算活化能E : E ——cal/mol ,j/mol T ——K R = 1.987cal/mol.K = 8.314 j/mol.K 三、PFR 与CSTR 基本方程 1. 理想间歇:??-=--==Af A Af A x x A A A c c A A R r dx c r dc v V t 00) ()(00 反应结果r , 工程问题

2. 理想PFR : ??-=--==Af A Af A x x A A A c c A A R p r dx c r dc v V 00) ()(00τ 3. CSTR : ) ()(00A A A A A A R p r x c r c c v V -= --== τ 4. 图解法 四、简单反应的计算 n=1,0,2级反应特征 0(1)A A A c c x =- 浓度、转化率、反应时间关系式 PFR →CSTR ,CSTR ←PFR 基本关系式 PFR (间歇) CSTR 00 ()Af A c R A p c A V dc v r τ ==--? 0() A A R m A c c V v r τ-= =- n=0 0A A p c x k τ= 0A A p c x k τ= n=1 1 ln 1p A k x τ=- 0A A m A c c kc τ-= x x τ/c A0 τ

热力学 动力学 化学平衡练习

热力学、动力学、化学平衡练习题 一.选择题: 1.下列参数中,哪个不属于状态函数? (A)温度T (B)压强P (C)热Q (D)焓H 2.已知反应)(2 1)()(2222g O l O H l O H + =的198-O ?-=?mol kJ H m r 反应)()(22g O H l O H =的1 0.44-O ?=?mol kJ H m r 则反应)()(2)(22222g O g O H l O H +=的为O ?m r H (A) -54 1 -?mol kJ (B) -1081 -?mol kJ (C) -1421 -?mol kJ (D)1421 -?mol kJ 3.在恒温条件下,若化学平衡发生移动,则其平衡常数 (A)不变 (B)减小 (C)增大 (D)难以判断 4.反应)()(2 1)()(22g CO g N g CO g NO += +的10.373-O ?-=?mol kJ H m r ,若要提高 )(g NO 和)(g CO 的转化率,可采取的方法是 (A)高温低压 (B)高温高压 (C)低温高压 (D)低温低压 5.已知某反应的速率常数为1 min 35.0-=k ,则此反应是 (A)零级反应 (B)一级反应 (C)二级反应 (D)三级反应 6.一个复杂反应的速度是 (A)由最慢的一步基元反应决定 (B)由最快的一步基元反应决定 (C)各步基元反应速度之和 (D)无法确定的 7.相同温度下,下列哪个反应的熵增量最大? (A))()(2)(2223g O g SO g SO += (B))(),()(22g O s C g CO +=石墨 (C))()(3)(2223g N g H g NH += (D))(2)()(22424l O H s CaSO s O H CaSO +=? 8.某反应在298K 及×105 Pa 时正反应能自发进行,高温时,逆反应能自发 进行,说明该反应正向属于下列哪种类型? (A)0,0>??S H (C)0,0?>?S H

热力学基础计算题

《热力学基础》计算题 1. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀 至原来的3倍. (普适气体常量R =8.31 1 --??K mol J 1,ln 3=1.0986) (1) 计算这个过程中气体对外所作的功. (2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少? 解:(1) 等温过程气体对外作功为 ??=== 0000333ln d d V V V V RT V V RT V p W 2分 =8.31×298×1.0986 J = 2.72×103 J 2分 (2) 绝热过程气体对外作功为 V V V p V p W V V V V d d 0 0003003??-== γγ RT V p 1 311131001--=--=--γγγ γ 2分 =2.20×103 J 2分 2.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、 等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量?E 以及所吸收的热量Q . (2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和). 解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 J Q =W 1+ΔE 1=950 J . 3分 B → C : W 2 =0 ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J . Q 2 =W 2+ΔE 2=-600 J . 2分 C →A : W 3 = p A (V A -V C )=-100 J . 150)(2 3)(3-=-=-=?C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J 3分 (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J 2分 3) 5

化学反应工程期末考试试题及答案(整理)

XXX 大学 化学反应工程 试题B (开)卷 (答案)2011—2012学年第一学期 一、单项选择题: (每题2分,共20分) 1.反应器中等温进行着A→P(1)和A→R(2)两个反应,当降低A 的浓度后,发现反 应生成P 的量显著降低,而R 的生成量略降低,表明( ) A .反应(1)对A 的反应级数大于反应(2) B .反应(1) 对A 的反应级数小于反应(2) C .反应(1)的活化能小于反应(2) D .反应(1)的反应速率常数大于反应(2) 2.四只相同体积的全混釜串联操作,其无因次停留时间分布的方差值2θσ为( ) A . 1.0 B. 0.25 C .0.50 D .0 3.对一平行—连串反应R A Q P A ?→??→??→?) 3()2()1(,P 为目的产物,若活化能次序为:E 2 -r A2 B .-r A1 = -r A2 C .-r A1 < -r A2 D.不能确定何者为大 5. 已知一闭式反应器的1 .0=r a uL D ,该反应器若用多釜串联模型来描述,则模型参数N 为 ( )。 A . 4.5 B. 5.6 C .3.5 D .4.0 6.固体催化剂之所以能起催化作用,是由于催化剂的活性中心与反应组分的气体分子主要 发生( )。 A .物理吸附 B .化学反应 C .化学吸附 D .质量传递 7.包括粒内微孔体积在内的全颗粒密度称之为( ) A .堆(积)密度 B .颗粒密度 C .真密度 D .平均密度 8.在气固催化反应动力学研究中,内循环式无梯度反应器是一种( )。 A .平推流反应器 B. 轴向流反应器 C. 全混流反应器 D. 多釜串联反应器 9.某液相反应,其反应式可写成A+C R+C 这种反应称为( ) A .均相催化反应 B .自催化反应 C .链锁反应 D.可逆反应 10.高径比不大的气液连续鼓泡搅拌釜,对于其中的气相和液相的流动常可近似看成( ) A .气、液均为平推流 B .气、液均为全混流 C .气相平推流、液相全混流 D .气相全混流、液相平推流 二、填空题(每题5分,共30分) 1.一不可逆反应,当反应温度从25℃升高到35℃时,反应速率增加一倍,则该反应的活化能为 。 2.一气固催化反应R B A →+,若本征反应速率方程为: 则该反应可能的反应机理为 3.间歇釜反应器中进行如下反应: P A → (1) -r A1=k 1C A a1 S A → (2) -r A2=k 2C A a2 在C A0和反应时间保持不变下,降低反应温度,釜液中C P /C S 增大,表明活化能E1与E2的 2)1(R R B B A A B B A A S P K P K P K P K P K k r +++=

《热力学》课程内容小结

《热力学》课程各章内容小结 Ⅰ 温度、物态方程 一.热力学系统及其平衡态 热力学系统分为孤立系统、封闭系统及开放系统; 系统的平衡态是在没有外界影响的条件下,系统的宏观性质不随时间变化的状态; 状态参量——描述系统平衡状态的宏观物理量: 几何参量(V )、力学参量(p )、化学参量(1n ,2n ……)、电磁参量(E ,H ); 对简单系统,独立变量只有两个(如p 、V )。 二.温度与温标 (一)实验表明:如果两个热力学系统同时与第三个系统处于热平衡,则这两个系统必定彼此处于热平衡——热平衡定律(热力学第零定律)。 该定律为科学地建立温度概念提供了实验基础,可证明温度是状态函数。 (二)温标是温度的数值表示法 规定水的三相点温度为K 16.273,则定容气体温标为 tr V p p T ? =K 15.273,tr p 为气体在三相点时的压强; 理想气体温标为 tr p p p T tr lim 0K 15.273→?=,在理想气体温标确定的温度范围内,与热力学温标T 完全一致。 t (℃)=K 15.273-T 三.物态方程 均匀物质的物态方程是:0),,(=T V p f 或 ),(V p T T = 与求物态方程有关的物理量有: p T V V ??? ????=1α——定压膨胀系数 V T p p ??? ????= 1β——定容压强系数 T T p V V ???? ????- =1κ——等温压缩系数 因1-=??? ??????? ???????? ????p V T V T T p p V ,所以p T βκα= 几种物态方程:

理想气体 const /=T pV 或nRT pV = 实际气体的范氏方程 ()RT b V V a p m m =-??? ? ?? +2(1mol ) 简单固体 []p T T T V p T V T κα--+=)(1)0,(),(000 Ⅱ 热力学第一定律 一.功、热量、内能 (一)准静态过程的功 体积功:V p W d d -=,?-=B A V V V p W d 表面张力的功:A W d d σ=,?=2 1d A A A W σ 功是过程量。 (二)热量、内能、焓、摩尔热容量 1.热量Q 是各系统之间因有温度差而传递的能量,是过程量。 2.内能U 是状态函数,U d 一定为全微分;两平衡态内能增量等于绝热过程中外界对系统作的功:S A B W U U =-; 理想气体的内能遵循焦耳定律:)(T U U =。 3.焓H 的定义为:pV U H += H 为状态函数,H d 为全微分;在等压过程中,焓的增量等于系统吸收的热量: Q H =? 4.热容量的定义为:T Q T Q C T d d lim 0=??=→? 定容热容量V V T U C ??? ????=,n C C V m V =,——摩尔定容热容量; 定压热容量p p T H C ??? ????=,n C C p m p =,——摩尔定压热容量; 对理想气体:nR C C V p =-,V p C =γ,1-= γnR C V ,1-=γγnR C p 0U T C U V +=,0H T C H p += 5.理想气体绝热方程

化学反应工程复习总结

一、知识点 1.化学反应工程的研究对象与目的,研究内容。 化学反应工程的优化的技术指标。 2.化学反应动力学 转化率、收率与选择性的概念。 反应速率的温度效应和活化能的意义。 反应速率的浓度效应和级数的意义。 3.理想反应器与典型反应特征 理想反应器的含义。 等温间歇反应器的基本方程。 简单不可逆反应和自催化反应的特征和计算方法。 可逆反应、平行反应和串联反应的动力学特征和计算方法。4.理想管式反应器 管式平推流反应器的基本方程 典型反应的计算。 停留时间、空时和空速的概念。 膨胀因子和膨胀率的概念。 5.连续流动釜式反应器 全混流模型的意义。 全混流反应器的基本方程 全混流反应器的计算。 循环反应器的特征与计算方法。 返混的概念、起因、返混造成的后果。 返混对各种典型反应的利弊及限制返混的措施。 6.停留时间分布与非理想流动 停留时间分布的意义,停留时间分布的测定方法。 活塞流和全混流停留时间分布表达式,固相反应的计算方法。 多釜串联模型的基本思想,模型参数 微观混合对反应结果的影响。

7.反应器选型与操作方式 简单反应、自催化和可逆反应的浓度效应特征与优化。 平行反应、串联反应的浓度效应特征与优化。 反应器的操作方式、加料方式。 8.气固催化反应中的传递现象 催化剂外部传递过程分析,极限反应速率与极限传递速率。 Da和外部效率因子的定义及相互关系。流速对外部传递过程的影响。 催化剂内部传递过程分析,Φ和内部效率因子的定义及相互关系。 扩散对表观反应级数及表观活化能的影响。 一级反应内外效率因子的计算。 内外传递阻力的消除方法。 9.热量传递与反应器热稳定性 定态、热稳定性、临界着火温度、临界熄火温度的概念。 催化剂颗粒热稳定性条件和多态特性。 全混流反应器、管式固定床反应器热稳定条件。 最大允许温差。 绝热式反应器中可逆放热反应的最优温度分布。

相关文档
最新文档