第二节 函数的单调性与值域(一)(知识梳理)

第二节 函数的单调性与值域(一)(知识梳理)
第二节 函数的单调性与值域(一)(知识梳理)

第二节

函数的单调性与值域

(一)

复习目标学法指导

1.增函数、减函数的概念.

2.函数的单调性、单调区间.

3.函数的最大值和最小值. 1.单调性是研究函数中的变量之间的大小关系的重要指标,要学会从数与形两个角度理解与应用单调性.

2.单调区间是单调性存在和应用的范围,要注意辨析其表述形式的差异,区分其意义的不同,能根据函数结构的不同求解单调区间.

3.能依据函数式特征选择相应性质与方法求解值域(或最值).

一、函数的单调性

1.单调函数的定义

增函数减函数

定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2

当x1

么就说函数f(x)在区间D上是

增函数

当x1f(x2),那

么就说函数f(x)在区间D上是

减函数

图象

自左向右看图象是上升的自左向右看图象是下降的2.单调区间的定义

如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.

1.概念理解

(1)单调性是函数的局部性质,是针对定义域I内某个区间D而言的,即D I;

(2)定义的核心是判定两个不等关系的“异同”,标准是“同增异减”.

(3)应用定义判定或证明函数的单调性时,x1,x2必须表示任意的自变量,切忌用特殊值代替.

(4)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应用逗号间隔,一般不能用并集符号“∪”连接,也不能用“或”连接.

(5)区分两种叙述形式:“函数在区间D上单调”与“函数的单调区间是D”,二者意义不同:前者中D是函数单调区间的子集,后者中D是函数唯一的单调区间.

2.与判定函数单调性相关的结论

(1)利用定义判断或证明函数的单调性的等价形式 设任意x 1,x 2∈[a,b]且x 1

1212

()()f x f x x x -->0?f(x)在[a,b]上是增函数;

1212

()()f x f x x x --<0?f(x)在[a,b]

上是减函数.

②(x 1-x 2)[f(x 1)-f(x 2)]>0?f(x)在[a,b]上是增函数;(x 1-x 2)[f(x 1)-f(x 2)]<0?f(x)在[a,b]上是减函数. (2)判断复合函数单调性的方法

复合法可简记为“同增异减”,即内、外函数的单调性相同时复合函数是增函数,相异时复合函数是减函数. (3)运算性质

①若f(x),g(x)均是区间D 上的增(减)函数,则f(x)+g(x)也是区间D 上的增(减)函数.

②若k>0,则kf(x)与f(x)的单调性相同;若k<0,则kf(x)与f(x)单调性相反.

③函数f(x)(f(x)>0)在公共定义域内与1

()f x 的单调性相反;单调性相同. 二、函数的最值

(1)

对于任意的x∈I,都有

f(x)≤M;

(2)存在x0∈I,使得f(x0)=M.

(3)对于任意的x∈I,都有

f(x)≥M;

(4)存在x0∈I,使得f(x0)=M. 结

M为最大值M为最小值

基本初等函数的值域

(1)y=kx+b(k≠0)的值域是R.

(2)y=ax2+bx+c(a≠0)的值域:

当a>0时,值域为[2

4

4

ac b

a

-,+∞);

当a<0时,值域为(-∞, 2

4

4

ac b

a

-].

(3)y=k

x

(k≠0)的值域是(-∞,0)∪(0,+∞).

(4)y=a x(a>0且a≠1)的值域是(0,+∞).

(5)y=log a x(a>0且a≠1)的值域是R.

(6)y=sin x,y=cos x的值域是[-1,1].

(7)y=tan x的值域是R.

1.下列函数中,在区间(0,+∞)上为增函数的是( A )

1

x+(B)y=(x-1)2

(C)y=2-x(D)y=log0.5(x+1)

解析:显然1

x+是(0,+∞)上的增函数;

y=(x-1)2在(0,1)上是减函数,在(1,+∞)上是增函数;

y=2-x,即y=(1

2

)x在R上是减函数;

y=log0.5(x+1)在(0,+∞)上是减函数.

故选A.

2.设函数f(x)在R上为增函数,则下列结论一定正确的是( C )

(A)y=1

()

f x

在R上为减函数

(B)y=|f(x)|在R上为增函数

(C)y=2-f(x)在R上为减函数

(D)y=-[f(x)]3在R上为增函数

解析:根据题意,依次分析选项:

对于A,对于函数f(x)=x,y=1

()

f x =1

x

,在R上不是减函数,A错误;

对于B,对于函数f(x)=x,y=|f(x)|=|x|,在R上不是增函数,B错误;

对于C,令t=f(x),则y=2-f(x)=(1

2)f(x)=(1

2

)t,

t=f(x)在R上为增函数,y=(1

2

)t在R上为减函数,

则y=2-f(x)在R上为减函数,C正确;

对于D,对于函数f(x)=x,y=-[f(x)]3=-x3,

在R上为减函数,D错误.故选C.

3.函数y=x2-2ax+b在(-∞,1]上单调递减,则实数a的取值范围是;若其单调递减区间是(-∞,1),则实数a的值

是.

解析:函数y=x2-2ax+b的递减区间是(-∞,a],

所以(-∞,1] (-∞,a],故a≥1.

其单调递减区间是(-∞,1)时,a=1.

答案:[1,+∞) 1

4.已知函数f(x)=x(2x-1

2x

),若f(x-1)>f(x),则x的取值范围是.

解析:当x>0时,f(x)在(0,+∞)上递增,

而f(-x)=f(x),f(x)是偶函数,

故f(x)在(-∞,0)上是减函数,

若f(x-1)>f(x),则|x-1|>|x|,

即(x-1)2>x2,解得x<1

2

.

答案:(-∞,1

2

)

5.若函数f(x)=3x+a x(a>0且a≠1)是偶函数,则函数 f(x) 的值域为.

解析:由f(x)为偶函数可得,f(-1)=f(1),

即1

3+1

a

=3+a,解得a=1

3

,

所以f(x)=3x+1

3x

, 因为3x>0,

所以3x+1

3x ≥2(当且仅当3x=1

3x

,即x=0时取等号),

所以f(x)≥2,

即f(x)的值域为[2,+∞). 答案:[2,+∞)

考点一函数单调性的判定

[例1] 判断函数f(x)=2

1

ax x -(其中a>0)在x ∈(-1,1)时的单调性. 解:设-1

2

1

1ax x --2

22

1ax x -

=2212

1212

22

12(1)(1)

ax x

ax ax x ax x x --+--

=2

1

12

2

21

2

()(1)

(1)(1)

a x x x x x x -+--. 因为-1

所以x 2-x 1>0,x 1x 2+1>0,(21

x -1)(22

x -1)>0.

因此当a>0时,f(x 1)-f(x 2)>0,

即f(x 1)>f(x 2),此时函数f(x)在(-1,1)上为减函数.

利用定义判定函数单调性的步骤

(1)取值:任取所给区间上两个变量x 1,x 2; (2)作差,若f(x)>0(或<0),也可以作商; (3)变形:化简后的代数式中须出现“x 1-x 2”;

(4)定号:判定差的正负或商与1的大小,必要时分类讨论; (5)判定:注意完整的叙述.

(2019·北京卷)下列函数中,在区间(0,+∞)上单调递增的是( A ) (A)y=12

x (B)y=2-x (C)y=1

2

log x (D)y=1x

解析:y=12

x =

x ,y=2

-x

=(12)x ,y=1

2

log x,y=1

x

的图象如图所示.

由图象知,只有y=12x在(0,+∞)上单调递增.故选A.

考点二求函数的单调区间

[例2](1)函数f(x)=

log(x2-4)的单调递增区间为( )

1

2

(A)(0,+∞) (B)(-∞,0)

(C)(2,+∞) (D)(-∞,-2)

(2)函数y=f(x)(x∈R)的图象如图所示,则函数g(x)=f(log a x)(0

]

(A)[0,1

2

a

,+∞)

(C)(-∞,0)∪[1

2

a ]

a1

解析:(1)函数y=f(x)的定义域为(-∞,-2)∪(2,+∞),

因为函数y=f(x)是由y=

log t与t=g(x)=x2-4复合而成,

1

2

又y=

log t在(0,+∞)上单调递减,

1

2

g(x)在(-∞,-2)上单调递减,

所以函数y=f(x)在(-∞,-2)上单调递增,故选D.

(2)因为u=log a x(0

又因为g(x)递减,

所以此时y=f(u)需为增函数,

]上递增,

由图可知,f(u)在[0,1

2

,

所以0≤log a x≤1

2

所以a≤x≤1,故选B.

求函数单调区间的常见方法

(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,再求单调区间.

(2)定义法:先求定义域,再利用单调性定义求解.

(3)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,可由图象的直观性写出它的单调区间.

(4)导数法:利用导数确定函数的单调区间.

1.f(x)=ln(x2-3x+2)的递增区间是( D )

)

(A)(-∞,1) (B)(1,3

2

,+∞) (D)(2,+∞)

(C)(3

2

解析:令t=x2-3x+2=(x-1)(x-2)>0,

解得x<1或x>2,

故函数的定义域为{x|x<1或x>2},f(x)=ln t单调递增,

根据复合函数单调性知原函数f(x)=ln(x2-3x+2)的递增区间是(2,+∞).故选D.

2.已知函数y=|4x-m|在区间[1,+∞)上单调递增,则m的取值范围为.

解析:由于

y=|4x-m|=4(),4

4(),4

m

x m x m m x x ?

-≥??

?

?-

m ), 所以要使函数y=|4x-m|在区间[1,+∞)上单调递增,则4m ≤1,解得m ≤4,

故m 的取值范围为(-∞,4]. 答案:(-∞,4]

考点三 求函数的最值(值域)

[例3] (1)f(x)=xlg x 在区间[2,10]上的最大值为 ,最小值为 . (2)函数

≥0)的最大值为 .

(3)函数f(x)=28

1

x x +-(x>1)的最小值为 .

解析:(1)g(x)=x 在[2,10]上递增且为正数,h(x)=lg x 在[2,10]递增且为正数,所以f(x)=xlg x 在区间[2,10]上递增,所以最大值为f(10)=10,最小值为f(2)=2lg 2. (2)令

t ≥0,所以y=t-t 2=-2

1()2t -+1

4

, 结合图象知,当t=12,即x=14时,y max =1

4

. (3)f(x)=

281x x +-=2(1)2(1)9

1

x x x -+-+- =(x-1)+91x -+2

≥+2

=8,

当且仅当x-1=91x -,即x=4时,f(x)min =8. 答案:(1)10 2lg 2 (2)14

(3)8

求函数最值(值域)的常用方法及适用类型

(1)单调性法:易确定单调性的函数,利用单调性法研究函数最值(值域).

(2)图象法:能作出图象的函数,用图象法,观察其图象最高点、最低点,求出最值(值域).

(3)基本不等式法:分子、分母中一个为一次,一个为二次函数结构以及两个变量(如x,y)的函数,一般通过变形使之具备“一正、二定、三相等”的条件,用基本不等式法求最值(值域).

(4)换元法:对解析式较复杂的函数,可通过换元转化为以上类型中的某种,再求解.

用换元法时,一定要注意新“元”的范围.

1.(2018·台州模拟)若函数f(x)=a-221x

- (a ∈R)是奇函数,则

a= ,函数f(x)的值域为 . 解析:函数f(x)=a-221x

-(a ∈R)是奇函数,

f(-x)+f(x)=0, 即

a-221x -+a-221x --=2a-(221x -+2

21x --)=2a+2(21)21

x x --=0,

解得a=-1;

令y=-1-221x

-?1-2x =2

1y

+, 即有2x =11

y y -+>0,

解得y>1或y<-1,

故f(x)=-1-221x

的值域为(-∞,-1)∪(1,+∞).

答案:-1 (-∞,-1)∪(1,+∞)

2.(2018·江苏卷)若函数f(x)=2x 3-ax 2+1(a ∈R)在(0,+∞)内有且只有一个零点,则f(x)在[-1,1]上的最大值与最小值的和为 .

解析:f ′(x)=6x 2-2ax=2x(3x-a)(x>0). ①当a ≤0时,f ′(x)>0,f(x)在(0,+∞)上递增, 又f(0)=1,

所以f(x)在(0,+∞)上无零点. ②当a>0时,由f ′(x)>0解得x>3a , 由f ′(x)<0解得0

a , 所以f(x)在(0,3a )上递减,在(3

a ,+∞)上递增. 又f(x)只有一个零点,

所以f (3

a )=-3

27a +1=0, 所以a=3.

此时f(x)=2x 3-3x 2+1,f ′(x)=6x(x-1),

当x ∈[-1,1]时,f(x)在[-1,0]上递增,在[0,1]上递减. 又f(1)=0,f(-1)=-4,

所以f(x)max +f(x)min =f(0)+f(-1)=1-4=-3. 答案:-3

考点四 易错辨析

[例4] 判断函数f(x)= 223

x x --的单调性.

解:设t=x 2-2x-3, 因为t>0, 所以x<-1或x>3, 因为y=

t

=12

t -

在(0,+∞)上单调递减,

且t=x 2-2x-3在(-∞,-1)上单调递减,在(3,+∞)上单调递增. 所以函数f(x)=223

x x --在(-∞,-1)上单调递增,在(3,+∞)上单调递

减.

(1)易忽略函数的定义域,只求解二次函数的单调区间;

(2)错用复合函数的单调性法则或错用“外层函数”的单调性.

1.已知单调函数f(x),对任意的x ∈R 都有f[f(x)-2x ]=6,则f(2)等于( C )

(A)2 (B)4 (C)6 (D)8

解析:设t=f(x)-2x ,f(t)=6,且f(x)=2x +t, 令x=t, 则f(t)=2t +t=6,

因为f(x)是单调函数,所以t=2, 即f(x)=2x +2,则f(2)=22+2=6. 故选C. 2.已知f(x)=1,1

,1

x

x a x a a x ?-+>??

+≤??(a>0且a ≠1),若f(x)有最小值,则实数a 的

取值范围是 .

解析:当a>1时,x≤1时,

f(x)=a x+a在(-∞,1]上递增,则f(x)∈(a,2a],

x>1时,f(x)=|x-a|+1≥1,当x=a时取得最小值1,

则f(x)的值域为[1,+∞),

可得a>1时f(x)取得最小值1;

当0

x>1时,f(x)=|x-a|+1=x-a+1递增,

可得f(x)>2-a,

,

若f(x)存在最小值,可得2-a≥2a,即a≤2

3

可得0

.

3

综上可得a>1或0

.

3

答案:(0,2

]∪(1,+∞)

3

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

高一数学函数的单调性知识点

高一数学函数单调性 一、函数单调性知识结构 【知识网络】 1.函数单调性的定义,2.证明函数单调性;3.求函数的单调区间 4.利用函数单调性解决一些问题;5.抽象函数与函数单调性结合运用 二、重点叙述 1. 函数单调性定义 (一)函数单调性概念 (1)增减函数定义 一般地,设函数y=f(x)的定义域为I,对于定义域I内某个区间D上的任意两个自变量的值x1、x2 : 如果当x1<x2时,都有f(x1 ) <f(x2 ),那么就说函数y=f(x)在区间D上是增函数; 如果当x1<x2时,都有f(x1 ) >f(x2 ),那么就说函数y=f(x)在区间D上是减函数。 如果函数在区间D上是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性,区间D叫做的单调区间。 (2)函数单调性的内涵与外延 ⑴函数的单调性也叫函数的增减性。函数的单调性是对某个区间而言的,是一个局部概念。 ⑵由函数增减性的定义可知:任意的x1、x2∈D, ① x1<x2 ,且f(x1 ) <f(x2 ),y=f(x)在区间D上是增函数;(可用于判断或证明函数的增减性) ② y=f(x)在区间D上是增函数,且x1<x2 , f(x1 ) <f(x2 ) ;(可用于比较函数值的大小) ③ y=f(x)在区间D上是增函数,且f(x1 ) <f(x2 ), x1<x2。(可用于比较自变量值的大小) 2. 函数单调性证明方法 证明函数单调性的方法有:定义法(即比较法);导数法。 实际上,用导数方法证明一般函数单调性是很便捷的方法,定义法是基本方法,常用来证明解决抽象函数或不易求导的函数的单调性。 (1)定义法:利用增减函数的定义证明。在证明过程中,把数式的大小比较转化为求差比较(或求商比

函数的单调性知识点总结与题型归纳

函数的单调性 知识梳理 1. 单调性概念 一般地,设函数()f x 的定义域为I : (1)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数; (2)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数. 2. 单调性的判定方法 (1)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。 (2)定义法步骤; ①取值:设12,x x 是给定区间内的两个任意值,且12x x < (或12x x >); ②作差:作差12()()f x f x -,并将此差式变形(注意变形到能判断整个差式符号为止); ③定号:判断12()()f x f x -的正负(要注意说理的充分性),必要时要讨论; ④下结论:根据定义得出其单调性. (3)复合函数的单调性: 当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的单调性相反时则复合函数为减函数。也就是说:同增异减(类似于“负负得正”) 3. 单调区间的定义 如果函数()y f x =,在区间D 上是增函数或减函数,那么就说函数在这个区间上具有单调性,区间D 叫做()y f x =的单调区间. 例题精讲 【例1】下图为某地区24小时内的气温变化图. (1)从左向右看,图形是如何变化的? (2)在哪些区间上升哪些区间下降? 解:(1)从左向右看,图形先下降,后上升,再下降; (2)在区间[0,4]和[14,24]下降,在区间[4,14]下降。 【例2】画出下列函数的图象,观察其变化规律: (1)f (x )=x ; ①从左至右图象上升还是下降 ②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着怎么变化?

高中函数定义域值域单调性及高考题

函数知识综合复习 讲课时间: 知识点:函数的定义域、值域、单调性及奇偶性 考点:函数知识的全面考察 一、定义域 1.基本函数求定义域: 例1:(1)236)(2+-= x x x f (2)42113)(+-+-=x x x f (3)y=x x -||1 (4)y=3102++x x (5))352(log )(21-+-=-x x x f x 练习:236)(2+-=x x x f 2 )1(102-+-=x x y 2.抽象函数求定义域: 例2:(1)已知)(x f 的定义域为]1,1[-,求)12(-x f 的定义域。 (2)已知)12(-x f 的定义域为]1,1[-,求)(x f 的定义域 学生练习:(1)已知)12(-x f 定义域为]1,0[,求)3(x f 的定义域 (2)已知)(x f 的定义域为[]4,2-,则)()()(x f x f x g +-=的定义域为 。 (3)若[]0,3)1(的定义域为+x f ,求)(x f 的定义域。 例3:(1)已知函数()f x =的定义域为R ,求实数a 的范围. (2)已知函数y =的定义域为R ,求实数m 的范围 二、值域 例1:求下列函数的值域()2f x x =+,2211)(x x x x f +++=(?) 21+-=x x y ,1y x x =+,)1(1222->+++=x x x x y 练习:(1)x x x f 211)(--+=,(2)x x x f 212)(-+=,

(3)212)(x x x f +=,(4)x x x f 82)(+= 例2:求52)(++-=x x x f 的值域 练习:求13)(+--=x x x f 的值域 例3:设函数()y f x =是定义在(0,)+∞上的减函数,且()()()f xy f x f y =+,1)3 1(=f 。(1)求(1)f 的值; (2)若存在实数m ,使得()2f m =,求m 的值; (3)如果()(2)2f x f x +-<,求x 的取值范围。 练习:若()f x 是定义在(0,)+∞上的增函数,且()()x f f x f y y ?? =- ???。 (1)求)1(f 的值;(2)解不等式:(1)0f x -<; (3)若(2)1f =,解不等式1(3)()2f x f x +-< 三、单调性 1.基本函数的单调性及证明方法 例1:函数x x f a log )(=在区间]9,2[上的最大值比最小值大2,求a 例2:判断函数)0(1)(2≠-=a x ax x f 在区间)1,1(-上的单调性。 2.复合函数的单调性 例2:(1)函数22)13()(a x a ax x f +--=在],1[+∞-上是增函数,求实数a 的取值范围. (2)求函数213 2log (32)y x x =-+的单调区间。 练习:(1)函数2()42f x ax x =+-在[]1,3-上为增函数,求a 的取值范围 (2)已知函数)(log )(22m mx x x f +-=的定义域是R ,并且在(-∞,1)上单调递减,则实数m 的取值范围 (3)已知log (2)a y ax =-在[0,1]上是x 的减函数,求a 的取值范围

函数的单调性知识点总结及练习

2.3 函数的单调性 学习目标: 1.理解函数的单调性、最大值、最小值及其几何意义. 2.会用定义判断函数的单调性,会求函数的单调区间及会用单调性求函数的最值. 重点难点:函数单调性的应用 一、知识点梳理 1.函数单调性定义:对于给定区间D 上的函数f(x),若对于任意x 1,x 2∈D, 当x 1 f(x 2),则称f(x)是区间D 上的减函数,D 叫f(x)单调递减区间. 2.函数单调性的判断方法: (1)定义法.步骤是: ①任取x 1,x 2∈D ,且x 1

若内外两函数的单调性相反时,则()y f g x =????在x 的区间D 内单调递减. 3.常见结论 若f(x)为减函数,则-f(x)为增函数 ; 若f(x)>0(或<0)且为增函数,则函数) (1x f 在其定义域内为减函数. ( 二、例题精讲 题型1:单调性的判断 1.写出下列函数的单调区间 (1),b kx y += (2)x k y =, (3)c bx ax y ++=2. * 2.求函数22||3y x x =-++的单调区间. # 3.判断函数f (x )=1 x 2-4x 的增减情况.

知识点一-导数与函数的单调性

1.函数的单调性:在某个区间( a,b )内,如果f (x) . 0 ,那么函数y = f (x)在这个区间内单调递增;如果f (x) :::0,那么函数y = f(x)在这个区间内单调递减?如果f(x)=0,那么函数y = f(x)在这个区间上是常数函数? 注:函数y = f (x)在(a,b )内单调递增,贝U f (x)亠0,f (x) . 0是y = f (x)在(a,b )内单调递增的充分不必要条件? 2.函数的极值:曲线在极值点处切线的斜率为0,并且,曲线在极大值点左侧切线的斜率为正,右侧为 负;曲线在极小值点左侧切线的斜率为负,右侧为正. 一般地,当函数 y = f(x)在点沧处连续时,判断f(X。)是极大(小)值的方法是: (1)如果在X。附近的左侧f ' (x) 0 ,右侧f'(x)::: ,那么f(X0)是极大值. (2)如果在X o附近的左侧f '(X):::0 ,右侧f'(x) 0,那么f(X0)是极小值. 注:导数为0的点不一定是极值点 知识点一:导数与函数的单调性 方法归纳: 在某个区间(a,b )内,如果f (x) ?0,那么函数y = f (x)在这个区间内单调递增;如果「(x) :::0,那 么函数y二f(x)在这个区间内单调递减?如果f (x) =0,那么函数y二f(x)在这个区间上是常数函数?注:函数y = f (x)在(a,b )内单调递增,贝U f (x) _ 0 , f (x) 0是y = f (x)在(a,b )内单调递增的 充分不必要条件? 例1】(B类)已知函数f(x)=x3 bx2 cx d的图象过点P(0, 2),且在点M(-1, f(-1))处的切线方程为6x「y ?7 = 0 ? (I)求函数y = f(x)的解析式;(n)求函数y=f(x)的单调区间? 【解题思路】注意切点既在切线上,又原曲线上?函数f(x)在区间[a,b]上递增可得:f'(x)_0 ;函数 f (x)在区间[a,b]上递减可得:f'(x) E0. 3 【例2】(A类)若f(x)二ax x在区间[—1,1]上单调递增,求a的取值范围? 【解题思路】利用函数 f (x)在区间[a,b]上递增可得:f'(x)_0;函数f(x)在区间[a,b]上递减可得: f '(x)岂0.得出恒成立的条件,再利用处理不等式恒成立的方法获解 a 【例 3 】(B 类)已知函数f(x)=l nx,g(x) (a 0),设F(x^ f (x) - g(x). x (I)求函数F(x)的单调区间;

高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ? ??>-≥②①0x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而 3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求 g(x)的值域,即所求f(x)的定义域。 例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。 即函数f(x)的定义域是}5x 3|x {≤≤。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围。 分析:函数的定义域为R ,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项

函数单调性和奇偶性总结复习

课次教学计划(教案)课题函数的单调性和奇偶性 教学目标1.通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别2.结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性 教学策略 重点难点:理解函数的模型化思想,用集合与对应的语言来刻画函数 教学策略:讲练结合,查漏补缺 函数的单调性 1.例1:观察y=x2的图象,回答下列问题 问题1:函数y=x2的图象在y轴右侧的部分是上升的,说明什么??随 着x的增加,y值在增加。 问题2:怎样用数学语言表示呢? ?设x1、x2∈[0,+∞],得y1=f(x1), y2=f(x2).当x1f(x2). 那么就是f(x)在这个区间上是减函数(decreasing function)。 如果函数y=f(x)在某个区间是增函数或减函数,那么就说函说y=f(x)在这一区间具有 (严格的)单调性,这一区间叫做y=f(x)的单调区间,在单调区间上增函数的图象是上升 的,减函数的图象是下降的。 注意:(1)函数的单调性也叫函数的增减性;(2)注意区间上所取两点x1,x2的任意性; (3)函数的单调性是对某个区间而言的,它是一个局部概念。 3.例2.己知函数f(x)=-x2+2x+3,⑴画出函数的图象;⑵根据图象写出函数f(x)的单调区间;⑶利用定义证明函数f(x)=-x2+2x+3在区间(-∞,1]上是增函数;⑷当函数f(x)在区间(一∞,m]上是增函数时,数m的取值围.

高中函数单调性知识点及习题

函数的简单性质 一、函数的单调性 1、单增函数:在函数y=f(x)的定义域的一个区间M中,如果对于任意两个值x1,x2,当改变量x2>x1时,有Δy=f(x2)-f(x1)>0,即:f(x2)> f(x1)那就称函数y=f(x)在区间M上是增函数,. 2、单减函数:在函数y=f(x)的定义域的一个区间M中,如果对于任意两个值x1,x2,当改变量x2>x1时,有Δy=f(x2)-f(x1)<0,即:f(x2)< f(x1)就称函数y=f(x)在区间M上是减函数, 2.单调性与单调区间 如果一个函数在某个区间M上是单增函数或是单减函数,就说这个函数在这个区间M上具有单调性(区间M称为单调区间). 3、证明单调性: 用定义证明函数单调性的步骤 (1)设x1,x2是f(x)定义域内一个区间上的任意两个量,且x1

5、常用结论: (1)若f(x)是增函数,则-f(x)为减函数 (2)若f(x)是减函数,则-f(x)为增函数 (3)若f(x)和g(x)均为增(或减)函数,则在f(x)和g(x)的共定义域上f(x)+g(x)为增(或减)函数 (4)若f(x)>0,且为增函数,则函数为增函数,为减函数若f(x)>0,且为减函数,则函数为减函数,为增函数练习: 1、(函数单调性的判断) (1)证明函数x x f- = ) (在定义域上是减函数。(定义法) (2)证明函数3 ()2 f x x x =--在R上是单调递减函数;(定义法) (3)证明函数2 ()231 f x x x =-+-在区间 3 (,] 4 -∞上是单调递增函数;(图 像法)

函数的概念、定义域与值域、单调性、奇偶性与周期性

精锐教育学科教师辅导讲义 年 级: 高 一 辅导科目: 数学 课时数:3 课 题 函数的概念、定义域与值域、单调性、奇偶性与周期性 教学目的 1.理解函数的概念;理解构成函数的要素(定义域、值域、对应法则),了解映射的概念. 2.理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数. 3.理解和熟记函数的单调性和最值的定义; 4.掌握求解函数的值域和最值的基本方法,并能解决与函数值域和最值有关的问题. 5.理解和熟记函数的奇偶性和周期的定义; 6.掌握判定函数的奇偶性和周期性的基本方法,并能解决与函数奇偶性和周期性有关的问题. 教学内容 教材回归 ◎基础重现: 1.函数的概念: 设A ,B 是两个非空的数集,如果按某个确定的对应关系f ,使对集合A 中的 元素x ,在集合B 中都有 的元素y 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数,记作:()y f x =,x A ∈.其中 叫做函数()y f x =的定义域;将所有 叫做函数的值域. 2.函数的相等 函数的定义含有三个要素: 、 和 .当函数的定义域及对应法则确定后,函数的值域也随之确定.因此,定义域和对应法则是函数的两个基本条件,当且仅当两个函数的 和 都分别对应相同时,两个函数才是同一个函数. 3.映射的定义 设A 、B 两个非空集合,如果按照某种对应法则f ,对于集合A 中的每一个元素,在集合B 中都有 的元素与之对应,那么,这样的对应关系叫做集合A 到集合B 的映射,记作::f A B →. 4.函数的表示法 (1)解析法: ; (2)列表法: ; (3)图象法: . 5.函数的定义域: (1)函数的定义域是构成函数的非常重要的部分,如没有标明定义域,则认为定义域为使得函数解析式 x 的取值范围. (2)实际问题中还需考虑自变量的实际意义,若解析式由几个部分组成,则定义域为各个部分相应集合的 . 6.函数的值域: 当函数的自变量取遍定义域中 所有值时叫做函数的值域. 求函数值域主要有以下一些方法: (1)函数的定义域与对应法则直接制约着函数的值域,对于一些比较简单的函数可直接 求得值域,有时也称为 ; (2)二次函数或可转化为二次函数形式的问题常用 求值域;

必修一函数定义域值域和单调性奇偶性练习题

高一数学函数练习题 一、 求函数的定义域 1、 求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)1 11y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,, 则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311 x y x -= + ⑷311x y x -=+ (5)x ≥ ⑸ y =⑹ 225941x x y x +=-+

⑺31y x x =-++ ⑻2y x x =- ⑼ y = ⑽ 4y =⑾y x =- 6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式系 1、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

(完整版)利用函数单调性比大小-第二章总结

【第二章计算题类型】 计算: (1)2lg2+lg31+12lg0.36+13lg8; (2)23×612×332. (3)lg2·lg 52 +lg0.2·lg40. (利用函数单调性比大小)★常考类型★ 1-1.设120.7a =,120.8b =,c 3log 0.7=,则( ). A. c > B. b a c >> C. c a b >> D. b c a >> 1-3.设a =log 132,b =log 13 3,c =? ????120.3,则( ) A .a成立的x 的取值范围是( ). A. 3(,)2+∞ B. 2(,)3+∞ C. 1(,)3+∞ D.1 (,)3 -+∞ 1-5.设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与 最小值之差为1 2,则a =( ). B. 2 C. D. 4 1-6. 函数y=log a x 在[2,4]上的最大值比最小值大1,求a 的值。 1-7. 若a>0且a ≠1,且log a 4 3<1,则实数a 的取值范围是( )。 A.043或01 1-8. 若实数a 满足log a 2>1,则a 的取值范围为________. 【恒过定点问题★常考类型★】 2-1.函数y =a x +1(a >0且a ≠1)的图象必经过点( ). A.(0,1) B. (1,0) C.(2,1) D.(0,2) 2-2. 若a >0且a ≠1,则函数y =a x -1-1的图像一定过点___。 2-3.函数y= log a (x+1)-2(a>0,且a≠1)的图象恒过定点 。 2-4. 已知函数y =3+log a (2x +3)(a >0且a ≠1)的图象必经 过点P ,则P 点坐标________. 2-5. 函数f (x )=log a (3x -2)+2(a >0且a ≠1)恒过定点_______。 (幂函数的解析式求值)★常考类型★ 3-1.如果幂函数()f x x α=的图象经过点2 ,则(4)f 的值等于( ). A. 16 B. 2 C. 116 D. 12 3-2. 幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 (指数型函数应用题——人口计算) 4-1. 世界人口已超过56亿,若千分之一的年增长率,则两年增长的人口可相当于一个( ).

数学必修一定义域值域知识点总结

数学必修一定义域值域知识点总结 数学必修一定义域知识点 定义 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域; 常见题型 1,已知f(x)的定义域,求f(g(x))的定义域. 例1,已知f(x)的定义域为(-1,1),求f(2x-1)的定义域. 略解:由-1<2x-1<1有0<1 ∴f(2x-1)的定义域为(0,1) 2,已知f(g(x))的定义域,求f(x)的定义域. 例2,已知f(2x-1)的定义域为(0,1),求f(x)的定义域。 解:已知0<1,设t=2x-1 ∴x=(t+1)/2 ∴0<(t+1)/2<1 ∴-1<1 ∴f(x)的定义域为(-1,1) 注意比较例1与例2,加深理解定义域为x的取值范围的含义。 3,已知f(g(x))的定义域,求f(h(x))的定义域.

例3,已知f(2x-1)的定义域为(0,1),求f(x-1)的定义域。 略解:如例2,先求出f(x)的定义域为(-1,1),然后如例1有-1<1,即0<2 ∴f(x-1)的定义域为(0,2) 指使函数有意义的一切实数所组成的集合。 其主要根据: ①分式的分母不能为零 ②偶次方根的被开方数不小于零 ③对数函数的真数必须大于零 ④指数函数和对数函数的底数必须大于零且不等于1 例4,已知f(x)=1/x+√(x+1),求f(x)的定义域。 略解:x≠0且x+1≧0, ∴f(x)的定义域为[-1,0)∪(0,+∞) 注意:答案一般用区间表示。 例5,已知f(x)=lg(-x2+x+2),求f(x)的定义域。 略解:由-x2+x+2>0有x2-x-2<0 即-1<2 ∴f(x)的定义域为(-1,2) 函数应用题的函数的定义域要根据实际情况求解。 例6,某工厂统计资料显示,产品次品率p与日产量 x(件)(x∈N,1≦x<99)的关系符合如下规律: 又知每生产一件正品盈利100元,每生产一件次品损失100元. 求该厂日盈利额T(元)关于日产量x(件)的函数;

函数单调性教案(经典总结)

【课题】函数的单调性 【教学类型】新知课 【教学目的】 1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法. 2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力. 3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念、判断及证明. 【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.【教学方法】教师启发讲授,学生探究学习. 【教学手段】多媒体教学设备、黑板. 【教学过程】 一、创设情境,引入课题 德国有一位著名的心理学家艾宾浩斯,对人类的记忆牢固程度进行了有关研究.他经过测试,得到了以下一些数据: 引导学生识图,捕捉信息,启发学生思考. 以上数据表明,记忆保留量y是时间t的函数. 艾宾浩斯根据这些数据描绘出了著名的“艾宾 浩斯遗忘曲线”,如图. 问题:观察“艾宾浩斯遗忘曲线”,你能发 现什么规律?图像上有什么特征? 二、归纳探索,形成概念 对于自变量变化时,函数值是变大还是变小,

初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义. 1.借助图象,直观感知 问题1:分别作出函数x y x y x y x y 1,,2,22= =+-=+=的图象,并且观察自变量变化时,函数值有什么变化规律? 预案: (1)函数1+=x y 在整个定义域内 y 随x 的增大而增大;函数2+-=x y 在整个定义域内 y 随x 的增大而减小. (2)函数2x y =在),0[+∞上 y 随x 的增大而增大,在)0,(-∞上y 随x 的增大而减小. 引导学生进行分类描述 (增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质. 问题2:能不能根据自己的理解说说什么是增函数、减函数? 预案:如果函数()f x 在某个区间上随自变量x 的增大,y 也越来越大,我们说函数()f x 在该区间上为增函数;如果函数()f x 在某个区间上随自变量x 的增大,y 越来越小,我们说函数()f x 在该区间上为减函数. 教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识. 2.探究规律,理性认识 通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究. 引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量21,x x . 3.抽象思维,形成概念

函数的单调性的题型分类及解析

函数的单调性 知识点 1、增函数定义、减函数的定义: (1)设函数)(x f y =的定义域为A ,区间M ?A ,如果取区间M 中的任意两个值21,x x ,当改变量012>-=?x x x 时,都有0)()(12>-=?x f x f y ,那么就称函数)(x f y =在区间M 上是增函数,如图(1)当改变量012>-=?x x x 时,都有0)()(12<-=?x f x f y ,那么就称 函 数)(x f y =在区间M 上是减函数,如图(2) 注意:单调性定义中的x 1、x 2有什么特征:函数单调性定义中的x 1,x 2有三个特征,一是任意性,二是有大小,三是同属于一个单调区间. 1、 根据函数的单调性的定义思考:由f (x )是增(减)函数且f (x 1)x 2) 2、我们来比较一下增函数与减函数定义中y x ??,的符号规律,你有什么发现没有? 3、如果将增函数中的“当012>-=?x x x 时,都有0)()(12>-=?x f x f y ”改为当 012<-=?x x x 时,都有0)()(12<-=?x f x f y 结论是否一样呢? 4、定义的另一种表示方法 如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,若 0) ()(2 121>--x x x f x f 即 0>??x y ,则函数y=f(x)是增函数,若0)()(2 121<--x x x f x f 即0

函数定义域、值域求法总结(精彩)

函数定义域、值域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。这些解题思想与方法贯穿了高中数学的始终。 常用的求值域的方法:(1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式21 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-3 2 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式 x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ?? ?≠-≥+020 1x x ?? ?≠-≥2 1 x x

函数单调性和奇偶性情况总结复习资料

课次教学计划(教案) 课题 函数的单调性和奇偶性 教学目标 1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别 2. 结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性 教学策略 重点难点:理解函数的模型化思想,用集合与对应的语言来刻画函数 教学策略:讲练结合,查漏补缺 1.例1:观察y=x 2的图象,回答下列问题 问题1:函数y=x 2的图象在y 轴右侧的部分是上升的,说明什么??随着x 的增加,y 值在增加。 问题2:怎样用数学语言表示呢? ?设x 1、x 2∈[0,+∞],得y 1=f(x 1), y 2=f(x 2).当x 1f(x 2).那么就是f(x)在这个区间上是减函数(decreasing function)。 如果函数y=f(x)在某个区间是增函数或减函数,那么就说函说y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间,在单调区间上增函数的图象是上升的,减函数的图象是下降的。 12(3)函数的单调性是对某个区间而言的,它是一个局部概念。 3.例2.己知函数f (x )=-x 2+2x +3,⑴画出函数的图象;⑵根据图象写出函数f(x)的单调区间;⑶利用定义证明函数f (x )=-x 2+2x +3在区间(-∞,1]上是增函数;⑷当函数f(x)在区间(一∞,m ]上是增函数时,求实数m 的取值范围. 1、 用定义判断单调性: A . 设所给范围∈21,x x 且21x x <; B .计算f (x 1)-f (x 2)=几个因式的乘积形式 C .判断上述差的符号; D.下结论。如果)()(f 21x f x <,则函数是增函数;如果)()(f 21x f x >,则函数是减函数 用定义法判断单调性 1.试用函数单调性的定义判断函数2()1 x f x x = -在区间(0,1)上的单调性.

相关文档
最新文档