装配的公差 - 副本

装配的公差 - 副本
装配的公差 - 副本

公差与配合

一、公差与配合的基本术语及定义

1、孔和轴

●孔:主要指圆柱行的内表面,也包括其他内表面中由单一尺寸

确定的部分。

●轴:主要指圆柱形的外表面,也包括其他外表面中由单一尺寸

确定的部分。

从装配关系讲,包容面属于孔,被包容面属于轴。从加工过程看,随着切削工序余量尺寸由小变大的属于孔,尺寸有大变小的属于轴,例如在键与键槽的结合中,键槽属于孔,键属于轴。

2、尺寸

●尺寸:用特定的单位表示长度值的数字。

●基本尺寸:设计给定的尺寸,基本尺寸一般应按标准直径或长

度选取。

●实际尺寸:通过测量获得的尺寸。由于存在测量误差,所以实

际尺寸并非被测尺寸的真值。

●极限尺寸:允许尺寸变动的两个界限值,以基本尺寸为基数来

确定。两个界限值中较大的一个称为最大极限尺寸,较小的称

为最小极限尺寸。零件加工后的实际尺寸应小于或等于最大极

限尺寸,而大于或等于最小极限尺寸方为合格。

孔的基本尺寸一般用D表示,轴的基本尺寸一般用d表示。最大极限尺寸可分为Dmax,dmax.最小极限尺寸可分别表示

Dmin,d min。

3、尺寸偏差和尺寸公差

●尺寸偏差:(简称偏差)某一尺寸减其基本尺寸所得的代数差。

●上偏差:最大极限尺寸减其基本尺寸所得的代数差。

孔的上偏差规定代号是ES,轴的上偏差规定代号是es.

●下偏差:最小极限尺寸减其基本尺寸所得的代数差。

孔的下偏差规定代号是EI,轴的下偏差规定代号是ei.

●尺寸公差(简称公差):允许尺寸的变动量。公差等于最大极

限尺寸与最小极限尺寸之代数差的绝对值;也等于上偏差与下偏差之代数差的绝对值。

尺寸公差代号是T;孔的尺寸公差代号是TH;轴的尺寸公差代号是Ts。

尺寸公差带(简称公差带):在公差带图中有代表上、下偏差的两条直线所限定的一个区域,在国家标准中,公差带包括了“公差带大小”“公差带位置”两个参数,前者由标准公差确定,后者由基本偏差确定。

4、配合

●配合:基本尺寸相同的,相互结合的孔和轴公带差之间的关系,

根据孔、轴公差带配合分为以下三类:

●间隙配合:具有间隙(包括最小间隙等于零)的配合。

●过盈配合:具有过盈(包括最小过盈等于零)的配合。

●过渡配合:可能具有间隙或过盈的配合。

5、配合公差

●允许间隙或过盈的变动量。配合公差代号Tf。

●间隙配合公差等于最大间隙与最小间隙之代数差的决定值。

●过盈配合公差等于最小过盈与最大过盈之代数差的绝对值。

●过渡配合公差等于最大间隙与最大过盈之代数差的绝对值。

公差分析

例子1公差(Tolerancing) 1-1概论 公差分析将有系统地分析些微扰动或色差对光学设计性能的影响。公差分析的目的在于定义误差的类型及大小,并将之引入光学系统中,分析系统性能是否符合需求。Zemax内建功能强大的公差分析工具,可帮助在光学设计中建立公差值。公差分析可透过简易的设罝分析公差范围内,参数影响系统性能的严重性。进而在合理的费用下进行最容易的组装,并获得最佳的性能。 1-2公差 公差值是一个将系统性能量化的估算。公差分析可让使用者预测其设计在组装后的性能极限。设罝公差分析的设罝值时,设计者必须熟悉下述要点: ●选取合适的性能规格 ●定义最低的性能容忍极限 ●计算所有可能的误差来源(如:单独的组件、组件群、机械组装等等…) ●指定每一个制造和组装可允许的公差极限 1-3误差来源 误差有好几个类型须要被估算 制造公差 ●不正确的曲率半径 ●组件过厚或过薄 ●镜片外型不正确 ●曲率中心偏离机构中心

●不正确的Conic值或其它非球面参数 材料误差 ●折射率准确性 ●折射率同质性 ●折射率分布 ●阿贝数(色散) 组装公差 ●组件偏离机构中心(X,Y) ●组件在Z.轴上的位置错误 ●组件与光轴有倾斜 ●组件定位错误 ●上述系指整群的组件 周围所引起的公差 ●材料的冷缩热胀(光学或机构) ●温度对折射率的影响。压力和湿度同样也会影响。 ●系统遭冲击或振动锁引起的对位问题 ●机械应力 剩下的设计误差 1-4设罝公差 公差分析有几个步骤须设罝: ●定义使用在公差标准的」绩效函数」:如RMS光斑大小,RMS波前误差,MTF需求, 使用者自定的绩效函数,瞄准…等 ●定义允许的系统性能偏离值 ●规定公差起始值让制造可轻易达到要求。ZEMAX默认的公差通常是不错的起始点。 ●补偿群常被使用在减低公差上。通常最少会有一组补偿群,而这一般都是在背焦。 ●公差设罝可用来预测性能的影响 ●公差分析有三种分析方法: ?灵敏度法 ?反灵敏度法

proe tol组装公差分析

組裝公差分析 公差分析主要是探討一個描述工件組合後,其公差變動模式,一個好的公差 分析模式可以預測組件公差能吻合實際組件公差界限有多少,其預測之機率 愈大愈好。組裝公差分析可分成三種模式:最壞狀況模式(Worst-case model)、統計模式(Statistical model)和蒙地卡羅模式(Monte Carlo model). 概念 Dimension chain (sometimes called tolerance chain) is a closed loop of interrelated dimensions. It consists of increasing, decreasing links and a single concluding link. In figures 2-4 and 2-5, link i is the increasing link, d is a decreasing link and c is the concluding link. Apparently, the concluding link c is the one whose tolerance is of interest and which is produced indirectly. Increasing and decreasing links (both called contributing links) are the ones that by increasing them, concluding link increases and decreases; respectively.

公差模型和公差分析方法的研究

生 产现场 S H O P S O L U T I O N S 金属加工 汽车工艺与材料 A T&M 2009年第7期 50 机械装配过程中,在保证各组成零件适当功能的前提下,各组成零件所定义的、允许的几何和位置上的误差称为公差。公差的大小不仅关系到制造和装配过程,还极大影响着产品的质量、功能、生产效率以及制造成本。公差信息是产品信息库中的重要 内容,公差模型就是为表示公差信息而建立的数学及物理模型,它是进行公差分析的理论基础。 公差分析或称偏差分析,即通过已知零部件的尺寸分布和公差,考虑偏差的累积和传播,以计算装配体的尺寸分布和装配公差的过程。公差分析的目的在于判断零部件的公差分布是否满足装配功能要求,进而评价整个装配的可行性。早期公差分析方法面向的是一维尺寸公差的分析与计算。Bjorke 则将公差分析拓展到三维空间。Wang 、C h a s e 、P a b o n 、H o f f m a n 、Lee 、Turner 、Tsai 、Salomons 、Varghese 、Connor 等许多学者也分别提出了各自的理论和方法开展公差分析的研究。此后,人工智能、专家系统、神经网络、稳健性理论等工具被引入公差分析领域当中,并分别构建了数学模型以解决公差分析问题。 1 公差模型 公差模型可分为零件层面的公差信息模型和装配层面的公差拓扑关系模型。Shan 提出了完整公差模型的建模准则,即兼容性和可计算性准则。兼容性准则是指公差模型满足产品设计过程的要求,符合ISO 和ASME 标准,能够完整表述所有类型的公差。可计算性准则是指公差模型可实现与CAD 系统集成、支持过/欠约束、可提取隐含尺寸信息、可识别公差类型,以检查公差分配方案的可行性等。目前已经提出了很多公差模型表示法,但每一种模型都是基于一些假设,且只部分满足了公差模型的建模准则,至今尚未出现统一的、公认的公差模型。以下将对几种典型的公差模型加以介绍和评价。1.1 尺寸树模型 Requicha 最早研究了零件层面的公差信息表示,并首先提出了应用于一维公差分析的尺寸树模型。该模型中,每一个节点是一个水平特征,节点间连线表示尺寸,公差值附加到尺寸值后。由于一维零件公差不考虑旋转偏差,所有公差都可表示为尺寸值加公差值的形式。该模型对于简单的一维公差分析十 分有效,但却使尺寸和公差的概念模糊不清,而且没有考虑到形状和位置公差的表示。1.2 漂移公差带模型 Requicha 从几何建模的角度,于20世纪80年代提出了漂移公差带模型以定义形状公差。在这个模型中,形状公差域定义为空间域,公差表面特征需位于此空间域中,同时采用边界表示法(Breps )建立传统的位置和尺寸公差模型。对于表面特征和相关公差信息则运用偏差图(VGraph )来表示。VGraph 主要是作为一种分解实体表面特征的手段,将实体的边界部分定义为特征,公差信息则封装在特征的属性中。漂移公差带模型很好地表达了轮廓公差,轮廓公差包含了所有实际制造过程中的偏差。该模型提供了公差的通用理论且易于实现,但是不能区分不同类型的形状公差。1.3 矢量空间模型 Hoffmann 提出了矢量空间模型,Turner 扩展了这一模型。矢量空间模型首先需要定义公差变量、设计变量和模型变量。公差变量表示零件名义尺寸的偏差。设计变量由设计者确定,用以表示最终装配体的多目标优化函数。模型变量是控制零件各个公差的独立变量。由 公差模型和公差分析方法的研究 讨论了目前工程设计、制造中具有代表性的公差模型的建模、描述和分析的方法。在此基础上,对于面向刚性件和柔性件装配的公差分析方法的研究现状分别进行了综述和评价,通过对比说明各种分析方法的算法、应用范围及不足。最后,展望了公差模型和公差分析方法的研究方向及其发展动态。 奇瑞汽车股份有限公司 葛宜银 李国波

codev公差分析

问题背景 对于任何需要制造的系统,公差分析都是一个必需的复杂的互动过程。包括:?确定制造和装配公差目标?确定制造和调校补偿器,以及补偿方案 成功公差分析需要能够精确预测单个公差的灵敏度和整个系统的实际加工性能,包括补偿器的影响。当使用了合适的工具,公差分析能够降低:?非重复成本如设计时间,定义装调过程?重复性成本如系统制造,装配和调校因此公差分析可以帮助降低成本。 显微物镜案例?数值孔径0.65?放大率40倍?筒长180mm?视场直径0.5mm?可见光波长(d,F,C)?目标分辨率450线对每毫米 系统结构图

光扇图和场曲图 轴上视场和全视场点列图 MTF曲线和数值

从上面的图形可以看出,标称系统受限于:?轴向色差?横向色差?色球差?场曲 预期的公差分配目标:?限制450线对多色MTF下降■0.7视场内最大下降0.1■全视场最大下降0.15 公差方案?以默认TOR分析起始,确立基准性能并找出问题所在■默认反灵敏度模式计算引起相同性能下降的每个公差值?根据中间结果,执行额外分析■添加或删除被偿器■调整公差极限■固定单个公差到指定值■修改公差,符合光机模型 操作步骤1)运行默认公差,确定问题所在 轴上视场TOR结果

2)尝试替代偏心补偿偏心由表面8..9构成的透镜, 轴上视场TOR结果 3)确定可以修改的公差极限对于回滚和元件偏心,优质的制造设备可以保证±0.0065mm的总体指示偏差

对于此显微物镜,我们允许元件偏心和胶合元件回滚公差比默认值更严格一些,同样允许0.25环的不规则度。 保持套样板公差,最后一个透镜的厚度和偏心公差。此时,公差设置已经在轴上和全视场达到目标要求,但是在0.7视场依然不达标。

CETOL在公差设计的解决方案 - 汽车

CETOL软件在三维公差设计 的解决方案 莎益博工程系统开发(上海)有限公司

1.三维公差 1.1. 传统设计的不足 国内的大部分企业,对于公差分析还是存在模糊的认识,即公差分配是设计人员的任务。设计人员在做公差分析的时候,大多数时候参照已有产品的公差分配,公差无法参照的地方,多采用手工画一维尺寸链图,粗略的得出封闭换尺寸公差。上述情况存在诸多不足,第一,当设计人员在设计公差时参照老产品,并不能提高设计人员对公差分配原理的理解,当遇到和老产品不一样的产品,设计人员就失去了参照的依据。第二,手工计算一维尺寸链很容易出错,当这种错误发生时,又不容易检查。第三,手工计算效率较低,当尺寸链包含非常长时,需要大量的公差计算时间。第四,手工方法计算一维尺寸链比较容易,但是对于二维或三维的尺寸链计算就更加复杂。 1.2. 使用公差分析软件的优势 公差分析软件为设计人员提供了一个公差分析与综合的平台,使设计人员通过它实现在设计阶段对关键零件尺寸进行公差分析,结合实际的工艺加工能力,选择制造成本最低,又能保证满足设计要求的最优公差,分析的结果也可以为设计提供参考。具体来说,公差分析与综合系统为设计人员提供了评估公差状况的手段,通过该系统,给出了可靠、准确、合理的公差分配的依据。总结来说,使用公差分析软件有如下优势: 一.在CAD环境下模拟三维零件的装配过程。它可以直接读取CAD系统的设计参数,当设计参数更新时,公差分析的数据也一起更新。 图1 Solidworks公差分析界面

图2 CATIA公差分析界面 图3 Cre/Proe 公差分析界面 二.自动计算三维尺寸链误差的传播。下图是V形块和圆柱销的装配,公差分析软件不仅能计算沿着尺寸方向的尺寸对圆柱销高度的影响,还可以计算V形块的宽度和夹角对圆柱销高度的影响。

装配工艺优化中的可视化公差分析

装配工艺优化中的可视化公差分析 合理运用以部分析因设计、完全析因设计和响应面设计为主体内容的经典DOE 试验设计理论可以帮助我们在工业运营的环境中筛选重要因素,量化描述重要因子的主效应和交互作用,乃至于推算出重要因子的最佳设置方案。这些方法论无论是在传统的质量改进,还是在现代的六西格玛活动中,均有过成功应用的实际案例。 但是,切不可因此以为经典试验设计就是包治百病的灵丹妙药。不少企业在追求产品质量、流程能力精益求精的过程中,发现单纯地依靠经典试验设计,先天性地存在着一些不可避免的风险和隐患。最常见的一类问题可以用图一表示:原本以为根据试验设计建立的统计模型,投入实际生产的产品结果将会百分百地落入规格要求之内(如图左部的理想状态所示),但真正投产后却发现产品结果的波动相当大,相当一部分的数据超出了规格要求(如图右部的现实状态所示)。产生这样的结果不仅给企业带来了经济上的损失,而且也动摇了工程师进一步应用试验设计的信心。 图一 工艺流程能力的图示 其实,深入了解试验设计领域的研究人员都基本知晓产生这个问题的一个主要原因是:误差的传递!如图二所示,工艺流程的输入变量 X 是通过根据试验设计或回归方程获取的传递函数对工艺流程的输出变量Y 发生作用。在这个传递过程中,流程自变量不仅会影响产品质量特征的均值(这是大家所熟知的),而且由于流程自变量不可避免地存在着变异(或称误差),它还会影响产品质量特征的变异,这就是所谓的“误差传递”。如果要定量地表达误差传递,可以用下列公式来表示。 其中, 表示输出变量Y 的方差, 表示输入变量X n 的方差, 表示输入变量X n 的敏感度系数,表示输入变量X n 对输出变量Y 方差的贡献程度。 图二 工艺流程的宏观统计模型 公差分析是克服误差传递干扰的一种合适方法,也是试验设计理论研究的有益扩充。通俗地说,公差 理想状态 现实状态 规格下限 规格上限 目标值 规格下限 规格上限 目标值 22 2 2 12...1n X n X Y X f X f σσσ??? ? ????++???? ????=2Y σ2 X n σ???? ????n X f 2 X 2n n σ???? ????X f

公差分析

美国戴克伊公司(Tec-Ease, Inc.) 戴克伊35年,美国著名GD&T培训机构,拥有美国强大的GD&T专家团队,是美国ASME标准列出的GD&T 培训机构。总部在美国纽约州罗切斯特,在加拿大,英国,巴西和中国设有分支机构。为北美和世界数千家企业包括500强,提供GD&T系列培训和咨询。戴克伊颁发的培训证书在全球被广泛认可。 戴克伊有10位ASME-Y14系列标准委员,其中ASME-Y14.5标准有4位,Y14.43和Y14.8标准6位,委员是标准作者。戴克伊创始人Don Day是Y14.8标准主席,戴克伊首席咨询师Frank Bakos是Y14系列 GD&T标准主席,是1983年ASME-Y14.5标准创始人之一,戴克伊35年深度参与制定标准,戴克伊是标准创始人和标准作者,为您提供世界一流培训。 作者介绍:龙东飞 (Mike Long) 美国戴克伊公司亚洲区代表,美国ASME-Y14.43 GD&T检具设计标准(标准委员),Y14.8 GD&T铸造、锻造和注塑标准(标准支持委员),Y14.48 GD&T方向符号标准(标准委员),Y14.5 GD&T标准(参与制定标准),中国国标SAC/TC240产品几何技术规范ISO-GPS(标准委员),ASME认证GDTP高级专家(国内获证第一人), 北美15年,美国堪萨斯州立大学机械工程硕士和MBA(完成GD&T硕士课程),美国国家航空研究院(研究助理),美国高斯印刷机系统公司(设计工程师),北美通用汽车和德尔福汽车公司(北美10年设计和GD&T高级工程师),美国德尔福认证GD&T专家(美国本土专家),美国ASME-Y14系列GD&T标准首位华人委员,国内唯一美国ASME-Y14系列GD&T标准委员,为亚洲600多家包括许多世界500强企业培训和咨询,有5本GD&T著作。 内容简介: GD&T的GD定义完美的零件,只能从几何理论上能满足装配功能要求,GD&T 的GT定义几何理论上允许偏差的范围,具体说就是公差值给多少,才能满 足实际功能要求,这就需要做尺寸链公差叠加分析,决定在一个零件或一个 装配,两个形体之间理论上最大或最小距离,也就是从几何形状的角度,保 证零件能装配或满足间距要求。尺寸链公差叠加分析是一个数学方法,用来 评估零件或装配件的尺寸和几何公差,来确保实现形状,装配和功能要求, 确保产品设计良好,实现稳健性设计,获得最好的成本效率设计,研究一个 装配尺寸关系决定零件公差,决定分配零件或装配允许的制造公差。

组装公差分析

组装公差分析 公差分析主要是探讨一个描述工件组合后,其公差变动模式,一个好的公差分析模式可以预测组件公差能吻合实际组件公差界限有多少,其预测之机率愈大愈好。组装公差分析可分成三种模式:最坏状况模式(Worst-case model)、统计模式(Statistical model)和蒙地卡罗模式(Monte Carlo model). 概念 Dimension chain (sometimes called tolerance chain) is a closed loop of interrelated dimensions. It consists of increasing, decreasing links and a single concluding link. In figures 2-4 and 2-5, link i is the increasing link, d is a decreasing link and c is the concluding link. Apparently, the concluding link c is the one whose tolerance is of interest and which is produced indirectly. Increasing and decreasing links (both called contributing links) are the ones that by increasing them, concluding link increases and decreases; respectively. Figure 1. Dimension Chain of c, 2 links, 1D Figure 2.: Dimension Chain of c, 4 links, 1D The equation for evaluating the concluding link dimension is [Lin and Zhang (2001)]: ---------(1) Where: Σi: The summation of the increasing link dimensions. Σd: The summation of the decreasing link dimensions. j: increasing links index. k: decreasing links index. l: number of increasing links. m: number of decreasing links. For figure 1 ,c can be found as: c = i - d ------(2) As for chain in figure 2, c can be found as: c = (i1 + i2)-( d1 + d2) ------(3) 1. 最坏状况模式(Worst-case model) 最坏状况模式又称上下偏差模式、极限模式、完全互换模式,此模式是以工件的最大及最小状况组合,可以满足完全互换性、组件公差最大. In worst-case method, the concluding dimension’s tolerance Δc can be found as following: ------(4) Referring to figure 2 and equations (3 and 4), the deviation of the concluding link is: Δc = Δi1 + Δi2 + Δd1 + Δd2------(5) T0: 总公差

统计公差分析方法概述

统计公差分析方法概述(总5 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

统计公差分析方法概述(2012-10-23 19:45:32) 分类:公差设计统计六标准差 统计公差分析方法概述 一.引言 公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。 公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二.Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.)=(20++(15++(10+=,出现在A、B、C偏上限之状况 D(Min.)=++=,出现在A,B、C偏下限之状况 45±适合拿来作设计吗 Worst Case Analysis缺陷: 设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; 公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。

公差分析软件CETOL 6 sigma实例

使用公差分析软件CETOL 6 σ进行公差分析的实例 ----汽车锁具公差分析案例 针对汽车锁具Pro/E模型,采用Pro/E完全集成环境下的公差分析软件CETOL 6 σ,来做公差模型的创建,基于CETOL提供的系统矩(SOTA法)算法,做统计和极限二种情况下的公差分析。 一.锁具质量关心焦点 作为汽车座椅锁具,其质量的好坏,关系到汽车驾乘人员乘坐的舒适性和安全性。锁具在开锁时,希望能够充分打开,不要与其他零部件之间产生干涉,即顺利打开。锁具在闭锁时,能够经受得住外力的冲击,不至于产生突然脱开现象。在锁具的任何状态,都要求锁具动作部件能够与电器设备很好地连接,在电控装配的驱动下,锁具能够准确地运转到指定的位置。根据设计功能要求,把项目细分到具体的状态上,在运动部件的具体指定位置,做功能要求的详细设定。 1)一个关键质量要求就是爪轮在打开时要远离侧板的开口槽,这是为了确保爪轮不会与锺棒产生干涉。如图1所示。 test

2)锁轮上的孔,在完成机械装配后,需要从这个孔里穿电缆线,来接通电源。根据座椅的设计要求,为了保证电缆线能与

机械设备能可靠地连接,电缆线过孔必须在位于基准孔名义值的正负2个mm之间。如果尺寸超过了上极限,锁具就会出现卡死现象,如果超过了下极限,电缆线就不能很好地与电器设置连接,导致零件废弃和成本增加。 图 2 闭锁时的测量尺寸 另外一个关键尺寸就接触力位置,这个接触力与作用方向一致,是在爪轮和中轮之间,接触力矢量的位置决定了是否有足

够的闭锁运动来保持锁具在冲压载荷的情况仍能正常闭锁,加工和装配偏差都有可能这些关键质量要求产生失效,过紧的公差会增加成本也有可能导致产品无法加工。为了生产高质量低成本的产品,有必要在设计阶段就能理解所有这些问题。 二. 创建公差分析目标 公差分析的前提首先要确定装配性能尺寸,对于锁具装配体,需要确定具体的装配状态。实施步骤如下: 1) 启动CETOL软件的分析器。 a.启动Pro/E。 b.启动CETOL,路径:开始/程序/sigmetrix/CETOL 6 sigma v8.2 for Pro ENGINEER/CETOL v8.2 Modeler。 c.打开锁具装配体。 d. 配置CETOL与Pro/E同步 2) 打开CETOL选项菜单。 a.从工具-选项栏目选择,在偏差标签栏设置 ,如图3 b. 在图表和高亮显示设置栏,设置如下:如图4

面向制造和装配的产品设计之公差分析(可编辑)

面向制造和装配的产品设计之公差分析 DFMADFMA 第第44部分部分:公差分析公差分析 Tolerance AnalysisTolerance Analysis 钟元钟元 7>2013/03/302013/03/30 DFMADFMA 内容: 一.常见的公差分析做法 二.公差分析 三.公差分析的公差分析的计算步骤算步骤

四四.公差分析的计算方法公差分析的计算方法 五.公差分析的三大原则 六.产品开发中的公差分析 2 DFMADFMA 一. 常见的公差分析做法 1. 产品详细设计完成后,在design review时,针对O-ring的压缩量进行 公差分析;分析如下: 3 DFMADFMA

一. 常见的公差分析做法 2. 当发现公差分析的结果不满足要求时,修改尺寸链中的尺寸公差,从 ±0.15mm修改到±0.10mm,发现依然不能满足,继续修改到 ±0.05mm,直到满足O-ring的15%压缩量要求;成功完成公差分析。 4 DFMADFMA 一. 常见的公差分析做法 存在的问题: 公差的设定没有考虑到制程能力公差的设定没有考虑到制程能力 ? 公差的设定没有考虑到成本 没有缩短尺寸链的长度没有缩短尺寸链的长度

? 当公差分析结果不满足要求时,没有通过优化设计的方法,而是通过严 格要求零零件尺尺寸公差的方法; ? 对尺寸公差没有进行二维图标注 对尺寸公差没有进行制程管控对尺寸公差没有进行制程管控 ? 产品制造后,没有利用真实的零件制程能力来验证设计阶段的公差分析 在产品详细设计完成后才开始进行公差分析在产品详细设计完成后才开始进行公差分析 5 DFMADFMA 一. 常见的公差分析做法 后果: 产品不良率高产品不良率高

组装公差分析

組裝公差分析 公差分析主要是探討?個描述?件組合後,其公差變動模式,?個好的公差分析模式可以預測組件公差能吻合實際組件公差界限有多少,其預測之機率愈?愈好。組裝公差分析可分成三種模式:最壞狀況模式(Worst-case model)、統計模式(Statistical model)和蒙地卡羅模式(Monte Carlo model). 概念 Dimension chain (sometimes called tolerance chain) is a closed loop of interrelated dimensions. It consists of increasing, decreasing links and a single concluding link. In ?gures 2-4 and 2-5, link i is the increasing link, d is a decreasing link and c is the concluding link. Apparently, the concluding link c is the one whose tolerance is of interest and which is produced indirectly. Increasing and decreasing links (both called contributing links) are the ones that by increasing them, concluding link increases and decreases; respectively. Figure 1. Dimension Chain of c, 2 links, 1D Figure 2.: Dimension Chain of c, 4 links, 1D The equation for evaluating the concluding link dimension is [Lin and Zhang (2001)]: ---------(1) Where: Σi: The summation of the increasing link dimensions. Σd: The summation of the decreasing link dimensions. j: increasing links index. k: decreasing links index. l: number of increasing links. m: number of decreasing links. For ?gure 1 ,c can be found as: c = i - d ------(2) As for chain in ?gure 2, c can be found as: c = (i1 + i2)-( d1 + d2) ------(3)

相关文档
最新文档