装配公差分析

H = F + T

T

H F

H = F + T1 + T2 + 2T

H

F

T1

T2

H = F+ T1 + T2 H = F = , T1 = , T2 =

H = F+ T H = F= , T=

,

, H1 + H2 = 2F + T1 + T2 ? , ? ?

H ( ) F ( ) ( H>=F ), T ( ) ( , T , , T T1 T2 .

3.5 3.94

T = 3.94 -3.5

= 0.44

, H = F + T T = H –F .

H1 = F + T1 H2 = F + T2

----------------

Hn = F + Tn

, .

(

) ,

.

:

H1 + H2 = 2F + T1 + T2

H1 = 1

H2 = 2

F =

T1= 1

T2 = 2

1, 2

( 1) , H1=0.104” F=0.086”,

+/-0.005, T1 =. 014 [ ],

H2 T2 : H2 =. 082 + T2

H2 = 0.086“ >=F, ).

T2 =H1 + H2 –2F -T1 = 0.004

0.002”,

:

Y14.5M -1994 H = F+ T

H

F

T

(MMC) H (MMC) F, (T)

, , . Y14.5M -1994 H = F+ T1 + T2

H

F

T1 T2 ( )

(MMC) H (MMC) F, (T1 + T2) T1 T2

10.1 H = F + T1 + T2 10.1 = 10.1 + 0 + 0

公差分析

例子1公差(Tolerancing) 1-1概论 公差分析将有系统地分析些微扰动或色差对光学设计性能的影响。公差分析的目的在于定义误差的类型及大小,并将之引入光学系统中,分析系统性能是否符合需求。Zemax内建功能强大的公差分析工具,可帮助在光学设计中建立公差值。公差分析可透过简易的设罝分析公差范围内,参数影响系统性能的严重性。进而在合理的费用下进行最容易的组装,并获得最佳的性能。 1-2公差 公差值是一个将系统性能量化的估算。公差分析可让使用者预测其设计在组装后的性能极限。设罝公差分析的设罝值时,设计者必须熟悉下述要点: ●选取合适的性能规格 ●定义最低的性能容忍极限 ●计算所有可能的误差来源(如:单独的组件、组件群、机械组装等等…) ●指定每一个制造和组装可允许的公差极限 1-3误差来源 误差有好几个类型须要被估算 制造公差 ●不正确的曲率半径 ●组件过厚或过薄 ●镜片外型不正确 ●曲率中心偏离机构中心

●不正确的Conic值或其它非球面参数 材料误差 ●折射率准确性 ●折射率同质性 ●折射率分布 ●阿贝数(色散) 组装公差 ●组件偏离机构中心(X,Y) ●组件在Z.轴上的位置错误 ●组件与光轴有倾斜 ●组件定位错误 ●上述系指整群的组件 周围所引起的公差 ●材料的冷缩热胀(光学或机构) ●温度对折射率的影响。压力和湿度同样也会影响。 ●系统遭冲击或振动锁引起的对位问题 ●机械应力 剩下的设计误差 1-4设罝公差 公差分析有几个步骤须设罝: ●定义使用在公差标准的」绩效函数」:如RMS光斑大小,RMS波前误差,MTF需求, 使用者自定的绩效函数,瞄准…等 ●定义允许的系统性能偏离值 ●规定公差起始值让制造可轻易达到要求。ZEMAX默认的公差通常是不错的起始点。 ●补偿群常被使用在减低公差上。通常最少会有一组补偿群,而这一般都是在背焦。 ●公差设罝可用来预测性能的影响 ●公差分析有三种分析方法: ?灵敏度法 ?反灵敏度法

proe tol组装公差分析

組裝公差分析 公差分析主要是探討一個描述工件組合後,其公差變動模式,一個好的公差 分析模式可以預測組件公差能吻合實際組件公差界限有多少,其預測之機率 愈大愈好。組裝公差分析可分成三種模式:最壞狀況模式(Worst-case model)、統計模式(Statistical model)和蒙地卡羅模式(Monte Carlo model). 概念 Dimension chain (sometimes called tolerance chain) is a closed loop of interrelated dimensions. It consists of increasing, decreasing links and a single concluding link. In figures 2-4 and 2-5, link i is the increasing link, d is a decreasing link and c is the concluding link. Apparently, the concluding link c is the one whose tolerance is of interest and which is produced indirectly. Increasing and decreasing links (both called contributing links) are the ones that by increasing them, concluding link increases and decreases; respectively.

公差模型和公差分析方法的研究

生 产现场 S H O P S O L U T I O N S 金属加工 汽车工艺与材料 A T&M 2009年第7期 50 机械装配过程中,在保证各组成零件适当功能的前提下,各组成零件所定义的、允许的几何和位置上的误差称为公差。公差的大小不仅关系到制造和装配过程,还极大影响着产品的质量、功能、生产效率以及制造成本。公差信息是产品信息库中的重要 内容,公差模型就是为表示公差信息而建立的数学及物理模型,它是进行公差分析的理论基础。 公差分析或称偏差分析,即通过已知零部件的尺寸分布和公差,考虑偏差的累积和传播,以计算装配体的尺寸分布和装配公差的过程。公差分析的目的在于判断零部件的公差分布是否满足装配功能要求,进而评价整个装配的可行性。早期公差分析方法面向的是一维尺寸公差的分析与计算。Bjorke 则将公差分析拓展到三维空间。Wang 、C h a s e 、P a b o n 、H o f f m a n 、Lee 、Turner 、Tsai 、Salomons 、Varghese 、Connor 等许多学者也分别提出了各自的理论和方法开展公差分析的研究。此后,人工智能、专家系统、神经网络、稳健性理论等工具被引入公差分析领域当中,并分别构建了数学模型以解决公差分析问题。 1 公差模型 公差模型可分为零件层面的公差信息模型和装配层面的公差拓扑关系模型。Shan 提出了完整公差模型的建模准则,即兼容性和可计算性准则。兼容性准则是指公差模型满足产品设计过程的要求,符合ISO 和ASME 标准,能够完整表述所有类型的公差。可计算性准则是指公差模型可实现与CAD 系统集成、支持过/欠约束、可提取隐含尺寸信息、可识别公差类型,以检查公差分配方案的可行性等。目前已经提出了很多公差模型表示法,但每一种模型都是基于一些假设,且只部分满足了公差模型的建模准则,至今尚未出现统一的、公认的公差模型。以下将对几种典型的公差模型加以介绍和评价。1.1 尺寸树模型 Requicha 最早研究了零件层面的公差信息表示,并首先提出了应用于一维公差分析的尺寸树模型。该模型中,每一个节点是一个水平特征,节点间连线表示尺寸,公差值附加到尺寸值后。由于一维零件公差不考虑旋转偏差,所有公差都可表示为尺寸值加公差值的形式。该模型对于简单的一维公差分析十 分有效,但却使尺寸和公差的概念模糊不清,而且没有考虑到形状和位置公差的表示。1.2 漂移公差带模型 Requicha 从几何建模的角度,于20世纪80年代提出了漂移公差带模型以定义形状公差。在这个模型中,形状公差域定义为空间域,公差表面特征需位于此空间域中,同时采用边界表示法(Breps )建立传统的位置和尺寸公差模型。对于表面特征和相关公差信息则运用偏差图(VGraph )来表示。VGraph 主要是作为一种分解实体表面特征的手段,将实体的边界部分定义为特征,公差信息则封装在特征的属性中。漂移公差带模型很好地表达了轮廓公差,轮廓公差包含了所有实际制造过程中的偏差。该模型提供了公差的通用理论且易于实现,但是不能区分不同类型的形状公差。1.3 矢量空间模型 Hoffmann 提出了矢量空间模型,Turner 扩展了这一模型。矢量空间模型首先需要定义公差变量、设计变量和模型变量。公差变量表示零件名义尺寸的偏差。设计变量由设计者确定,用以表示最终装配体的多目标优化函数。模型变量是控制零件各个公差的独立变量。由 公差模型和公差分析方法的研究 讨论了目前工程设计、制造中具有代表性的公差模型的建模、描述和分析的方法。在此基础上,对于面向刚性件和柔性件装配的公差分析方法的研究现状分别进行了综述和评价,通过对比说明各种分析方法的算法、应用范围及不足。最后,展望了公差模型和公差分析方法的研究方向及其发展动态。 奇瑞汽车股份有限公司 葛宜银 李国波

codev公差分析

问题背景 对于任何需要制造的系统,公差分析都是一个必需的复杂的互动过程。包括:?确定制造和装配公差目标?确定制造和调校补偿器,以及补偿方案 成功公差分析需要能够精确预测单个公差的灵敏度和整个系统的实际加工性能,包括补偿器的影响。当使用了合适的工具,公差分析能够降低:?非重复成本如设计时间,定义装调过程?重复性成本如系统制造,装配和调校因此公差分析可以帮助降低成本。 显微物镜案例?数值孔径0.65?放大率40倍?筒长180mm?视场直径0.5mm?可见光波长(d,F,C)?目标分辨率450线对每毫米 系统结构图

光扇图和场曲图 轴上视场和全视场点列图 MTF曲线和数值

从上面的图形可以看出,标称系统受限于:?轴向色差?横向色差?色球差?场曲 预期的公差分配目标:?限制450线对多色MTF下降■0.7视场内最大下降0.1■全视场最大下降0.15 公差方案?以默认TOR分析起始,确立基准性能并找出问题所在■默认反灵敏度模式计算引起相同性能下降的每个公差值?根据中间结果,执行额外分析■添加或删除被偿器■调整公差极限■固定单个公差到指定值■修改公差,符合光机模型 操作步骤1)运行默认公差,确定问题所在 轴上视场TOR结果

2)尝试替代偏心补偿偏心由表面8..9构成的透镜, 轴上视场TOR结果 3)确定可以修改的公差极限对于回滚和元件偏心,优质的制造设备可以保证±0.0065mm的总体指示偏差

对于此显微物镜,我们允许元件偏心和胶合元件回滚公差比默认值更严格一些,同样允许0.25环的不规则度。 保持套样板公差,最后一个透镜的厚度和偏心公差。此时,公差设置已经在轴上和全视场达到目标要求,但是在0.7视场依然不达标。

CETOL在公差设计的解决方案 - 汽车

CETOL软件在三维公差设计 的解决方案 莎益博工程系统开发(上海)有限公司

1.三维公差 1.1. 传统设计的不足 国内的大部分企业,对于公差分析还是存在模糊的认识,即公差分配是设计人员的任务。设计人员在做公差分析的时候,大多数时候参照已有产品的公差分配,公差无法参照的地方,多采用手工画一维尺寸链图,粗略的得出封闭换尺寸公差。上述情况存在诸多不足,第一,当设计人员在设计公差时参照老产品,并不能提高设计人员对公差分配原理的理解,当遇到和老产品不一样的产品,设计人员就失去了参照的依据。第二,手工计算一维尺寸链很容易出错,当这种错误发生时,又不容易检查。第三,手工计算效率较低,当尺寸链包含非常长时,需要大量的公差计算时间。第四,手工方法计算一维尺寸链比较容易,但是对于二维或三维的尺寸链计算就更加复杂。 1.2. 使用公差分析软件的优势 公差分析软件为设计人员提供了一个公差分析与综合的平台,使设计人员通过它实现在设计阶段对关键零件尺寸进行公差分析,结合实际的工艺加工能力,选择制造成本最低,又能保证满足设计要求的最优公差,分析的结果也可以为设计提供参考。具体来说,公差分析与综合系统为设计人员提供了评估公差状况的手段,通过该系统,给出了可靠、准确、合理的公差分配的依据。总结来说,使用公差分析软件有如下优势: 一.在CAD环境下模拟三维零件的装配过程。它可以直接读取CAD系统的设计参数,当设计参数更新时,公差分析的数据也一起更新。 图1 Solidworks公差分析界面

图2 CATIA公差分析界面 图3 Cre/Proe 公差分析界面 二.自动计算三维尺寸链误差的传播。下图是V形块和圆柱销的装配,公差分析软件不仅能计算沿着尺寸方向的尺寸对圆柱销高度的影响,还可以计算V形块的宽度和夹角对圆柱销高度的影响。

公差计算方法大全

六西格玛机械公差设计的RSS分析 2012年12月20日不详 关键字: 六西格玛机械公差设计的RSS分析 1.动态统计平方公差方法 RSS没有充分说明过程均值的漂移,总是假设过程均值在名义设计规格的中心,这就是为什么能力最初看起来比较充分,但实际中这种情况是很少的原因,特别是在制造过程中工具受到磨损的时候。因此就有必要利用C来调整每一个名义设计值已知的或者估计的过程标准偏差,以此来说明过程均值的自然漂移,这一方法就称为动态统计平方公差方法(Dynamic Root-Sum-of-Squares Analysis, DRSS)。实际上,这种调整会使标准偏差变大,因而会降低装配间隙概率。 调整后就以一个均值累积漂移的临界值是否大于等于4.5来衡量六西格玛水平,即时,DRSS 模型就简化为一个RSS模型,这一特征对公差分析有许多实际意义。从这一意义上讲,DRSS 模型是一个设计工具,也是一个分析工具。因为DRSS模型考虑均值随时间的随机变异的影响,所以称之为动态模型。 2.静态极值统计平方公差方法 当假设的均值漂移都设定在各自的极值情况时,这种方法称为静态极值统计平方公差方法( Worse-Case Static Raot- Surn- of-Squares Anlysis, WC-SRSS),这一方法可以认为是一种极值情况的统计分析方法。为了有效地研究任意假定的静态条件,需要将公式(2-10)分母项中的偏倚机制转移到分了项中(注意:当均值漂移大于2σ时,就不能应用上述转换),同时必须用Cp,代替分母中的Cpk:

实际上,所有偏倚机制都可以利用来表示,但是当过程标准偏差改变时,如果利用作为转换日标,名义间隙值也会改变,这样就违背了均值和方差独立的假设。也就是说,用作为描述均值漂移的基础使得均值和方差之间正相关。而利用k为动态和静态分析提供了一个可行的和灵活的机制,同时保证了过程均值和方差的独立性。 3.设计优化 利用IRSS作为优化基础,当考虑5RS5和WC-SRSS作为基础时其逻辑和推理是相同的。(1)优化零部件的名义尺寸 在任一给定的需求条件和过程能力条件下,重新安排公式(2-10)就得到该优化方程的表达式:

装配工艺优化中的可视化公差分析

装配工艺优化中的可视化公差分析 合理运用以部分析因设计、完全析因设计和响应面设计为主体内容的经典DOE 试验设计理论可以帮助我们在工业运营的环境中筛选重要因素,量化描述重要因子的主效应和交互作用,乃至于推算出重要因子的最佳设置方案。这些方法论无论是在传统的质量改进,还是在现代的六西格玛活动中,均有过成功应用的实际案例。 但是,切不可因此以为经典试验设计就是包治百病的灵丹妙药。不少企业在追求产品质量、流程能力精益求精的过程中,发现单纯地依靠经典试验设计,先天性地存在着一些不可避免的风险和隐患。最常见的一类问题可以用图一表示:原本以为根据试验设计建立的统计模型,投入实际生产的产品结果将会百分百地落入规格要求之内(如图左部的理想状态所示),但真正投产后却发现产品结果的波动相当大,相当一部分的数据超出了规格要求(如图右部的现实状态所示)。产生这样的结果不仅给企业带来了经济上的损失,而且也动摇了工程师进一步应用试验设计的信心。 图一 工艺流程能力的图示 其实,深入了解试验设计领域的研究人员都基本知晓产生这个问题的一个主要原因是:误差的传递!如图二所示,工艺流程的输入变量 X 是通过根据试验设计或回归方程获取的传递函数对工艺流程的输出变量Y 发生作用。在这个传递过程中,流程自变量不仅会影响产品质量特征的均值(这是大家所熟知的),而且由于流程自变量不可避免地存在着变异(或称误差),它还会影响产品质量特征的变异,这就是所谓的“误差传递”。如果要定量地表达误差传递,可以用下列公式来表示。 其中, 表示输出变量Y 的方差, 表示输入变量X n 的方差, 表示输入变量X n 的敏感度系数,表示输入变量X n 对输出变量Y 方差的贡献程度。 图二 工艺流程的宏观统计模型 公差分析是克服误差传递干扰的一种合适方法,也是试验设计理论研究的有益扩充。通俗地说,公差 理想状态 现实状态 规格下限 规格上限 目标值 规格下限 规格上限 目标值 22 2 2 12...1n X n X Y X f X f σσσ??? ? ????++???? ????=2Y σ2 X n σ???? ????n X f 2 X 2n n σ???? ????X f

公差计算方法全套汇编

2012年12月20日不详 关键字: 六西格玛机械公差设计的RSS分析 1.动态统计平方公差方法 RSS没有充分说明过程均值的漂移,总是假设过程均值在名义设计规格的中心,这就是为什么能力最初看起来比较充分,但实际中这种情况是很少的原因,特别是在制造过程中工具受到磨损的时候。因此就有必要利用C来调整每一个名义设计值已知的或者估计的过程标准偏差,以此来说明过程均值的自然漂移,这一方法就称为动态统计平方公差方法(Dynamic Root-Sum-of-Squares Analysis, DRSS)。实际上,这种调整会使标准偏差变大,因而会降低装配间隙概率。 调整后就以一个均值累积漂移的临界值是否大于等于4.5来衡量六西格玛水平,即时,DRSS模型就简化为一个RSS模型,这一特征对公差分析有许多实际意义。从这一意义上讲,DRSS模型是一个设计工具,也是一个分析工具。因为DRSS模型考虑均值随时间的随机变异的影响,所以称之为动态模型。 2.静态极值统计平方公差方法 当假设的均值漂移都设定在各自的极值情况时,这种方法称为静态极值统计平方公差方法( Worse-Case Static Raot- Surn- of-Squares Anlysis, WC-SRSS),这一方法可以认为是一种极值情况的统计分析方法。为了有效地研究任意假定的静态条件,需要将公式(2-10)分母项中的偏倚机制转移到分了项中(注意:当均值漂移大于2σ时,就不能应用上述转换),同时必须用Cp,代替分母中的Cpk:

实际上,所有偏倚机制都可以利用来表示,但是当过程标准偏差改变时,如果利用作为转换日标,名义间隙值也会改变,这样就违背了均值和方差独立的假设。也就是说,用作为描述均值漂移的基础使得均值和方差之间正相关。而利用k为动态和静态分析提供了一个可行的和灵活的机制,同时保证了过程均值和方差的独立性。 3.设计优化 利用IRSS作为优化基础,当考虑5RS5和WC-SRSS作为基础时其逻辑和推理是相同的。(1)优化零部件的名义尺寸 在任一给定的需求条件和过程能力条件下,重新安排公式(2-10)就得到该优化方程的表达式:

公差计算

问题5-1:公差计算 1.题目内容:配合件尺寸计算,根据所列已知条件,求其它各项填入表中。 2.公差与配合计算公式: 孔的上偏差ES=D max-D 孔的下偏差EI=D min-D 轴的上偏差es=d max-d 轴的下偏差ei=d min-d 孔的公差T h= D max- D min=ES-EI 轴的公差T s= d max - d min=es-ei 配合公差:T f=T h+T s 极限间隙X max= ES-ei,X min= EI-es 极限过盈Y max= EI-es,Y min= ES-ei 3.分析解答: 公差与偏差的计算,带入上面对应的公式,公式中只要已知两个值就可

以计算出第三个值。 (1)Φ40 6 7 s H ,基本尺寸为40。 (2)对于孔H7,可判断它的下偏差EI=0,且已知孔公差T h = 根据孔的公差T h = D max - D min =ES-EI 得ES= T h +EI=,D max =, D min =40, (3)对于轴s7,已知es=,轴公差T s = 根据轴的公差T s = d max - d min =es-ei , 得ei=es-T s = d max =, d min =, (4)配合公差 T f =T h +T s =+= (5)因为是过渡配合,所以存在最大间隙和最大过盈 极限间隙X max = ES-ei=极限过盈Y max = EI-es== (6)画公差带图 公差带图的关键是零线和孔轴的公差带。 4.总结拓展:公差计算的题目很多,这类问题是考核的一个重要部分,学生在考试中有关公差配合计算题答题情况不理想。学生在遇到这类问题时,往往会放弃答题。其实这类题目很简单,只要记住公式,将已知数据带入公式进行简单的运算,就可以得到所要答案。计算非常简单,在运算的过 +41 +16

组装公差分析

组装公差分析 公差分析主要是探讨一个描述工件组合后,其公差变动模式,一个好的公差分析模式可以预测组件公差能吻合实际组件公差界限有多少,其预测之机率愈大愈好。组装公差分析可分成三种模式:最坏状况模式(Worst-case model)、统计模式(Statistical model)和蒙地卡罗模式(Monte Carlo model). 概念 Dimension chain (sometimes called tolerance chain) is a closed loop of interrelated dimensions. It consists of increasing, decreasing links and a single concluding link. In figures 2-4 and 2-5, link i is the increasing link, d is a decreasing link and c is the concluding link. Apparently, the concluding link c is the one whose tolerance is of interest and which is produced indirectly. Increasing and decreasing links (both called contributing links) are the ones that by increasing them, concluding link increases and decreases; respectively. Figure 1. Dimension Chain of c, 2 links, 1D Figure 2.: Dimension Chain of c, 4 links, 1D The equation for evaluating the concluding link dimension is [Lin and Zhang (2001)]: ---------(1) Where: Σi: The summation of the increasing link dimensions. Σd: The summation of the decreasing link dimensions. j: increasing links index. k: decreasing links index. l: number of increasing links. m: number of decreasing links. For figure 1 ,c can be found as: c = i - d ------(2) As for chain in figure 2, c can be found as: c = (i1 + i2)-( d1 + d2) ------(3) 1. 最坏状况模式(Worst-case model) 最坏状况模式又称上下偏差模式、极限模式、完全互换模式,此模式是以工件的最大及最小状况组合,可以满足完全互换性、组件公差最大. In worst-case method, the concluding dimension’s tolerance Δc can be found as following: ------(4) Referring to figure 2 and equations (3 and 4), the deviation of the concluding link is: Δc = Δi1 + Δi2 + Δd1 + Δd2------(5) T0: 总公差

6 西格玛标准公差计算公式.

六西格玛管理系列讲座之一 什么是6西格玛管理?当人们谈论世界著名公司-通用电器(GE)的成功以及世界第一CEO-杰克.韦尔奇先生为其成功制定的三大发展战略时,都会不约而同地提出这样的问题。 如果概括地回答的话,可以说6西格玛管理是在提高顾客满意程度的同时降低经营成本和周期的过程革新方法,它是通过提高组织核心过程的运行质量,进而提升企业赢利能力的管理方式,也是在新经济环境下企业获得竞争力和持续发展能力的经营策略。因此,管理专家Ronald Snee先生将6西格玛管理定义为:“寻求同时增加顾客满意和企业经济增长的经营战略途径。” 如果展开来回答的话,6西格玛代表了新的管理度量和质量标准,提供了竞争力的水平对比平台,是一种组织业绩突破性改进的方法,是组织成长与人才培养的策略,更是新的管理理念和追求卓越的价值观。 让我们先从6西格玛所代表的业绩度量谈起: 符号σ(西格玛)是希腊字母,在统计学中称为标准差,用它来表示数据的分散程度。我们常用下面的计算公式表示σ的大小: 如果有两组数据,它们分别是1、2、3、4、5;和3、3、3、3、3;虽然它们的平均值都是3,但是它们的分散程度是不一样的(如图1-1所示)。如果我们用σ来描述这两组数据的分散程度的话,第一组数据的σ为1.58,而第二组数据的σ为0。假如,我们把数据上的这些差异与企业的经营业绩联系起来的话,这个差异就有了特殊的意义。 假如顾客要求的产品性能指标是3±2(mm),如果第一组数据是供应商A所提供的产品性能的测量值,第二组数据是供应商B所提供的产品性能的测量值。显然,在同样的价格和交付期下,顾客愿意购买B的产品。因为,B的产品每一件都与顾客要求的目标值或理想状态最接近。它们与顾客要求的目标值之间的偏差最小。 假如顾客要求的产品交付时间是3天。如果第一组数据和第二组数据分别是供应商A和B每批产品交付时间的统计值,显然,顾客愿意购买B的产品。因为,B每批产品的交付时间与顾客要求最接近。尽管两个供应商平均交付时间是一样的,但顾客的评判,不是按平均值,而是按实际状态进行的。 假如顾客要求每批产品交付数量是3件。如果第一组数据和第二组数据分别是供应商A和B每批产品

最新公差计算方法大全资料

六西格玛机械公差设计的RSS分析2012年12月20日不详 关键字: 六西格玛机械公差设计的RSS分析 1.动态统计平方公差方法 RSS没有充分说明过程均值的漂移,总是假设过程均值在名义设计规格的中心,这就是为什么能力最初看起来比较充分,但实际中这种情况是很少的原因,特别是在制造过程中工具受到磨损的时候。因此就有必要利用C来调整每一个名义设计值已知的或者估计的过程标准偏差,以此来说明过程均值的自然漂移,这一方法就称为动态统计平方公差方法(Dynamic Root-Sum-of-Squares Analysis, DRSS)。实际上,这种调整会使标准偏差变大,因而会降低装配间隙概率。 调整后就以一个均值累积漂移的临界值是否大于等于4.5来衡量六西格玛水平,即时,DRSS 模型就简化为一个RSS模型,这一特征对公差分析有许多实际意义。从这一意义上讲,DRSS 模型是一个设计工具,也是一个分析工具。因为DRSS模型考虑均值随时间的随机变异的影响,所以称之为动态模型。 2.静态极值统计平方公差方法 当假设的均值漂移都设定在各自的极值情况时,这种方法称为静态极值统计平方公差方法( Worse-Case Static Raot- Surn- of-Squares Anlysis, WC-SRSS),这一方法可以认为是一种极值情况

的统计分析方法。为了有效地研究任意假定的静态条件,需要将公式(2-10)分母项中的偏倚机制转移到分了项中(注意:当均值漂移大于2σ时,就不能应用上述转换),同时必须用Cp,代替分母中的Cpk: 实际上,所有偏倚机制都可以利用来表示,但是当过程标准偏差改变时,如果利用作为转换日标,名义间隙值也会改变,这样就违背了均值和方差独立的假设。也就是说,用作为描述均值漂移的基础使得均值和方差之间正相关。而利用k为动态和静态分析提供了一个可行的和灵活的机制,同时保证了过程均值和方差的独立性。 3.设计优化 利用IRSS作为优化基础,当考虑5RS5和WC-SRSS作为基础时其逻辑和推理是相同的。(1)优化零部件的名义尺寸 在任一给定的需求条件和过程能力条件下,重新安排公式(2-10)就得到该优化方程的表达式:

统计公差分析方法概述

统计公差分析方法概述(总5 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

统计公差分析方法概述(2012-10-23 19:45:32) 分类:公差设计统计六标准差 统计公差分析方法概述 一.引言 公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。 公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二.Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.)=(20++(15++(10+=,出现在A、B、C偏上限之状况 D(Min.)=++=,出现在A,B、C偏下限之状况 45±适合拿来作设计吗 Worst Case Analysis缺陷: 设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; 公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。

公差分析软件CETOL 6 sigma实例

使用公差分析软件CETOL 6 σ进行公差分析的实例 ----汽车锁具公差分析案例 针对汽车锁具Pro/E模型,采用Pro/E完全集成环境下的公差分析软件CETOL 6 σ,来做公差模型的创建,基于CETOL提供的系统矩(SOTA法)算法,做统计和极限二种情况下的公差分析。 一.锁具质量关心焦点 作为汽车座椅锁具,其质量的好坏,关系到汽车驾乘人员乘坐的舒适性和安全性。锁具在开锁时,希望能够充分打开,不要与其他零部件之间产生干涉,即顺利打开。锁具在闭锁时,能够经受得住外力的冲击,不至于产生突然脱开现象。在锁具的任何状态,都要求锁具动作部件能够与电器设备很好地连接,在电控装配的驱动下,锁具能够准确地运转到指定的位置。根据设计功能要求,把项目细分到具体的状态上,在运动部件的具体指定位置,做功能要求的详细设定。 1)一个关键质量要求就是爪轮在打开时要远离侧板的开口槽,这是为了确保爪轮不会与锺棒产生干涉。如图1所示。 test

2)锁轮上的孔,在完成机械装配后,需要从这个孔里穿电缆线,来接通电源。根据座椅的设计要求,为了保证电缆线能与

机械设备能可靠地连接,电缆线过孔必须在位于基准孔名义值的正负2个mm之间。如果尺寸超过了上极限,锁具就会出现卡死现象,如果超过了下极限,电缆线就不能很好地与电器设置连接,导致零件废弃和成本增加。 图 2 闭锁时的测量尺寸 另外一个关键尺寸就接触力位置,这个接触力与作用方向一致,是在爪轮和中轮之间,接触力矢量的位置决定了是否有足

够的闭锁运动来保持锁具在冲压载荷的情况仍能正常闭锁,加工和装配偏差都有可能这些关键质量要求产生失效,过紧的公差会增加成本也有可能导致产品无法加工。为了生产高质量低成本的产品,有必要在设计阶段就能理解所有这些问题。 二. 创建公差分析目标 公差分析的前提首先要确定装配性能尺寸,对于锁具装配体,需要确定具体的装配状态。实施步骤如下: 1) 启动CETOL软件的分析器。 a.启动Pro/E。 b.启动CETOL,路径:开始/程序/sigmetrix/CETOL 6 sigma v8.2 for Pro ENGINEER/CETOL v8.2 Modeler。 c.打开锁具装配体。 d. 配置CETOL与Pro/E同步 2) 打开CETOL选项菜单。 a.从工具-选项栏目选择,在偏差标签栏设置 ,如图3 b. 在图表和高亮显示设置栏,设置如下:如图4

公差计算方法大全(完整资料).doc

【最新整理,下载后即可编辑】 六西格玛机械公差设计的RSS分析 2012年12月20日不详 关键字: 六西格玛机械公差设计的RSS分析 1.动态统计平方公差方法 RSS没有充分说明过程均值的漂移,总是假设过程均值在名义设计规格的中心,这就是为什么能力最初看起来比较充分,但实际中这种情况是很少的原因,特别是在制造过程中工具受到磨损的时候。因此就有必要利用C来调整每一个名义设计值已知的或者估计的过程标准偏差,以此来说明过程均值的自然漂移,这一方法就称为动态统计平方公差方法(Dynamic Root-Sum-of-Squares Analysis, DRSS)。实际上,这种调整会使标准偏差变大,因而会降低装配间隙概率。 调整后就以一个均值累积漂移的临界值是否大于等于4.5来衡量六西格玛水平,即时,DRSS模型就简化为一个RSS模型,这一特征对公差分析有许多实际意义。从这一意义上讲,DRSS模型是一个设计工具,也是一个分析工具。因为DRSS模型考虑均值随时间的随机变异的影响,所以称之为动态模型。

2.静态极值统计平方公差方法 当假设的均值漂移都设定在各自的极值情况时,这种方法称为静态极值统计平方公差方法( Worse-Case Static Raot- Surn- of-Squares Anlysis, WC-SRSS),这一方法可以认为是一种极值情况的统计分析方法。为了有效地研究任意假定的静态条件,需要将公式(2-10)分母项中的偏倚机制转移到分了项中(注意:当均值漂移大于2σ时,就不能应用上述转换),同时必须用Cp,代替分母中的Cpk: 实际上,所有偏倚机制都可以利用来表示,但是当过程标准偏差改变时,如果利用作为转换日标,名义间隙值也会改变,这样就违背了均值和方差独立的假设。也就是说,用作为描述均值漂移的基础使得均值和方差之间正相关。而利用k 为动态和静态分析提供了一个可行的和灵活的机制,同时保证了过程均值和方差的独立性。 3.设计优化 利用IRSS作为优化基础,当考虑5RS5和WC-SRSS作为基础时其逻辑和推理是相同的。 (1)优化零部件的名义尺寸 在任一给定的需求条件和过程能力条件下,重新安排公式(2-10)就得到该优化方程的表达式:

面向制造和装配的产品设计之公差分析(可编辑)

面向制造和装配的产品设计之公差分析 DFMADFMA 第第44部分部分:公差分析公差分析 Tolerance AnalysisTolerance Analysis 钟元钟元 7>2013/03/302013/03/30 DFMADFMA 内容: 一.常见的公差分析做法 二.公差分析 三.公差分析的公差分析的计算步骤算步骤

四四.公差分析的计算方法公差分析的计算方法 五.公差分析的三大原则 六.产品开发中的公差分析 2 DFMADFMA 一. 常见的公差分析做法 1. 产品详细设计完成后,在design review时,针对O-ring的压缩量进行 公差分析;分析如下: 3 DFMADFMA

一. 常见的公差分析做法 2. 当发现公差分析的结果不满足要求时,修改尺寸链中的尺寸公差,从 ±0.15mm修改到±0.10mm,发现依然不能满足,继续修改到 ±0.05mm,直到满足O-ring的15%压缩量要求;成功完成公差分析。 4 DFMADFMA 一. 常见的公差分析做法 存在的问题: 公差的设定没有考虑到制程能力公差的设定没有考虑到制程能力 ? 公差的设定没有考虑到成本 没有缩短尺寸链的长度没有缩短尺寸链的长度

? 当公差分析结果不满足要求时,没有通过优化设计的方法,而是通过严 格要求零零件尺尺寸公差的方法; ? 对尺寸公差没有进行二维图标注 对尺寸公差没有进行制程管控对尺寸公差没有进行制程管控 ? 产品制造后,没有利用真实的零件制程能力来验证设计阶段的公差分析 在产品详细设计完成后才开始进行公差分析在产品详细设计完成后才开始进行公差分析 5 DFMADFMA 一. 常见的公差分析做法 后果: 产品不良率高产品不良率高

组装公差分析

組裝公差分析 公差分析主要是探討?個描述?件組合後,其公差變動模式,?個好的公差分析模式可以預測組件公差能吻合實際組件公差界限有多少,其預測之機率愈?愈好。組裝公差分析可分成三種模式:最壞狀況模式(Worst-case model)、統計模式(Statistical model)和蒙地卡羅模式(Monte Carlo model). 概念 Dimension chain (sometimes called tolerance chain) is a closed loop of interrelated dimensions. It consists of increasing, decreasing links and a single concluding link. In ?gures 2-4 and 2-5, link i is the increasing link, d is a decreasing link and c is the concluding link. Apparently, the concluding link c is the one whose tolerance is of interest and which is produced indirectly. Increasing and decreasing links (both called contributing links) are the ones that by increasing them, concluding link increases and decreases; respectively. Figure 1. Dimension Chain of c, 2 links, 1D Figure 2.: Dimension Chain of c, 4 links, 1D The equation for evaluating the concluding link dimension is [Lin and Zhang (2001)]: ---------(1) Where: Σi: The summation of the increasing link dimensions. Σd: The summation of the decreasing link dimensions. j: increasing links index. k: decreasing links index. l: number of increasing links. m: number of decreasing links. For ?gure 1 ,c can be found as: c = i - d ------(2) As for chain in ?gure 2, c can be found as: c = (i1 + i2)-( d1 + d2) ------(3)

标准公差计算

标准公差计算 A1 基本尺寸分段 表A1基本尺寸分段 计算各基本尺寸段的标准公差和基本偏差时,公式中的D用每一尺寸段中首尾两个尺寸(D1和D2)的几何平均值,即: D = √D1×D2 IT5至IT18的标准公差 Ⅰ,基本尺寸至500 mm 的标准公差 i = 0.45√D + 0.001D 式中:i —μm D —基本尺寸段的几何平均值,mm

Ⅱ,基本尺寸大于500~3 150 mm 的标准公差的由来 等级IT1至IT18的标准数值作为标准公差因子I的函数,由表A2所列计算公式计算: I = 0.004D + 2.1 式中:i —μm D —基本尺寸段的几何平均值,mm。 表A2 标准公差计算公式 A2 标准公差数值的修约 等级至IT11的标准公差计算结果按表A3的规则修约。 等级大于IT11的标准公差数值是由IT7至IT11的标准公差数值延伸来的,故不需要再修约。 表3 等级至IT11的标准公差数值修约μm

A3 基本偏差的由来 A3.1 轴的基本偏差 轴的基本偏差见表3 给出的公式计算。 A3.2 孔的基本偏差 孔的基本偏差按表3 给出的公式计算。 但以下情况例外: a)基本尺寸大于3-500mm,标准公差等级大于IT8的孔的基 本偏差N,其数值(ES)等于零。 b)在基本尺寸大于3-500mm的基孔制或基轴制配合中,给 定某一公差等级的孔要与更精一级的轴相配(例如H7/p6 和P7/h6),并要求具有同等的间隙或过盈。此时,计算 的孔的基准偏差应附加一个△值,即: ES=ES(计算值)+△ 式中:△是基本尺寸段内给定的某一标准公差等级IT n与更精一级的标准公差等级IT(n-1)例如:基本尺寸段18—30mm的P7:△= IT n —IT(n-1) = IT7 —IT6 =21 —13 = 8 μm

相关文档
最新文档