纳米医学材料

纳米医学材料
纳米医学材料

纳米医学---纳米技术在医药卫生中的应用

所谓纳米医学是"利用分子器具和对人体分子的知识,进行诊断、治疗和预防疾病与创伤,减轻疼痛,促进和保持健康的科学和技术"。纳米医学的基础是分子纳米技术(molecular nANotechnology)和分子制作技术(molecular mANufacturing)。它采用分子器械系统或纳米化的药物来处理医疗问题,并将应用分子的知识在分子水平上维护人体的健康。成熟的纳米医学要求所构建的器械和装置,应达到原子的精度。

今天的人们已然知道,人体的疾病或不良的健康状态,大多是由分子和细胞的受损引起的。但在很长的历史时期内,由于各项科学技术和医学本身发展的限制,人类对自身的认识还只能停留在系统、器官、组织、至多到细胞水平。而在临床上,则更多地局限于器官水平上的诊断和治疗。而今,20世纪科学的发展,使得医学开始从只是基于推理,向着全然的分子基础转变。

ANd0002 水热合成羟基磷灰石(HA)纳米粉体的研究

羟基磷灰石(HA或HAP)是脊椎动物骨和齿的主要无机成分,结构亦非常接近。作为生物陶瓷材料,它与动物体组织的相容性好,无生物毒性且界面生物活性优于各类医用钛合金、硅橡胶及植骨用碳素材料,HA 种植体能诱导周围骨组织的生长,与骨形成牢固的化学结构,因此可广泛用作生物硬组织的修复和替换材料。

陶瓷材料的性能与其粉体的制备方法、性质是密切相关的。水热法是制备结晶良好、无团聚的纳米粉体的优选方法之一。它是在特制的密闭容器(高压釜)里,用水溶液作反应介质,通过对反应容器加热,创造一个高温、高压反应环境,使得通常难溶或不溶的物质溶解并且重结晶。与其他湿化学方法相比,水热法具有如下特点:(1)水热法可直接得到结晶良好的粉体,不需作高温灼热处理,避免了在此过程中可能形成的粉体硬团聚。(2)粉体晶粒物相和形貌与水热条件有关。(3)晶粒线度适度可调,水热法制备的粉体晶粒线度与反应条件(反应温度、反应时间、前驱物形式等)有关。(4)工艺较为简单。水热法粉体制备技术有:水热氧化、水热沉淀、水热合成、水热晶化、水热分解等。水热合成是以一元化合物在水热条件下反应合成二元甚至多元化合物。

本文采用CaCO3粉末和CaHPO4·2H2O的混合物为前驱物,通过水热合成制备HA粉体。

ANd0003 纳米生物微管和金属微管的制备及应用前景

生物学的研究进展揭示了自然界,尤其是生物体自组装的结构,而正是这种自组装结构赋予生物体以某种功能。脂类分子的自组装与细胞生物膜的结构,功能有密切联系;细菌微管蛋白的自组装与细胞的繁殖分裂过程密切相关;遗传物质DNA、RNA的自组装结构与生物体遗传、变异息息相关。利用这种生物分子的自组装技术可以服务于纳米生物功能材料的研究。比如利用生物分子的自组装技术设计和制备自组装纳米微管,用于研究和开发新型光电磁功能复合材料。我们利用生物分子组装技术,不仅成功制备出纳米生物微管,而且以纳米生物微管为模板,成功制备得到纳米金属微管,初步的性能研究表明该类纳米生物微管具有广阔的应用前景。

ANd0004 HAP纳米微晶在血浆中的稳定性及对血细胞形态的影响

羟基磷灰石(HAP)是人体骨中的主要无机矿物成分,呈纳米微晶状态。而现在临床应用的HAP经烧结后则呈多晶态。为了探讨羟基磷灰石纳米微晶在生物医学中的应用,我们进行了大理的研究工作,体外细胞培养实验表明HAP纳米微晶对癌细胞具有抑制作用,而对正常细胞无影响。本文的目的就是通过研究HAP纳米微晶在血液中的稳定性和对血胞的影响,探讨静脉注射抑癌的可行性,用Zetaplus电位粒度分析仪检测了HAP纳米微晶加入血浆后粒径的变化,用姬姆萨染色法观察了HAP纳米微晶对血细胞形态的影响。结果表明,血浆中HAP纳米微晶的粒径随时间变化不大,甚至变小,这与血浆中蛋白质对HAP纳米微晶的部分溶解有关;12小时后加纳米微晶组血细胞仍保持了完好的形态。说明它对血细胞的形态没有影响。提示可以于静脉注射,具有一定的安全性。

ANd0005 纳米抗菌材料制备与应用的研究

本文研究了一种新型抗菌材料。它是以纳米级的Ti系材料为主要原料制备而成的一种纳米抗菌材料。研究分析了抗菌材料性能、制备、成型,为纳米抗菌材料的制备和应用提供了理论依据和试验数据。

ANd0006 聚氨酯与纳米碳的复合及表面血液相容性研究

现代临床医学的迅速发展,尤其是植入式人工器官和介入性诊疗技术的应用,对生物医学材料,尤其是与血液直接接触的植入性材料提出了越来越高的要求。

在众多的高分子材料中,聚醚型聚氨酯因其具有相对良好的生物相容性和优异的力学性能一直被作为重要的与血液直接接触的材料用于制作血管移植物、介入导管、心室辅助循环系统及人工心脏等。但是迄今为止,还没有一种改性聚氨酯材料能够完全满足当前心血管系统临床应用的高要求。此外,目前大多数的改性方法在提高材料的血液相容性的同时,会对材料的力学性能带来一定的影响。因此,血液相容性仍然是生物材料领域亟待突破的一个关键性问题。

纳米碳的直径尺寸在几个纳米的范围,与聚氨酯微观结构中的硬段微区的尺寸很接近。本文通过将纳米碳分散到聚氨酯体系中,与聚氨酯形成一种新的纳米复合材料,对这种复合材料的表面的血液相容性和微观结构做了初步的探讨。

纳米碳的直径尺寸在几个纳米的范围,与聚氨酯微观结构中的硬段微区的尺寸很接近。本文通过将纳米碳分散到聚氨酯体系中,与聚氨酯形成一种新的纳米复合材料,对这种复合材料的表面的血液相容性和微观结构做了初步的探讨。

ANd0007 纳米载银抗菌材料与促进健康

利用纳米粒子奇特的形态和理化性能,将Ag设计到粒子表面的微孔中并稳定,制成的纳米载银抗菌材料颗粒尺寸小、抗菌谱广、高效、持久、耐高温,其应用领域极为广阔。对预防有害细菌的感染,促进健康将十分有益。

ANd0008 氢化泼尼松/羟基丁酸酯---羟基戊酸酯共聚物毫微球制备与性质

近年来毫微粒(nANoparticles):包括球或囊,做为抗癌药、抗生素药等药物的载体,在医药界引起广泛的兴趣与重视。毫微粒的静脉给药表现出明显的肝、脾、骨髓等器官与组织的分布靶向性即天然靶向性。经过表面修饰的毫微粒也具有方位靶向性与延长在血液系统中循环时间,作为靶向制剂得到广泛应用。毫微粒作为口服制剂,特别是多肽、蛋白类药物口服制剂,不仅使生化药物免受消化道内各种酶破坏起着重要作用,而且它能通过回肠上皮细胞的细胞旁路(paracellular pathway)与"派伊尔结"(Peyer's pathes)中M细胞与邻近肠细胞,而穿透回肠粘膜进入淋巴循环,躲避肝首过效应(First pass effect),大大提高了药物的生物利用度。

目前,毫微粒的载体,主要为天然与人工合成的可降解材料组成。常用的有:白蛋白、明胶、多糖类天然高分子化合物;人工合成的聚氰基丙烯酸烷酯、聚乳酸、聚乙醇酸、聚己内酯及其共聚物。由于人工合成材料中痕量的引发剂等杂质在生物相容性方面产生一定影响,最近几年由微生物合成的可降解聚酯类材料

如聚羟基丁酸酯(Polyhydroxybutyrate,PHB)及其共聚物聚羟基丁酸酯-羟基戊酸酯(polyhydroxybutyrate-co-hydroxyvalerate,PHBV)引起药学界广泛兴趣。

ANd0009 智能化释药载体纳米凝胶的制备及其释药特性

目的:合成丙烯酸-β-羟基丙酯/乙烯基吡咯烷酮(β-HPAT/NVP)共聚物并将其制备成载有盐酸阿霉素的纳米凝胶,研究该纳米凝胶的智能化温敏可逆相变及其智能化温敏可逆释药规律。

ANd0010 纳米级的轴长18?蒙脱石的药理作用的矿物学解释

纳米技术、电子信息、生物工程是21世纪三大科技支柱,而纳米技术目前已经渗透到各个领域,如医药、半导体、陶瓷、电子、化工、环保等等。

矿物学作为地质学的一门基础学科,在找矿、矿产评价、矿产的综合利用等曾起着重要的作用。然而,它又是一种天然的无机材料,在纳米技术兴起的今天,矿物学与纳米技术结下了不解之缘。纳米级的羟基磷灰石可以杀死癌细胞(自然界有此种矿物);纳米级的蒙脱石加到塑料中去可以提高塑料的硬度(自然界有此种矿物);此外纳米TiO2(天然矿物为金红石)光催化作用的意义在环保工业,纳米级的SnO2(锡石)、ZrO2(斜锆石)、ZnO(红锌矿)、FE2O4(磁铁矿)、石英(SiO2)、重晶石(BaSO4)、重碳酸钙(CaCO3)、高岭石、云母、碳酸锰(MnCO3)以及稀土矿物等均有其本身的独特作用。

ANd0011 可防治植物真菌病害的绿色纳米材料

许多植物真菌病害如麦类白粉病、水稻稻瘟病、立木腐朽病、黄瓜白粉病等已成为影响我国家业和林业生产的主要病害,它们的流行给国民经济发展带来了极大的损失。我们提出了利用无毒的SiO2纳米粒子对植物真菌病害进行防治。实验结果证明,不同尺寸的纳米粒子对植物真菌病害的抑制效果有很大的差别。这是由于不同粒径的纳米粒子可在植物叶片表面形成不同的拓扑结构。特定的拓扑结构可以影响真菌对植物叶片表面的识别过程,从而阻碍真菌在植物叶片表面的粘附和对植物侵染。通过对纳米粒子表面的改性,可以进一步控制纳米粒子在植物叶片表面所形成的拓扑结构提高其对植物真菌的抑制效果。

ANd0012 纳米铜颗粒-酶-复合功能敏感膜生物传感器

用水合联肼作还原剂研制成亲水纳米铜颗粒,用琥珀酸二异辛酯磺酸钠/丙三醇/正庚烷反胶束体系合成出憎水纳米铜颗粒,并通过透射电镜和紫外光谱考察了制得的纳米颗粒样品。用憎水纳米铜颗粒及亲水纳米铜颗粒与聚乙烯醇缩丁醛构成复合固酶膜基质,用溶胶-凝胶法固定葡萄糖氧化酶,构建葡萄糖生物传感器。实验结果表明,纳米铜颗粒可大幅度提高固定化酶的催化活性,响应电流从相应浓度的几十纳安增强到几千纳安。从理论和实验上证明了纳米颗粒对固定酶的作用,讨论了纳米颗粒对酶催化性能的改善作用,为纳米颗粒在生物传感器领域中的应用提供了可供参考的实验和理论依据。

ANd0013 纳米复合抗菌丙纶性能研究

将聚丙烯,纳米陶瓷粒子,沸石混合造粒制得抗菌母粒,聚丙烯切片与抗菌母粒共混熔融纺丝,得到纳米复合抗菌丙纶。测试了纤维的抗菌性能、热性能、力学性能,并对纳米粒子及纤维进行了扫描电镜分析。纤维结晶度下降,而熔点提高。纤维抑菌率在纤维中有少量凝聚,纤维断裂强度略有降低,但能够满足加工及服用要求。

ANd0014 金属与非金属纳米颗粒对葡萄糖生物传感器响应的增强作用机理探讨

本文研制的纳米增强葡萄糖传感器是采用金属纳米Au、Ag、Pt以及非金属SiO2颗粒与聚乙烯醇缩丁醛(PVB)构成复合固酶膜基质,用溶胶-凝胶法固定葡萄糖氧化酶(GOD),组成葡萄糖生物传感器。实验表明,纳米颗粒可以大幅度提高固定化酶的催化活性,增加电极的电流响应。本文探讨了不同种类纳米颗粒在固定化酶中所起的作用,为纳米颗粒应用的新领域提供依据。

ANd0015 纳米材料在生物医学中的应用

ANd0016 纳米高分子材料在医用载体方面的应用

医用纳米高分子作为药物、基因传递和控释的载体,是一种新型的控释体系。它与微米粒子载体的主要区别是超微小体积,它能穿过组织间隙并被细胞吸收,要通过人体最小的毛细血管,还可通过血脑屏障,因而作为新的控释体系而被广泛研究,具有广阔的发展前景。重点论述了纳米高分子控释系统在药物和基因载体方面的最新研究进展,并对其发展前景提出展望。

ANd0017 生物有机纳米材料----细菌纤维素

与传统纤维素相比,醋菌纤维有许多优良性能,如高纯度、高聚合度、高结晶度、高亲水性、高杨氏模量、高强度和纤维的纳米细度。由于这些特性,使它在食品、医药、化工、无纺织物等轻工领域成为一种很有潜力的新型生物材料。工业化生产方法有平面静态培养、连续静培养机械装置、普通发酵罐生产法。

ANd0018 纳米药物和纳米载体系统

阐明了纳米技术在药剂学领域中的现状,综述了国内外纳米药物和纳米载体的发展,介绍了纳米药物与纳米载体的尺寸范围、主要类型及其应用、制备技术、载药方法、表面修饰的意义及其在促进药物溶解、改善吸收、提高靶向性等方面的作用和机制,指出了纳米载体在生物大分子药物传输中的潜在应用前景。

ANd0019 纳米TiO/SiO2复合食品抗菌材料

以水玻璃和Ti(SO4)2为原料,制备出了多孔纳米TiO/SiO2复合粒子,在后处理过程中,利用无机包覆剂溶解度随温度的变化,在复合粒子表面包覆了一层无机结晶膜,经热处理除去包覆剂后,得到了以

单分散纳米复合粒子组成的复合微粉。对复合微粉进行比表面和孔容测试,并运用XRD和TEM进行了表征。运用纳米TiO2和复合粉末对4种保健食品进行对照灭菌实验,两个月以后,测得含复合微粒的样品中的菌落总数为50~120个/g,是相应空白样和纳米TiO2粉样品菌落数的0.52%~0.97%和33.3%~83.3%。

ANd0020 短棒状纳米羟基磷灰石的湿法合成及表征

通过简单湿法合成制备了短棒状钠米羟基磷灰石颗粒。粉体在不同的温度下进行了热处理,并用红外光谱、透射电镜及X射线衍射等对其组织、结构及热稳定性进行了表征。研究表明,将适当比例的(NH4)2HPO4和Ca(NO3)2晶体混合、振荡、陈化后提纯、烘干,可制备出长约30-40nm,直径约10-20nm的短棒状纳米羟基磷灰石颗粒,颗粒结构与通常的针状结构相比更接近于人体骨磷灰石;该颗粒具有较好的热稳定性,600℃以下热处理后,颗粒结构、尺寸和形貌基本不变,分散性较好;900℃热处理后,颗粒明显长大并严重团聚。

ANd0021 纳米羟基磷灰石合成及表面改性的途径和方法

综述论述了羟基磷灰石的晶体结构及表面结构特点,纳米羟基磷灰石的主要合成方法,民时通过对目前纳米羟基磷灰石颗粒表面改性研究现状的分析,提出了进行纳米HAP颗粒表面改性的几种主要方法。

ANd0022 浅谈纳米粒子在生物学和医学中的应用

介绍了纳米粒子的基本特征及其在生物学和医学中的应用。

ANd0023 聚合物纳米粒子用于给药载体

聚合物纳米粒子用于给药载体具有广阔的前景。本文按聚合物纳米粒子的主要制备方法(单体聚合法、聚合物后分散法和两亲性聚合物自组装法等)综述了它近十年来在药物靶向输送上的应用研究进展。

ANd0024 纳米材料与保健功能纺织品

纳米材料用于保健功能纺织品目前正在研究开发之中。本文就纳米材料在抗紫外线、抗菌防臭、反射和抗红外线,抗静电及电磁波屏蔽等具有保健功能的纺织品上的应用进行了讨论。

ANd0025 药用载体-硫化亚锑纳米胶粒的制备及表征

采用两种不同的硫源,制备了两种不同粒径分布的药用载体-硫化亚锑纳米胶粒。透射电镜(TEM)和原子力显微镜(AFM)表征显示,两者的平均粒径分别为10nm和40nm,且均为球形颗粒。同时讨论了硫源和分散剂对纳米胶粒粒径的影响。

ANd0026-01 水热均相沉淀法制备纳米针状羟基磷灰石**

羟基磷灰石(Ca10(PO)4(OH)2(HAp)的组成与天然磷灰石矿物相近,是脊椎动物骨和牙齿的主要成分。它和生物大分子如蛋白质和酶具有良好的生物亲和性。作为一种受到广泛重视的重要的生物陶瓷,羟基磷灰石可以作为矫形和种植材料。但在临床应用上,由于脆性大而使羟基磷灰石的应用受到很大限制。一个比较好的办法就是将针状或纤维状无机陶瓷分散在有机聚合物材料中,这样既可以解决无机材料的脆性,又可以解决聚合物材料强度不够的问题。在这种情况下,制备针状的羟基磷灰石就显得很必要,因为它象纤维一样起到增强作用。已有报道羟基磷灰石可以和高分子材料复合,得到了强度高和韧性好的生物材料。

针状羟基磷灰石有不同的制备方法。水热均相沉淀法是相对简便的方法,条件容易控制,反应时间短,结晶好,所得无机颗粒粒度均一。是一个比较理想的制备羟基磷灰石的方法。本文就采用水热均相沉淀法由Ca(NO3)2与(NH4)2HPO4反应制备针状羟基磷灰石。

ANd0027-01 自组装羟基磷灰石中空微球的纳米结构*

用水热法对乌贼骨进行改性得到纳米羟基磷灰石自组装成的具有纳米结构的微球,实验表明这些微球的纳米结构单元有多种:羟基磷灰石纳米片、纳米块、更小的纳米球以及更小的颗粒,在乌贼骨不同部位,这些球的大小不一,存在形态也不完全一样,表现出纳米羟基磷灰石在组装过程中的多样性及复杂性。对结构这样丰富的自组装体系进行研究,无论对于开发新的移植生物材料和研究纳米结构自组装体系都有十分重要的价值和意义。

ANd0028-02 AOT反相微乳液制备纳米羟基磷灰石的研究*

采用AOT作为表面活性剂,正辛醇作为助表面活性剂,异辛烷为油相,将水溶液和饱和溶液分别作为水相分别制成反相微乳液,并使之反应,制备出了平均颗粒尺寸107纳米,呈单分散的球形纳米羟基磷灰石颗粒。

采用该体系制备的纳米羟基磷灰石颗粒在微乳液混合的最初5分钟内就完成了颗粒的成核和生长,并随后在微乳液体系中缓慢生长。由于微乳液中水池形状的影响。影响最后呈球形,均匀分散于微乳液体系中。

ANd0029-02 无机纳米粒子的抗肝癌机理研究*

迄今为止,人们对纳米粒子的抑癌机理尚无一致认识。本文结合作者近期的研究进展,以肝癌为模型,研究羟基磷灰石(HAP)纳米粒子对肝癌细胞的选择性抑制作用和机理。采用倒置相差显微技术和Gimsa染色考察HAP纳米粒子作用前后细胞数量和形态的变化规律;采用荧光微区元素分析研究纳米HAP进入肝癌细胞的位置和途径;通过流式细胞仪检测纳米粒子对细胞周期及DNA的影响等等。在此基础上给出了一些有创新意义的结果。

ANd0030-02 纳米TiO2抗菌剂及其抗菌塑料的性能*

研究了纳米TiO2以及纳米TiO2/PP、TiO2/PE、TiO2/PS复合材料的抗菌性能及其抗菌机理。结果表明:在光照条件下,纳米TiO2对于金黄色葡萄球菌、大肠杆菌和黑色枯草芽杆菌等常见的各种菌种表现出优良的抗菌或抑菌作用,其抑菌率分别可达96.7%、99.9%和86.6。

ANd0031-02 生物活性无定形骨组织支架的生物矿化研究*

本研究通过溶胶-凝胶方法,制备了两种具有特殊纳米结构的新型无定形生物活性骨组织工程材料。该材料具有纳米尺寸的颗粒及微孔以及较大的比表面积,是一种新型的骨缺损修复及骨组织工程支架材料。本工作还模拟人体生理环境,利用仿生学原理和体外实验(In Vitro)方法,对材料的显微结构以及对模拟环境的响应特性、降解性能、表面反应产物及其矿化过程和机理进行了表征、分析和研究。

ANd0032-02 采用纳米级HAP粉末制备HAP生物陶瓷*

羟基磷灰石{Ca10(PO4)6(OH)2}(简称HAP)的组成接近于生物体骨质的无机成份,具有非常好的生物相容性,是理想的硬组织替代材料。但是,该材料也存在着很大的缺点,如脆性大,韧性不足,力学性能差等,使它不能够用于负重部位长干骨的缺损修复。自然烧法是以溶胶-凝胶法为基础,利用硝酸盐与羧酸反应,在低温下即可实现原位氧化,自发燃烧快速合成产物的初级粉末,特别适于纳米材料的合成。采用此法合成的HAP粉末,一次平均粒径为85nm,二次平均粒径为494.6±10.1nm。本文采用该粉末制备HAP生物陶瓷,有望克服上述缺点。

本文的研究内容包括以下两部分:一是致密HAP生物陶瓷人工骨的制备,二是多孔HAP生物陶瓷人工骨的制备。

ANd0033-02 羟基磷灰石粒子对细胞系Bel-7402细胞周期的影响*

羟基磷灰石(HAP)是人体动物骨骼、牙齿的主要无机成分,呈纳米微晶状态。人工合成的HAP纳米粒子在医学上的应用越来越广泛,可用于药物载体及抗肿瘤等方面的研究。实验研究表明,HAP纳米粒子对肝癌、胃癌、骨肉瘤等多种癌细胞的生长具有不同程度的抑制作用,为了深入探讨其抗癌作用,我们选用流式细胞技术测定细胞周期的变化。流式细胞仪是70年代后发展起来的综合多学科的高精度产品,能对单个细胞进行定量分析,具有快速、准确、大量和多点数同时获取的特点,为研究细胞增殖动力学提供了强有力的手段,已广泛应用于肿瘤学的研究。我们通过湿法制备出HAP纳米粒子溶胶,应用透射电镜、电位粒度仪检测纳米粒子的大小、平均粒径和粒度分布。在体外细胞系Bel-7402人肝癌细胞相互作用,分别于72h、96h、120h收集肝癌细胞,经碘化丙啶(PI)染色后,上机检测DNA含量和细胞周期时相的分布,通过细胞周期分析软件进行分析。结果显:制备的HAP纳米粒子呈均匀、稳定、分散的针状颗粒,TEM观察其平均尺寸为15×60nm;粒度仪检测体系的平均粒径为67.6nm。流工细胞仪测定、分析,HAP纳米粒子可使Bel-7402细胞系于72h G2/M期细胞数目增多,随着作用时间的处长,至96h、120h时,G1期细胞数量明

显上升。实验结果表明稳定的HAP纳米粒子在体外使肝癌细胞增殖阻断于G1期,减缓进入S期,使DNA的合成受阻,最终影响癌细胞的增殖。

ANd0034-02 与血液接触的植入器械表面改性用纳米Ti-N-O薄膜的抗变形行为研究*

本研究对合成Ti-N-O薄膜抗变形能力以及与基体间结合力这两个关键问题进行了研究。对沉积Ti-N-O薄膜后的不锈钢试样进行拉伸变形实验,扫描电子显微镜(SEM)原位观察表明在较大塑性变形量下Ti-N-O 薄膜没有剥落和裂纹出现,表现出优异的抗变形能力。采用WS-97自动薄膜划痕仪测得薄膜与基体间有较强的结合力。对合成Ti-N-O薄膜的TEM观测表明合成薄膜为纳米薄膜材料;AFM表面观察表明薄膜表面致密而平整;AES成分分析显示Ti、N、O沿深度分布逐步均匀过渡。研究认为该合成薄膜的纳米级晶粒尺寸、致密的表面质量以及成分沿深度的分布是其具有优异的抗塑性变形性能以及高的结合强度的原因,并预示了PIII&D技术在血管支架等生物植入器械表面改性方面存在着巨大的潜力。

纳米材料在医学领域的应用研究进展

纳米材料在医学领域的应用研究进展 【摘要】在最近几年,纳米材料和纳米技术迅速发展,得到了科学界的重视。由于纳米材料的特殊的尺寸效应,纳米颗粒、纳米管以及各种纳米技术在医学方面的应用正蓬勃发展,势头十足。但在医学领域发展的同时,人们也逐渐认识到其中的一些问题,如纳米材料的生物毒性等。本文主要综述纳米科技在基医学、药学、临床医学和预防医学中的应用研究进展、问题及改进。 【关键词】纳米材料纳米科学纳米技术药物载体医学生物毒性毒理学 1 引言 纳米仅是一个长度单位,1 nm = 10-9m,当物质进入纳米尺度时,会展现出特有的理化性质,如: 小尺寸效应、表面效应、量子尺寸效应以及宏观量子隧道效应等[1]。随着纳米技术的不断发展,各种纳米材料逐渐进入了我们的视野。碳纳米材料主要包括碳纳米管、富勒烯[2]、石墨烯和纳米钻石及其衍生物,是目前应用非常广泛的一类纳米材料,现有的研究结果表明,碳纳米材料在组织工程、药物/基因载体、生物成像、肿瘤治疗、抗病毒/抗菌以及生物传感等生物医学领域中具有潜在的应用前景。 2 纳米材料在医学领域的应用 2. 1 纳米材料在生物医学领域的应用 应用于生物体内应用的纳米材料,它本身既可以是具有生物活性,也可以不具有生物活性,但它在满足使用需要时还必须易于被生物体接受,而不引起不良反应。目前纳米微粒在这方面的应用十分的广泛,如生物芯片、纳米生物探针、核磁共振成像技术、细胞分离和染色技术、作为药物或基因载体、生物替代纳米 材料、生物传感器等很多领域[3]。 纳米探针一种探测单个活细胞的纳米传感器,探头尺寸仅为纳米量级,当它插入活细胞时,可探知会导致肿瘤的早期DNA 损伤。一些高选择性和高灵敏度的纳米传感器可以用于探测很多细胞化学物质,可以监控活细胞的蛋白质和感兴趣的其他生物化学物质。随着纳米技术的进步,最终实现评定单个细胞的健康状况。使用纳米生物荧光探针可以快速准确的选择性标记目标生物分子,灵敏测试细胞内的失踪剂,标记细胞,也可以用于细胞表面的标记研究。

纳米生物医学材料的应用

纳米生物医学材料的应用 摘要:纳米材料和纳米技术是八十年代以来兴起的一个崭新的领域,随着研究的深入和技术的发展,纳米材料开始与许多学科相互交叉、渗透,显示出巨大的潜在应用价值,并且已经在一些领域获得了初步的应用。本文论述了纳米陶瓷材料、纳米碳材料、纳米高分子材料、微乳液以及纳米复合材料等在生物医学领域中的研究进展和应用。 关键字:纳米材料;生物医学;进展;应用 1. 前言 纳米材料是结构单元尺寸小于100nm的晶体或非晶体。所有的纳米材料都具有三个共同的结构特点:(1)纳米尺度的结构单元或特征维度尺寸在纳米数量级(1~100nm),(2)有大量的界面或自由表面,(3)各纳米单元之间存在着或强或弱的相互作用。由于这种结构上的特殊性,使纳米材料具有一些独特的效应,包括小尺寸效应和表面或界面效应等,因而在性能上与具有相同组成的传统概念上的微米材料有非常显著的差异,表现出许多优异的性能和全新的功能,已在许多领域展示出广阔的应用前景,引起了世界各国科技界和产业界的广泛关注。 “纳米材料”的概念是80年代初形成的。1984年Gleiter首次用惰性气体蒸发原位加热法制备成功具有清洁表面的纳米块材料并对其各种物性进行了系统研究。1987年美国和西德同时报道,成功制备了具有清洁界面的陶瓷二氧化钛。从那时以来,用各种方法所制备的人工纳米材料已多达数百种。人们正广泛地探索新型纳米材料,系统研究纳米材料的性能、微观结构、谱学特征及应用前景,取得了大量具有理论意义和重要应用价值的结果。纳米材料已成为材料科学和凝聚态物理领域中的热点,是当前国际上的前沿研究课题之一[1]。 2. 纳米陶瓷材料 纳米陶瓷是八十年代中期发展起来的先进材料,是由纳米级水平显微结构组成的新型陶瓷材料,它的晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸等都只限于100nm量级的水平[2]。纳米微粒所具有的小尺寸效应、表面与界面效应使纳米陶瓷呈现出与传统陶瓷显著不同的独特性能。纳米陶瓷已成为当前材料科学、凝聚态物理研究的前沿热点领域,是纳米科学技术的重要组成部分[3]。 陶瓷是一种多晶材料,它是由晶粒和晶界所组成的烧结体。由于工艺上的原因,很难避免材料中存在气孔和微小裂纹。决定陶瓷性能的主要因素是组成和显微结构,即晶粒、晶界、气孔或裂纹的组合性状,其中最主要的是晶粒尺寸问题,晶粒尺寸的减小将对材料的力学性能产生很大影响,使材料的强度、韧性和超塑性大大

纳米技术在医学上的应用

纳米技术在医学上的应用 随着科学技术的进步和发展,纳米材料学和生物医学的结合越来越紧密,纳米材料在生物医学领域的应用已取得了很大进展,并展现出良好的发展势头和巨大的发展潜力。纳米技术的兴起,对生物医学领域的变革产生了深远的影响。纳米材料具有许多传统材料所不具备的独特的理化性质,因此在生物医学、传感器等重要技术领域有着广泛的应用前景。纳米材料在生物医药领域的应用主要有纳米药物、抗菌材料、生物传感器等。 纳米药物 纳米药物与传统的分子药物的根本区别在于它是颗粒药物,而广义的纳米药物可分为两类:一类是纳米药物载体,即指溶解或分散有分子药物的各种纳米颗粒,如纳米球、纳米囊、纳米脂质体等;第二类是纳米药物,即指直接将原料药物加工成的纳米颗粒,或利用崭新的纳米结构或纳米特性,发现基于新型纳米颗粒的高效低毒的治疗或诊断药物。前者是对传统药物的改良,而后者强调的是把纳米材料本身作为药物。是否能实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料是否能实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料 抗菌材料 抗菌材料是指具有抗菌或杀菌功能的材料,其主要机理为:干扰细胞壁的合成、损伤细胞膜、抑制蛋白质的合成和干扰核酸的合成等4点。目前,抗菌材料使用的方法主要是通过添加抗菌剂或化学改性的方法使材料具有抗菌的效果。 通过表面化学改性方法将抗菌剂接枝到电纺纳米纤维表面,控制接枝反应在纳米纤维的表面进行,不影响纤维膜的本体力学性能。此外,纳米纤维巨大的比表面被具有高密度抗菌基团的聚合物链覆盖,并稳定、牢固地以共价键结合,这不仅大大提高了抗菌效率,小剂量即可产生强的抗菌作用,而且还具有长效及重复使用的优势,可以有效避免抗菌剂污染等问题。 生物传感器 生物传感器是信息科学、生物技术和生物控制论等多学科交叉融合而形成的新兴高科技领域。随着微电子机械系统技术、纳米技术不断整合入传感器技术领域,生物传感器越来越趋向于微型化。在纳米技术中,纳米器件的研究水平和应用程度标志着一个国家纳米科技的总体水平,而纳米传感器又是纳米器件研究中的一个最重要的方向。 由中国科学院理化技术研究所唐芳琼研究员带领的纳米材料可控制备与应用研究组,在纳米增强的酶生物传感器研究方面取得了重要进展。此研究成果是采用四氧化三铁纳米颗粒构建高灵敏度葡萄糖生物传感器。研究表明,该生物传感器具有良好的抗干扰性,在实际血清的检测中表现出很好的检测效果,与现有临床方法检测结果相比,标准偏差均在3%以内,具有很强的实用性。 纳米技术医学应用的展望 虽然纳米医学刚刚问世,但其发展的巨大潜力已经展示在我们面前。21世纪

无机纳米材料在生物医学的应用

无机纳米材料在生物医学的应用 班级:材料科学与工程(1)班 姓名:何丽莉 学号:201473030107

摘要:主要介绍了几种介绍了介孔二氧化硅、纳米碳等非金属类纳米材料,以及磁性铁、氧化铈、银纳米粒子、金纳米粒子、镍等金属类纳米材料,比较了不同来源无机纳米材料的发展、特点、优势,明确了无机纳米材料具有环境友好、成本低、生物相容性好及低毒性等特点,综述了无机纳米材料在生物医药、临床诊断、疾病预防等生物医学方面的研究与应用。 关键词:无机纳米材料生物医学 Abstract: This paper mainly introduces several kinds of the mesoporous silica, nano carbon and other non metal nano materials, and magnetic iron, cerium oxide, silver nanoparticles, gold nanoparticles, nickel and other metal nano materials, compared the development of different sources of inorganic nano materials, features, advantages, the inorganic nano material is environmentally friendly low cost, good biocompatibility and low toxicity characteristics, the application of inorganic nano materials in the biomedical, clinical diagnosis, disease prevention research and application in biomedicine. Keywords: inorganic nano materials biomedicine

纳米材料在生物医学上的应用论文

纳米材料在生物医学上的应用论文 纳米材料在癌症治疗方面的应用现状及展望 纳米材料在癌症治疗方面的应用现状及展望 前言:尽管我们现在生活在高科技时代,科技很发达,人类的平均寿命比七、八十年代高了很多,但是癌症仍然是人类健康的头号杀手。即使在发达国家,也是如此。目前癌症在临床上可以进行手术、放疗、化疗等方法,但是大多只能杀死或转移癌细胞,但不能完全清除癌细胞,随时有可能复发。归根到底,癌症还是因发现晚、治愈难而成为致死的重要原因。到目前为止,癌症的有效治疗和诊断仍然是现代医学面临的严峻考验。纳米材料的出现为癌症的及早诊断、治疗带来了希望。 一、纳米材料在癌症早期检测和诊断方面的应用 (1)纳米粒子作为一种多功能的击靶对照反差试剂的候选物作为所有的临床成像。例如,Emory大学 聂书明教授的研究小组首次用聚合物纳米颗粒层 和聚乙二醇包裹的量子点在活体内同时对肿瘤进 行定位和成像。还有,中国医科大学陈丽英教授 将超顺磁性氧化铁纳米粒子进行相应的包裹或与 靶特异性分子联结后作为造影剂使用,可以发现

直径3毫米以下的肝肿瘤,结果清晰可靠。【1】(2)哈佛大学查尔斯.利伯尔领导的研究小组阐述了采用硅纳米导线陈列装置来检测血浆中癌细胞内过 度表达的微量标记蛋白质。【2】 (3)血管栓塞术可用于晚期肝、肾恶性肿瘤的治疗。 磁性纳米微球可以做得更小,且易于进入末梢血 管,在磁场作用下具有磁控导向、靶位栓塞等优 点。例如,多柔比星纳米微粒—碘油乳剂肝动脉 栓塞治疗肝癌。【3】 (4)美国弗拉迪米尔.托洛伊林为首的研究小组,把含有纳米微粒的化疗剂和称为2c5的抗体连接,在 轰击人体癌细胞,通过这种方法可以减缓不同肿 瘤的生长速度。【4】 二、纳米材料在癌症临床上的应用 (1)加拿大多伦多大学马格瑞特公主医院的科学家们研制了一种无毒、可生物降解和具有高灵敏度的 有机纳米颗粒。可广泛适用于癌症治疗和药物传 递通过它将装载的药物导入到肿瘤中进行靶向性 治疗。【4】 (2)通过对纳米粒子的修饰,可以增加其对肿瘤组织的靶向特性,实现对恶性肿瘤的靶向治疗,避免 抗肿瘤药物对正常细胞的损伤。【3】

纳米材料在医学上的应用

纳米技术的应用对各行各业的帮助很大,其中,生物医学方面,已经取得了较为喜人的成果。生物医学方面应用较多的是纳米材料,它的种类形态多样,有的呈粉末状,也有的是纤维状,块状,不可否认的是所具备的性能十分独特。本文从诊断、治疗两大方向进行介绍。 一、在诊断方面的应用 1.遗传病诊断 纳米技术有助于诊断胎儿是否有遗传缺陷。妇女怀孕8个星期时,血液中开始出现少量胎儿细胞。利用具有纳米级大小孔洞的半透膜或特殊的合成纳米管等,可把胎儿细胞分离出来进行诊断。不需要进行羊水穿刺。 目前美国已将此项技术应用于临床诊断中。 2.病理学诊断 肿瘤诊断较为可靠的手段是建立在组织细胞水平上的病理学方法,但存在着良恶性及细胞来源判断不准确的问题。利用原子力显微镜可以在纳米水平上揭示肿瘤细胞的形态特点。通过寻找特异性的异常纳米级结构改变,以解决肿瘤诊断的难题。 二、在治疗方面的应用 1、纳米化增加药物吸收度

1)增大药物的表面积促进溶解。 2)药物大分子就能穿透组织间隙,也可以通过人体细小的毛细血管。而且分布面极广。 3)应用于中药制剂。药物的物理活性、靶向性比普通中药大大提高。 2、纳米医用材料 纳米银粉:银在纳米状态下的杀菌能力产生了质的飞跃。只需要用极少量的纳米银即可产生强大的杀菌作用。 智能药物:美国正在设计一种纳米“智能炸弹”,它可以识别出癌细胞的化学特征。这种“智能炸弹”很小,仅有20纳米左右,能够进入并摧毁单个的癌细胞。 纳米技术与生物医学的结合,为医学界提供了全新的思路,纳米材料在医学领域的应用取得了显著效果。 纳米材料在医学方面应用广泛,南京东纳生物科技有限公司是一家集产学研于一体的高新技术型企业,可提供相关产品,更多详情欢迎登陆官网查看!

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

纳米技术在医学上的应用

纳米技术在医学上的应用 1.关键词:纳米技术医学 2.Keywords:nanotechnology medicine 3.ISI检索结果 表1-1每年出版的文献数 表1-2每年的引文柱状图 从以上两个柱状图可以看出21世纪之前关于纳米技术在医学上的应用的研究几乎为零,但是一进入21世纪国内外关于纳米技术在医学上的应用逐年增加,每年的引文数更是呈指数倍增长,在2013年更是达到了最大出版量。虽然出版 作者记录数占总记录数的百分比FERRARI M 12 1.064% SEIFALIAN AM 11 0.975% LANGER R 10 0.887% DYGAI AM 9 0.798% JAIN KK 9 0.798% MIROSHNICHENKO LA 9 0.798% SIMANINA EV 9 0.798%

表1-3主要研究成员分析 从上表的数据可以看出,就算是发表文献最多的研究者也只发表了12篇,说明专攻纳米技术在医学上应用的人很少,都是从事相关研究的,说明此项目与 表1-4主要研究机构分析 从上表可以看出,关于纳米技术在医学上的应用的研究比较分散,因为取了前17个机构的数据,而其发表的文献数只占了总记录数的21.543%,而绝大部

SPAIN 49 4.344% SWITZERLAND 39 3.457% CANADA 36 3.191% JAPAN 33 2.936% AUSTRALIA 26 2.305% FRANCE 25 2.216% 总合1002 88.838% 表1-5主要国家地区分析(选取发表数占2%以上) 从上表中可以看出,美国、中国和英国占总发表数的53.635%,其中美国就占了38.475%,说明美国研究纳米技术在医学上应用的水平站在世界的顶端,其次就是中国,说明中国在这方面的研究也比较先进。从另一方面来说,纳米技术在医学上的应用将会被广泛的应用,我们的健康水平也能相应的提高。 4.合成路线 ①With tetrabutylammomium bromide,dihydrogen peroxide,bromine in water,Time= 8h,T=65℃,92% ②With copper(l) iodide,potassium iodide,Time= 5h,T= 200℃ , Inert atmosphere,Finkelstein reaction,100%. ③With potassium fluoride,Pd(3wt)/C in N,N-dimethyl-formamide,Time=7h,T=130℃, p= 1500.15Torr, Inert atmosphere,Hiyama Coupling,92%. ④With hydrogen bromide,tri-n-butylhexadecylphosphonium bromide,Time=0.2h,T=115℃,93%.

纳米技术在生物医药中的应用

科技创业 PIONEERINGWITHSCIENCE&TECHNOLOGYMONTHLY 月刊 科技创业月刊2007年第8期 1990年在美国召开了第一届纳米技 术国际学术会议,成为纳米科技发展进步的一个重要标志。1999年,美国的RobertAFreitasJr出版了《 纳米医学》,表明了纳米科技的发展已促使人们开始多方面考虑并且探索纳米科技在医学临床诊治、药物学等方面的应用。纳米技术作为一项新兴技术,在生物医药领域具有十分广阔的应用前景。 1纳米技术 纳米是英文nanometre的译名,像米、 厘米、毫米等一样,是一个长度单位。1纳米(nm)为10-9米,也即百万分之一毫米,相当于一根头发丝直径的五万分之一。更形象地讲,如果把1nm的物体放在乒乓球上,就像一个乒乓球放在地球上。在纳米尺度上,由于物质的量子效应,物质的局域性和巨大的表面、界面效应,形成的材料性能发生了由量变到质变的飞跃,从而突变或产生奇异的新现象。 纳米技术是指在纳米尺度上研究物质(包括原子、分子的操纵)的特性,通过组建和利用纳米材料来实现特有功能和智能作用的高科技先进技术。这一基本概念普遍认为由美国著名物理学家、诺贝尔物理奖获得者RichardFeynman在一次题为《在物质底层有很大的空间》的演讲中提出,“为什么我们不可以从另外一个方向出发,从单个的分子甚至原子开始组装,以达到我们的要求……如果有一天能按照人们的意志安排一个个原子和分子,将会产生什么样的奇迹”。 纳米技术涵盖领域广泛,包括纳米材料学、纳米生物学和纳米显微学等方面,它建立了一种崭新的思维方式,使人类能够 利用越来越小、越来越精确的物质和越来越精细的技术成品来满足更高层次的要求。目前,由于纳米技术具有的独特优势以及人们对健康和重大疾病防治等问题的日益关注,纳米技术开始广泛应用于生物医药领域。 2纳米技术在生物医药中的应用 方兴未艾的纳米技术把人类对微观世 界的认识带入了一个全新的境界,同时也为人类战胜疾病、提高健康水平提供了更为有力的武器。就目前而言,纳米技术在生命领域的应用前景已逐渐展现,并且许多设想已经逐渐实现,可以预见纳米技术将渗透至生物医药研究和应用的方方面面。 2.1万能的机器人 1986年,美国预见研究所的工程师埃 里克?德雷克斯勒说:“我们为什么不制造出成群的、肉眼看不见的微型机器人,让它们在地毯或书架上爬行,把灰尘分解成原子,再将这些原子组装成各种物品。这些微型机器人不仅是搬运原子的建筑工人,同时还具有绝妙的自我复制和自我修复能力。” 同时,还有些科学家设想将蛋白质芯片或基因芯片组装成尺寸比人体红细胞还小的纳米机器人,使其具有某些酶的功能,它是纳米机械装置与生物系统的有机结合,在生物医学工程中可充当微型医生,解决传统医生难以解决的问题。将这些纳米机器人注入血管内,可按照预定程序,直接打通脑血栓,清洁心脏动脉脂肪沉积物等,达到预防和治疗心脑血管疾病的目的。 除此以外,不同的组合方案还可组装出其他功能的纳米机器人,例如,有的可以吞噬病菌、杀死癌细胞;有的可以作为人体 器官的修复工具,修复损伤的器官和组织等,以完成整容手术或其他器官修复手术;有的可以进行基因装配工作,除去基因中错误或有害的DNA片段,并将正常的 DNA片段装配进染色体,使机体正常运 作。 2.2灵敏的检测器 癌症是人类死亡率极高的疾病之一, 但以目前的医疗诊断水平,癌症一旦被确诊通常已发展到晚期,即已无药可救或已过最佳治疗时期。科学家设想,可制造出纳米传感器植入体内,监控早期癌变信号分子的产生,通过与外界特定的声信号或其他信号的相互作用,将内部信号转化为外部信号。 另外,近年来科学家正尝试应用纳米技术的新型检测仪器和诊断试剂,只需检测少量血液中蛋白质和DNA就可诊断出某人患各种疾病的可能性。国内外研究者正致力于脑肿瘤、肝癌、肺癌、白血病等癌症的早期纳米诊断手段的研究,并取得了一定的成绩。 2.3多彩的标记物 科学家根据CD唱机中激光二极管的 发光原理,研制出半导体纳米晶体。这种微型的无机晶体被称作量子点,可通过对其大小的控制,使其经同一光源激发后,发出红、黄、蓝等多种颜色的光。又因量子点比传统有机染色小分子更稳定,目前得到了广泛应用。例如,研究者可用量子点附着在不同基因序列组成的DNA分子上,通过比较标记的基因序列与已知序列找出哪些基因在特定细胞或组织中表达较为活跃;当用量子点标记蛋白质或其他物质时,技术人员可动态跟踪标记物在体内的过程,从而使其应用于一些疾病的诊断。 纳米技术在生物医药中的应用 夏 涛 (华中师范大学第一附属中学 湖北 武汉 430223) 摘 要 纳米技术是在纳米尺度上研究物质的特性,通过组建和利用纳米材料来实现特有功能和智能作用 的高科技先进技术。介绍了纳米技术在生物医药中的应用现状和前景,并分析了纳米技术在生物医药领域应用中的纳米材料安全性和成本问题。 关键词 纳米技术 纳米材料 生物医药 中图分类号 TD383:R319文献标识码 A 收稿日期:2007-04-17 86

纳米材料的危害

纳米材料的危害 “纳米”有哪些潜在的危险?纳米时代即将来临,我们已经做好了知识上和心理上的准备了吗? 一些纳米颗粒对生物体有害 纳米是一个长度单位,是1米的10亿分之一。当物质颗粒小到纳米量级时,这种物质就被称为纳米材料。在一段时间里,我们一直认为纳米科技给社会带来的都是益处,而近年来,不少研究者发现,一些纳米颗粒和碳纳米管对生物体有害。 据《自然》杂志介绍,美国纽约罗切斯特大学研究人员在实验鼠身上完成的实验显示,直径为35纳米的碳纳米粒子被老鼠吸进身体后,能够迅速出现在大脑中处理嗅觉的区域内,并不断堆积起来。他们认为碳纳米粒子是同“捕捉”香味的大脑细胞一道进入大脑的。今年4月,美国化学学会在一份研究报告中指出,碳60会对鱼的大脑产生大范围的破坏,这是研究人员首次找到纳米微粒可能给水生物种造成毒副作用的证据。这些都说明,纳米材料对人类健康和环境都存在危害。 纳米材料为何会对人体造成影响呢?当一种物质缩小到纳米尺度后,它的性质就会发生显著变化。实验表名,2毫克二氧化硅溶液注入小白鼠后不会致其死亡,但若换成0.5毫克纳米二氧化硅,小白鼠就会立即毙命。而且,纳米材料不易降解,穿透性强,人一旦吸入纳米颗粒,其健康就会受到潜在的威胁。 美国加州大学教授陈帆青说:“现在日常生活中,含纳米成分的产品已有不少。拿化妆品来说,一些唇膏的珠光颗粒其实就是纳米颗粒;等离子电视等含有碳纳米材料的电器,长期接触也可能影响健康。对于各种纳米材料的安全性,我们正在建立数据库,以进行系统评估。”

纳米材料可通过三种途径进入人体 人们接触纳米材料污染一般通过下面途径:一、通过呼吸系统;二、通过皮肤接触;三、其他方式,如食用、注射之类。纳米材料污染物通过上述途径进入人体,与体内细胞起反应,会引起发炎、病变等;污染物在人体组织内停留也可能引起病变,如停留在肺部的石棉纤维会导致肺部纤维化。 纳米材料比普通的污染物对人体的影响更大。这是因为纳米材料体积非常小,同样质量下纳米颗粒将比微米颗粒的数量多得多,与细胞发生反应的机会更大,更易引起病变。纳米材料很小,可以几乎不受阻碍地进入细胞,从而有可能进入人的神经系统,影响人的大脑,导致一些更严重的疾病和后果。目前,研究人员还不知道如何将纳米材料从人体中清除,也不知道它们会不会在人体中降解。 “纳米”可能潜在的危险 纳米颗粒物并不只是新时代纳米技术的产物,人类其实早与纳米颗粒共存。汽车尾气、各种燃烧过程等,都会产生大量的纳米粒子。据估算,在大街上行走的人,每小时通过呼吸空气吸进的纳米粒子大约有1亿个。 纳米粒子很小,比细胞小上千倍。由于小尺寸效应、量子效应和巨大比表面积等,纳米材料具有特殊的物理化学性质。在进入生命体后,它们与生命体相互作用所产生的化学特性和生物活性,与化学成分相同的常规物质有很大不同。前期研究表明,一些人造纳米颗粒在很小剂量下容易引起靶器官炎症;容易导致大脑损伤;容易使机体产生氧化应激;容易进入细胞甚至细胞核内;表面吸附力很强,容易把其他物质带入细胞内;有随纳米尺寸减小生物毒性增大的趋势;表面的轻微改变导致生物效应发生巨变等。 纳米材料还有一个潜在的危险——— 易爆炸。纳米材料具有反常特性,原本物质不具有的性能,小颗粒会具有。原本不导电的物质,在颗粒变小后有可能导电,有些原来不易燃的物质在纳米尺

纳米技术在生物医学中的应用(一)

纳米技术在生物医学中的应用(一) 摘要纳米技术与生物化学、分子生物学整合将对21世纪的生物医学产生深刻的影响。它将利用生物大分子进行物质的组装、分析与检测技术的优化、并将药物靶向性与基因治疗等研究引入微型、微观领域,用纳米生物技术检测是否患有癌症只用几个细胞。 关键词纳米技术;纳米生物学;DNA纳米技术 20世纪80年代才开始研究的纳米技术在90年代获得了突破性进展。最近美国《商业周刊》列出了21世纪可能取得重大突破的三个领域:一是生命科学和生物技术;二是从外星球获取能源;三是纳米技术。所谓纳米技术(Nanotechnology)是指在小于100nm的量度范围内对物质和结构进行制造的技术,其实就是一种用单个原子、分子制造物质的科学技术〔1〕。纳米技术在新世纪将推动信息技术、生物医学、环境科学、自动化技术及能源科学的发展,将极大的影响人类的生活,衣、食、住、行、医疗等方面。本文将围绕纳米技术给21世纪的生物医学可能带来影响作一概述。 1纳米生物学的研究对象 有人把在纳米尺度(水平)上研究生命现象的生物学叫做纳米生物学。纳米结构通常指尺寸在1nm~100nm范围的微小结构。1纳米等于10-9m,即1m的十亿分之一。我们知道,细胞具有微米(10-6m)量级的空间尺度,生物大分子具有纳米量级的空间尺度。在它们之间的层次是亚细胞结构,具有几十到几百纳米量级的空间尺度。显然在纳米水平上研究生命现象的纳米生物学,它的研究对象就是亚细胞结构和生物大分子体系。由于纳米微粒的尺寸一般比生物体内的细胞、红细胞小得多,这就为生物学研究提供了一个新的研究途径即利用纳米微粒进行细胞分离、疾病诊断,利用纳米微粒制成特殊药物或新型抗体进行局部定向治疗等。2纳米技术在生物医学方面的应用 2.1测量和控制生物大分子 纳米技术与扫描探针显微镜(Scanningprobemicroscopes,SPMs)相结合,便具有了观察、制造原子水平物质结构的能力,为生物医学工作者提供了直接在亚细胞水平或分子水平研究生命现象的应用前景〔2,3〕。扫描探针显微镜是指利用扫描探针的显微技术,常用的有扫描隧道显微镜(STM,它是ScanningTunnelingMicroscope的简称)和原子力显微镜(AFM,它是AtomicForceMicroscope的简称)。STM的原理是利用电子隧道效应测量探针和样品间微小的距离,又将探针沿样品表面逐点扫描,从而得到样品表面各点高低起伏的形貌。当探针和样品表面间的距离非常近达到一个纳米时,同时在它们之间施加适当电压,在它们之间会形成隧道电流,这就是电子隧道效应。这时探针尖端便吸引材料的一个原子过来,然后将探针移至预定位置,去除电压,使原子从探针上脱落。如此反复进行,最后便按设计要求“堆砌”出各种微型构件。 Hafner(1999)等〔4〕报道了碳纳米管的制备方法,整个过程如同用砖头盖房子一样。隧道电流的大小和探针与表面间的距离有关,因此通过隧道电流的测量可以确定这距离的值。STM 观测的样品要有导电性,用AFM就没有这种要求。AFM的原理是用探针的针尖去“触摸”样品表面,将探针沿表面逐点扫描,针尖随着样品表面的高低起伏作上下运动。用光学方法精确测量针尖这种上下运动,就可以得到样品表面高低起伏的图像。用AFM还可以测量分子间作用力的大小以及不同环境中分子间作用力大小的变化。扫描探针显微镜又是操作生物大分子的工具。用它们可以扭转或拉伸生物大分子,从而研究单个生物大分子的运动学特性。STM和AFM在平行于样品表面的方向上的空间分辨率达到0.1nm。已知样品中原子间距离的量级是0.1nm,所以STM和AFM的空间分辨率达到了分辨单个原子的水平。它的时间分辨率取决于要扫描的样品范围和像素点数目,用它们测量固定观测点时,时间分辨率达到ns甚至ps,扫描一幅面积是10nm×10nm的样品时,中等象素密度的时间分辨率约是1秒〔5〕。显而易见,利用STM、AFM等技术,好象使用“纳米笔”一样,可以操纵原子分子,在纳米石

纳米技术在医学领域的应用和重要影响

纳米技术在医学领域的应用和重要影响 摘要:纳米技术与生物医学的结合, 为医学界提供了全新的思路和便利, 纳米材料在医学领域的应用取得了显著效果。随着纳米材料在生物医学领域更广泛的应用, 临床医疗将变得节奏更快、效率更高, 诊断、检查更准确, 治疗更有效, 人们的生命安全将得到更大的保障。关键词:纳米材料,纳米技术,生物医学,应用,重要影响 “纳米(nm)”是一种度量长度的单位,一个纳米是百万分之一毫米,也就是十亿分之一米,大约相当于45个原子串起来的长度。根据2011年10月18日欧盟委员会通过的纳米材料的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1nm-100nm之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。简单来说就是,一种由具有尺寸在100nm以下的微小结构的固体颗粒组成的材料。纳米技术是指一种在单个原子与分子层次上对物质的数量、种类和结构形态等进行精确的识别、观测和控制的技术,并在纳米尺度(1—100nm)内研究物质的特性和相互作用来达到创制新物质的高新技术。这项技术是在20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新兴学科,它具有创造新生产工艺、新物质和新产品的巨大潜能和前景,它将在21世纪掀起一场新的产业革命。 科技快速发展的今天, 科学技术的各个领域相互融合、渗透,其中纳米科技的发展促进了高新技术一体化的进程, 引起了科技界的高度重视。我国著名科学家钱学森曾经预言“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命, 从而将是21 世纪的又一次产业革命”。纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。 美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域迅猛发展。随着纳米技术在癌症诊断和生物分子追踪的应用,医学纳米技术已经被列为美国优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断,2004年,美国国立卫生研究院所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标。结合纳米靶向药物定向治疗技术的发展,人类彻底战胜癌症已为时不远! 目前,纳米材料在生物医学领域已得到了广泛应用,其在检测诊断、药物治疗以及抗菌等方面都取得到了很好的发展,发挥着都不容忽视的作用。 一:生物医学起源于诊断, 没有准确的诊断就不可能有对症的预防和治疗。目前随着科技的发展, 生物医学诊断得到了前所未有的发展, 各种检验诊断手段、仪器五花八门, 在其迅猛发展的过程中纳米材料起到了关键作用。

生物医学中纳米材料的作用

生物医学中纳米材料的作用 1用于生物医学的纳米材料 1·1细胞分离用纳米材料 病毒尺寸一般约80~100nm,细菌为数百纳米,而细胞则更大,所以利用 纳米复合粒子性能稳定、不与胶体溶液反应且易实现与细胞分离等特点,可将纳米粒子应用于诊疗中实行细胞分离。该方法同传统方法相比,具有操作简便、费用低、快速、安全等特点。美国科学家用纳米粒子 已成功地将孕妇血样中微量的胎儿细胞分离出来,从而简便、准确地判 断出胎儿细胞中是否带有遗传缺陷。 1·2纳米材料用于细胞内部染色 利用不同抗体对细胞内各种器官和骨骼组织的敏感水准和亲和力的显 著差异,选择抗体种类,将纳米金粒子与预先精制的抗体或单克隆抗体 混合,制备成多种纳米金/抗体复合物。借助复合粒子分别与细胞内各 种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下表现某 种特征颜色(如10nm的金粒子在光学显微镜下呈红色),从而给各种组 合“贴上”了不同颜色的标签,因而为提升细胞内组织的分辨率提供了 一种急需的染色技术。 1·3纳米药物控释材料 纳米粒子不但具有能穿过组织间隙并被细胞吸收、可通过人体最小的 毛细血管、甚至可通过血脑屏障等特性,而且还具有靶向、缓释、高效、低毒且可实现口服、静脉注射及敷贴等多种给药途径等很多优点,因而 使其在药物输送方面具有广阔的应用前景。德国科学家将铁氧体纳米 粒子用葡萄糖分子包覆,在水中溶解后注入肿瘤部位,使癌细胞和磁性 纳米粒子浓缩在一起,通电加热至47℃,可有效杀死肿瘤细胞而周围正 常组织不受影响;挪威工科大学的研究人员,利用纳米磁性粒子成功地 实行了人体骨骼液中肿瘤细胞的分离,由此来实行冶疗;SharmaP等1用聚乙烯吡咯烷酮包覆紫松醇制得的纳米粒子抗癌新药,体内实验以荷瘤

973项目申报书——2009CB930100-纳米生物材料的合成、组装及在生物医学领域的应用

项目名称:纳米生物材料的合成、组装及在生物医 学领域的应用 首席科学家:李峻柏国家纳米科学中心 起止年限:2009.1至2013.8 依托部门:中国科学院

一、研究内容 拟解决的关键科学问题 本项目研究的主要关键科学问题是:通过模拟生物膜的结构与功能,利用分子组装技术制备具有纳米孔隙的生物材料,研究它们在生物体中的兼容性,作为药物支架如何担载和释放药物及在体外的稳定性,确定其作用机理和影响因素;探索组装的生物材料在生物体中的状态与排除功能,建立合成体系与生物体之间的联系与作用机制,研究其代谢过程,具体地: 1.通过模拟生物膜(生物相容的磷脂/蛋白质复合双层囊泡)研究和揭示细胞膜 和其它生物膜的精细结构、生物功能及其相互关系; 2.分子组装,纳米模板合成和气/液界面相分离等组装单元的结构特征、组装过 程、驱动力、影响因素和调控技术; 3.处于这些组装体中的生物活性物质的状态和功能评价,它们与组装体之间的 相互作用和影响,寻求保持其生物活性的措施; 4.这些具有生物功能的组装体进入人体后的有益效果、作用机制、代谢过程和 可能危害。 考虑到各课题研究的具体对象、问题和目标不同,除上述共同的关键科学问题外,还各有其特殊的科学和技术问题要解决: 1.纳米孔隙的药物载体:构造生物兼容、生物降解的多功能化胶囊,包裹不同 类型药物的最佳方法及药物的缓释;生物界面化胶囊及包裹药物胶囊的靶向释放,不同的类型中空胶囊作为药物和基因载体;智能化微胶囊的构造以及可控性研究;负载药物微胶囊的体外细胞试验及动物试验;多功能微胶囊用于药物载体的包裹和释放机理研究。 2.红血球替代物 聚合物/血红蛋白纳米胶束(胶囊):官能化乳酸共聚物的 设计与合成,保证在水环境中实现自组装形成纳米胶束或胶囊;引入含有易与血红蛋白反应的官能团,保证反应不影响血红蛋白中的血红素活性中心; 反应基团有足够数量,保证组装体中有足够的血红蛋白浓度;构筑聚合物/

纳米材料在医学上的应用

纳米材料在医学上的应用 ---疾病的检测与治疗因其在科学研究与临床应用,特别是生物医药方面潜在的重要应用前景,纳米科技已发展 成为一个新兴的多学科交叉领域,吸引了人们更多的研究兴趣。 一应用于生物医学中的纳米材料的主要类型及其特性 纳米碳材料、纳米高分子材料、纳米复合材料、磁性纳米颗粒等。 二.工作原理 A.纳米碳材料 主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等碳纳米管有 独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机 制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增 强剂、电子探针(如观察蛋白质结构的AFM探针等)或显示针尖和场发射。纳米碳 纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源, 氢气为载体,在873 K~1473 K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称DLC)是一种具有大量金刚石 结构C—C键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形 成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其 他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。 B.纳米高分子材料 纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传 递和药物控释载体,以及免疫分析、介入性诊疗等方面。 C.纳米复合材料 目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性 的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智 能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复 和移植等许多方面具有广阔的应用前景。国外已制备出纳米ZrO2增韧的氧化铝复合 材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表 明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外, 纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对 正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构 通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。 此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。 D.磁性纳米材料 铁氧体纳米颗粒一般由三种主要成分构成:含铁的核,聚合物涂层和功能部分。这 种具有生物降解功能的颗粒可被设计制备成具有超顺磁性的纳米粒子,这更有利于 其在生物检测治疗方面的应用。另外,通过在其表面连接不同功能基团的配体,可 在很大程度上扩大其检测诊断的范围。 三.应用方向 1纳米粒子用作药物载体

纳米技术在医学领域的应用和重要影响

纳米技术在医学领域的应用 和重要影响 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

纳米技术在医学领域的应用和重要影响 摘要:纳米技术与生物医学的结合, 为医学界提供了全新的思路和便利, 纳米材料在医学领域的应用取得了显著效果。随着纳米材料在生物医学领域更广泛的应用, 临床医疗将变得节奏更快、效率更高, 诊断、检查更准确, 治疗更有效, 人们的生命安全将得到更大的保障。 关键词:纳米材料,纳米技术,生物医学,应用,重要影响 “纳米(nm)”是一种度量长度的单位,一个纳米是百万分之一毫米,也就是十亿分之一米,大约相当于45个原子串起来的长度。根据2011年10月18日欧盟委员会通过的纳米材料的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1nm-100nm之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。简单来说就是,一种由具有尺寸在100nm以下的微小结构的固体颗粒组成的材料。纳米技术是指一种在单个原子与分子层次上对物质的数量、种类和结构形态等进行精确的识别、观测和控制的技术,并在纳米尺度(1—100nm)内研究物质的特性和相互作用来达到创制新物质的高新技术。这项技术是在20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新兴学科,它具有创造新生产工艺、新物质和新产品的巨大潜能和前景,它将在21世纪掀起一场新的产业革命。 科技快速发展的今天, 科学技术的各个领域相互融合、渗透,其中纳米科技的发展促进了高新技术一体化的进程, 引起了科技界的高度重视。我国著名科学家钱学森曾经预言“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命, 从而将是21世纪的又一次产业革命”。纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。 美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域迅猛发展。随着纳米技术在癌症诊断和生物分子追踪的应用,医学纳米技术已经被列为美国优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断,2004年,美国国立卫生研究院所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、

相关文档
最新文档