基于单片机的RS-C串行通信接口设计

基于单片机的RS-C串行通信接口设计
基于单片机的RS-C串行通信接口设计

基于单片机的RS-232C串行通信接口设计

课程设计任务书

课程名称专业综合课程设计

院(系)专业

课程设计时间: 2011 年1 月3 日至2011 年1 月14 日课程设计的内容及要求:

利用WAVE仿真器、8051 单片机开发基于单片机的RS-232C串行通信系统,实现单片机与PC机的通讯,要求实现数据收发功能.

具体要求如下:

(1)按以上要求制定设计方案,并绘制出系统工作框图;

(2)按要求设计单片机系统,给出电路原理图;

(3)用仿真器及单片机系统和PC机进行程序设计与调试;

(4)接受PC机发送数据,并将其会发给PC机;

指导教师年月日

负责教师年月日

学生签字年月日

目录

0. 前言

(1)

..........

1. 总体方案设计 (2)

2. 硬件电路的设计 (2)

2.1单片机介绍 (2)

2.2串口基本结构介绍 (3)

2.3电平转换电路设计 (4)

2.4整体电路设计 (5)

3 软件设计 (6)

3.1串行通信的实现 (6)

3.2流程框图 (6)

4.联合调试 (7)

5. 课设小结及进一步设想 (7)

参考文献 (9)

附录I 元件清单 (10)

附录II 整体电路图 (11)

附录III 源程序清单 (12)

杨毅沈阳航空航天大学自动化学院

摘要:随着计算机技术特别是单片机技术的发展,单片机的应用领域越来越广泛,单片机在工业控制、数据采集以及仪器仪表自动化等许多领域都起着十分重要的作用。但在实际应用中,在要求响应速度快、实时性强、控制量多的应用场合,单个单片机往往难以胜任,这时使用多个单片机接合PC 机组成分布式系统是一个比较好的解决方案。这样,单片机的数据通信技术就变得十分重要,在某种程度上说,掌握了单片机的数据通信技术也就是掌握了单片机的核心应用技术。现在单片机及PC机在结构、性能和经济上为实现远程串行通信提供了很好的条件,串行通信是指按照逐位顺序传递数据的通信方式,由于仅需三根传输线传送信息且通信距离相对较远,所以在控

制领域的现场监测、分布控制等场合有着重要的应用

价值。

关键字:单片机、PC机、串行口、通信

0. 前言

在各种单片机应用系统的设计中,如智能仪器仪表、各类手持设备、GPS接收器等,常常遇到计算机与外界的信息交换,即通讯。通信的基本方式可分为并行通信与串行通信两种。

并行通信是将组成数据的各位同时传送,并通过并行门(如P1口等)来实现。在并行通信中,数据传送线的根数与传送的数据位数相等,传送数据速度快,但所占用的传输线位数多。因此并行通信适合短距离通信。

串行通信是指数据一位一位地按顺序传送。串行通信通过串行口来实现。在全双工的串行通信中,仅需要一根发送线和一根接收线,串行通信

可大大节省传送线路的成本,但数据传送速度慢。因此,串行通信适合于远距离通信。

目前,在许多单片机应用系统中,上、下位机分工明确,作为下位机核心器件的单片机往往只负责数据的采集和通信,而上位机通常以基于图形界面的Windows 系统为操作平台,为便于查询和保存数据,还需要数据库的支持,如在测控系统中使用SQL Server数据库。

现阶段这种应用的核心便是数据通信,它包括单片机和上位机之间、客户端和服务器之间以及客户端和客户端之间的通信,而在单片机和上位机之间的数据通信则是整个系统的基础。单片机和PC的通信是通过单片

机的串口和PC机之间的硬件连接实现。鉴于PC 机具有强大的监控和管理功能,单片机则具有快速以及容易控制的特点,在数据量不大、传输要求不

高的情况下,一般都采用给PC机配置的RS-232标准串行接口COM1、COM2等

1. 总体方案设计

PC 机与单片机之间可以由RS-232C、接口相连,在PC机系统内部装

有异步通信适配器,利用它可以实现异步串行通信。该适配器的核心元件是可编程的Intel 8250 芯片,它使PC 机有能力与其他具有标准的RS-232C 接口的计算机或设备进行通信。而51 单片机本身具有一个全双工的串行

口,因此只要配以电平换换的驱动电路、隔离电路就可以组成一个简单的通信接口。同样,PC机和单片机之间的通信也分为双机通行与多机通信。

数据通信的硬件上采用3 线制,将单片机和PC串口的3 个引脚(TXD、RXD、GND)分别连在一起,即将PC机和单片机的发送数据线TXD 与接收数据线RXD交叉连接,两者的地线GND 直接相连,而其他信号线如握手信号线均不用,采用软件握手的方式。这样既可以实现预定的任务又可以简化电路设计。

PC机和单片机最简单的连接时零调制三线经济系。这是进行全双工通

信所必需的最少线路,因为51 单片机输入、输出电平为TTL电平,但由于单片机的TTL逻辑电平和RS-232的电气特性完全不同,RS-232的逻辑0 电平规定为+5~+15V之间,逻辑1 电平为-5~-15V之间,因此在将PC 机和单片机的TXD和RXD交叉连接时必须进行电平转换,这里我选用的是MAX232 电平转换芯片。其原理框图为图1

图1 串口通信原理图2. 硬件电路的设计

2.1 单片机介绍

标准型89 系列单片机是与MCS-51系列单片机兼容的。在内部含有

4KB 或8KB可重复编程的Flash存储器,可进行1000 次擦写操作。全静态工作为0-33MHz ,有3 级程序存储器加密锁定,内含有128-256 字节的RAM、32条可编程的I/O 端口、2-3个16位定时器/计数器,6-8级中断,此外有通用串行接口、低电压空闲模式及掉电模式。AT89C51相当于将8051 中的4KB ROM换成相应数量的Flash 存储器,其余结构、供电电压、引脚

图2 AT89C51芯片引脚

2.2串口基本结构介绍单片机的串行口的功能是与外部器件进行串行数据通信。串行口电路也称为通用异步收发器(UART)。从原理上说,一个

UART包括发送器电路、接收器电路和控制电路。8051 单片机的UART已集成在其中,构成一个全双工串口,全双工通信是指同时可以作双向通信,两个即可同时发送、接收,又可同时接收、发送。其示意图如图3 所示。这个口即可以实现串行异步通信,也可以作为同步移位寄存器使用。

图3 全双工通信示意图8051的串行口通过引脚RXD(P3.0串行口数据接收端)和引脚TXD(P3.1 串行口数据发送端)与外部设备进行串行通信。其中共有两个串口双缓冲寄存器(SBUF),一个是发送寄存器,一个

是接收寄存器,以便8051 能以全双工方式进行通信。串行发送时,从片内总线向发送SBUF写入数据;串行接收时,从接收SBUF向片内总线读出

数据。它们都是

在接收方式下,串行数据通过引脚RXD进入,由于在接收寄存器之前还有移位寄存器,从而构成了串行接收的双缓冲结构,以避免在数据接收过程中出现帧重叠错误,即在下一帧数据来时,前一帧数据还没有走。

在发送方式下口,串行数据通过引脚TXD发出。与接收数据情况不同,

发送数据时,由于CPU是主动的,不会发生帧重叠错误,因此发送电路就不需要双缓冲结构,这样可以提高数据发送速度。

2.3电平转换电路设计和其他的单片机器件一样,作为单片机的标准外围电路,串口的电平转换也有专用的芯片,但也可以使用三极管自行调整电平匹配。本次设计我主要采用专用芯片进行电平转换的方法。

目前较为广泛的是使用集成电路转换器件,如MC1488、SN75150 芯

片可完成TTL电平到EIA 电平的转换,而MC1489、SN75154可实现EIA 电平到TTL电平的转换。MAX232芯片可完成TTL和RS-232C的双向电平转换。在这里我采用的芯片是MAX232。如图

4

图4 电平转换芯片MAX232

在电气特性上RS-232C采用负逻辑,要求高、低两信号间有较大的幅度,标准规定为:逻辑‘ 1':-5~-15V ,逻辑‘ 0':+5~+15V 。而单片机的信号电平与TTL电平兼容,逻辑1大于+2.4V,逻辑0为0.4V以下。很显然,RS-232C信号电平与TTL电平不匹配,为了实现两者的连接,必须进行电平转换。MAX232C为单一+5V供电,内置自升压电平转换电路,一个芯片能同时完成发送转换和接收转换的双重功能。MAX232 的引脚主要为5 个部分:

1)外接电容:有5 个外接电容、进行电压匹配和电源去耦(2)TTL的输入:电路TTL电平的输入引脚——11 和10 引脚,连接单片机的TXD 输出端口。

(3)TTL的输出:电路TTL电平的输出引脚——12 和9 引脚,连

接单片机的RXD输出端口。

(4)RS-232的输入:两路RS-232电平的输入引脚——13 和8 引脚,连接RS-232的TXD的输出端口。

(5)RS-232的输出:两路RS-232电平的输出引脚——14 和7 引脚,连接RS-232的RXD的输出端口。

通过MAX232 的TTL和RS-232 的输入/输出端口,自动地调节了单片机串口的TTL 电平信号和RS-232的串行通信信号的电平匹配。电平转换芯片与单片机的连接电路如下:地址分配和连接:只列出和系统相关的、关键部分的单片机与各个模块管脚的连接和相关的地址分配。

MAX232的11引脚:MAX232 的TTL电平输入引脚,连接单片机的TXD,TTL串口输入信号。MAX232 的12 引脚:MAX232 的TTL电平输出引脚,连接单片机的RXD、TTL串口输入信号。MAX232的14引脚:MAX232 的RS-232电平输出引脚,连接RS-232的RXD,RS-232的串口输入信号。

MAX232 的13 引脚:MAX232 的RS-232电平输入引脚,连接RS-232 的TXD,RS-232的串口输出信号。MAX232 和单片机串口连接的电路如图5。

图5 MAX232 和单片机串口连接电路图

2.4整体电路设计

PC机和单片机最简单的连接时零调制三线经济系。这是进行全双工通信所必需的最少线路,因为51 单片机输入、输出电平为TTL电平,但由于单片机的TTL逻辑电平和RS-232的电气特性完全不同,RS-232的逻辑

0 电平规定为+5~+15V之间,逻辑1电平为-5~-15V之间,因此在将PC 机和单片机的TXD和RXD交叉连接时必须进行电平转换,这里我选用的是MAX232 电平转换芯片。将PC机键盘的输入发送给单片机,单片机收到PC 机发来

的数据后,会送统一数据给PC机。并在屏幕中显示出来。只要屏幕中显示出来的字符与所键入的字符相同,说明二者之间的通信正常。总串行通信图为图6 所示

图6 串行通信电路图

3 软件设计

将PC 机键盘的输入发送给单片机,单片机收到PC 机发来的数据后,会送统一数据给PC机。并在屏幕中显示出来。只要屏幕中显示出来的字符与所键入的字符相同,说明二者之间的通信正常。3.1 串行通信的实现(1)串行口工作于方式1;用定时器1 产生9600bit/s 的波特率,工作于方式2。(3)通信协议:PC机首先发送数据,单片机接收到之后返回一个相同数据到PC机表示通信正常。

(4)通信过程使用第九位发送奇偶校验位。

(5)从机接收到一个数据后,立即进行奇偶校验,若数据没有错误,则返回00H,否则返回FFH。

(6)主机发送一个数据后,等待从机返回数据;若为00H,则继续发

送下一个数据,若为FFH,则重新发送数据。

3.2 流程框图

(1)51 单片机通过中断方式接收PC机发送数据,并回送。其程序

流程图,如图7

所示:

图7 发送端程序流程图

4.联合调试

在protues 上进行仿真实验。首先使用Keil uVsion 2 将编写完成的程序编译生成HEX文件,将HEX文件烧录到两片单片机中,进行仿真实验,可以看到,将PC机键盘的输入发送给单片机,单片机收到PC机发来的数据后,会送统一数据给PC机。PC机端已将发送的数据通过单片机回发过来能完整的显示出来。

5. 课设小结及进一步设想

单片机与PC机串行通信系统的设计告一段落,该系统的开发是一项非常有价值的项

为了开发通信系统,选择8051 单片机,必须掌握单片机控制系统硬件电路的设计,如复位电路和时钟电路等的设计,另外对汇编语言的灵活运用是少不了的,如单片机中断、定时器和串行口的汇编语言编程,而对单片机的串口知识深刻的理解下,确定以定时器T1的工作方式2 作为波特率发生器是一个关键的,计算机方面,首先是RS-232C接口,RS-232C 接口是最为常用的、应用最为广泛的串行接口标准,大量的集成设备、工业产品都提供了RS-232C接口,因此单片机应用系统的设计中,RS-232C 通信设计是十分重要的。51 兼容单片机通常都自带一个标准UART 端口,

这个端口用过电平转换电路就可以构成一个标准的RS-232C接口,并且与

计算机的接口相匹配,运用RS-232C连接的最简单形式:3 线制,将单片

机与PC机进行硬件连接。其中由于单片机系统使用的是TTL电平,单片

机中的串口输出的信号也是如此,但是串行通信中使用的RS-232C通信协议,二者的电平并不相同,在和单片机进行通信时,还需要有一定的外围电路的配合,使得单片机的通信电平和标准的串行通信协议相匹配。这一点用MAX232 芯片进行处理。以上所形成的通信系统的原理方案,便是本系统的硬件电路的设计依据。

接着到了系统软件的设计部分,一个完整的单片机系统只有硬件还不能工作,必须有软件来控制整个系统的运行,PC机部分的串口通信软件开发,采用的是VB的MSComm控件来实现串行通信,这一部分,我编制出了利用文本框接受和发送数据的界面,其中对如何接受单片机发送的16 进制代码和向单片机发送数据,是我做的不足的地方,采用的编程方法是正确的,但只形成了基本框架,不足的是不能很好的对收发数据进行代码处理,而这一部分,我认为应该单独作为一个课题进行研究。开发出强大的串口通信软件,鉴于VB 是一种弱字符语言,可以考虑用VC++等语言来开发,目的是使传输的数据不受任何限制,使通信系统更容易实现。而单片机的汇编程序方面,我一方面编写出了单片机自动发送和按键发送数据的程序,另一方面编写出了单片机查询接受数据和中断接受数据的程序,并在AT89C51单片机试验开发板上进行了测试,都达到了很好的效果,这也是让我满意的一部分。

最后,在硬软件设计完毕后,最重要的一步是对系统的调试,而对于可能出现的问题,需要从软件和硬件两个方面进行考虑,这一阶段需要大量的测试程序对系统等各个部分进行分别的测试,才能找到问题的所在,并进行

针对性地修改和完善,而最终目的是使软件和硬件能够很好的配合,完成预定的功能,再在实际的环境中对开发出来的系统进行考验,并随时对产生的问题进行处理,我认为这一步很费工夫,也存在着许多困难,但开发出成功的单片机系统,这一步是必经阶段,只有在这一阶段,多摸索,多探索,才能使自己的能力有所突破与提高。随着我一步一步做我的论文和设计,我才发现自己能力的不足与知识的贫乏,这是需要在后续的学习中,持续积累与拼搏的。

[1] 赵茂泰.智能仪器原理及应用.北京: 电子工业出版社,2004.7

[2]张毅刚,刘杰.MCS—51 单片机原理及应用.哈尔滨: 哈尔滨工业大学出版社,2004.6

[3]何立民.单片机应用技术选编.北京: 北京航天航空大学出

版,2002.5

[4]张军,梅丽凤.单片机原理接口技术.北京交通大学出版社,2006.5

[5]张婧武,周灵彬.单片机系统的PROTEUS设计与仿真.北京: 电工出版社,2007.4

[6]周佩玲,彭虎.微机原理与接口技术.北京: 电子工业出版

社,2005.4

[7]李群芳,张士军.单片微型计算机与接口技术.北京: 电子工业出版社,2008.5

附录I 元件清单

附录II 整体电路图

附录III 源程序清单

START: MOV SP,#60H

MOV SCON,#01010000B ;设定串行方式

;8 位异步,允许接收

MOV P1,00H

MOV TMOD,#20H ;设定计数器1 为模式2

ORL PCON,#10000000B ;波特率加倍

MOV TH1,#0F3H ;设定波特率为4800

MOV TL1,#0F3H

SETB TR1 ;计数器开始计数

AGAIN: JNB RI,$ ;等待接收完成

CLR RI

MOV A,SBUF ;接收数据送缓存

PUSH ACC

CJNE A,#30H,SET1 ;将数据0~9的ASCII码转换为数字0~9,其余字符不变SJMP SET3

SET1: JC SET3

CJNE A,#39H,SET2

SJMP SET3

SET2: JNC SET4

CLR C

SET3: SUBB A,#30H

SET4: MOV P1,A

MOV SBUF,A ;发送接收到的数据JNB TI,$ ; 等待发送完成CLR TI

SJMP AGAIN

END

单片机双机之间的串行通信设计

专业方向课程设计报告 题目:单片机双机之间的串行通信设计

单片机双机之间的串行通信设计 一.设计要求: 两片单片机利用串行口进行串行通信:串行通信的波特率可从键盘进行设定,可选的波特率为1200、2400、4800和9600bit/s。 二、方案论证: 方案一:以两片51单片机作为通信部件,以4*4矩阵键盘作为数据输入接口,通过16个不同键值输入不同的信息,按照51单片机的方式3进行串口通信,从机采用中断

方式接收信息并按照通信协议改变波特率或者用I/O口输出、CD4511译码、数码管显示相关数据,整个系统的软件部分采用C语言编写。 方案二:整个系统的硬件设计与方案一样,但是通信方式采用方式一进行通信,主从机之间的访问采用查询方式,数据输出直接由单片机的译码程序输出译码数据,同时软件编写采用汇编语言。 两种方式从设计上来说各有特色,而且两种方式都应该是可行的。方案一中按照方式三通信可以输出九位数据而方式一只能输出八位数据,但就本题的要求来说方式一就可以了。主从机之间的交流采用中断方式是一种高效且保护单片机的选择,但是相比之下本人对查询方式的理解更好一些。数码管的显示若采用CD4511译码则直接输出数据就可以了,但是这样会增加硬件陈本,而且单片机的资源大部分都还闲置着,所以直接编写一段译码程序是比较好的做法。另外在软件编写上,采用C语言在后续设计中对硬件的考虑稍少一些,换言之采用汇编可以使自己对整个通信过程及单片机的部分结构有更清晰地认识所以综合考虑采用方案二。 三、理论设计: 采用AltiumDesigner绘制的原理图(整图)

本系统主要包括五个基本模块:单片机最小系统(包括晶振电路、电源、复位电路及相关设置电路)、4*4矩阵键盘、功能控制电路、数据显示电路、波特率更改指示电路。 本设计的基本思路是通过控制口选择将要实现的功能,然后矩阵键盘输入数据,单片机对数据进行处理(加校验码、设置功能标志位),然后与从机握手,一切就绪之后后就开始发送数据,然后从机对接收数据校验,回发校验结果,主机根据校验结果进行下一步动作,或者重发,或者进入下一 数据的发送过程,然后按照此过程不段循环,直到结束。 晶振电路提供脉冲,加上复位电路,将 EA接入高电电平选择片内程序存储器。 这是一个单片机能够工作的最低设置。

51单片机与PC串口通讯

目录 第1章需求分析 ............................................................................................................................ - 1 - 1.1课题名称 (1) 1.2任务 (1) 1.3要求 (1) 1.4设计思想 (1) 1.5课程设计环境 (1) 1.6设备运行环境 (2) 1.7我在本实验中完成的任务 (2) 第2章概要设计 ............................................................................................................................ - 2 - 2.1程序流程图 (2) 2.2设计方法及原理 (3) 第3章详细设计 ............................................................................................................................ - 3 - 3.1电路原理 (3) 3.1.1STC89C52芯片 ............................................................................................................. - 3 -3.2串口通信协议 (4) 3.3程序设计 (5) 3.3.1主程序模块 .................................................................................................................... - 5 - 3.3.2串口通讯模块 ................................................................................................................ - 6 - 3.3.3控制部分文件 ................................................................................................................ - 8 - 3.3.4公共部分模块 .............................................................................................................. - 11 -3.4电路搭建 (12) 3.4.1电路原理图 .................................................................................................................. - 12 -第4章上位机关键代码分析 ...................................................................................................... - 12 - 4.1打开串口操作 (12) 4.2后台线程处理串口程序 (15) 4.3程序运行界面 (18) 第5章课程设计总结与体会 ...................................................................................................... - 19 -第6章致谢 .................................................................................................................................. - 19 -参考文献........................................................................................................................................... - 19 -

C51单片机和电脑串口通信电路图

C51单片机和电脑串口通信电路图与源码 51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通讯。进行串行通讯时要满足一定的条件,比如电脑的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。我们采用了三线制连接串口,也就是说和电脑的9针串口只连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。这是最简单的连接方法,但是对我们来说已经足够使用了,电路如下图所示,MAX232的第10脚和单片机的11脚连接,第9脚和单片机的10脚连接,第15脚和单片机的20脚连接。 串口通讯的硬件电路如上图所示 在制作电路前我们先来看看要用的MAX232,这里我们不去具体讨论它,只要知道它是TTL和RS232电平相互转换的芯片和基本的引脚接线功能就行了。通常我会用两个小功率晶体管加少量的电路去替换MAX232,可以省一点,效果也不错,下图就是MAX232的基本接线图。

按图7-3加上MAX232就可以了。这大热天的拿烙铁焊焊,还真的是热气迫人来呀:P串口座用DB9的母头,这样就可以用买来的PC串口延长线进行和电脑相连接,也可以直接接到电脑com口上。

为了能够在电脑端看到单片机发出的数据,我们必须借助一个WINDOWS软件进行观察,这里我们利用一个免费的电脑串口调试软件。本串口软件在本网站https://www.360docs.net/doc/7e8911591.html,可以找到 软件界面如上图,我们先要设置一下串口通讯的参数,将波特率调整为4800,勾选十六进制显示。串口选择为COM1,当然将网站提供的51单片机实验板的串口也要和电脑的COM1连接,将烧写有以下程序的单片机插入单片机实验板的万能插座中,并接通51单片机实验板的电源。

基于单片机的串口通信模块设计

1 绪论 1.1 研究背景 通信是指不同的独立系统利用线路互相交换数据,它的主要目的是将数据从一端传送到另一端,实现数据的交换。在现代工业控制中,通常采用计算机作为上位机与下层的实时控制与监测设备进行通讯。现场数据必须通过一个数据收集器传给上位机,同样上位机向现场设备发命令也必须通过数据收集器。串行通信因其结构简单、执行速度快、抗干扰能力强等优点,已被广泛应用于数据采集和过程控制等领域。 计算机与外界的信息交换称为通信。基本的通信方式有并行通信和串行通信两种。串行通信是指一条信息额各位数据被逐位按顺序传送的通信方式。串行通信的特点是:数据位传送,按位顺序进行,最少只需要一根传输线即可完成,成本低但传送速度快,串行通信的距离可以从几米到几千米。 随着计算机技术尤其是单片微型机技术的发展,人们已越来越多地采用单片机来对一些工业控制系统中如温度、流量和压力等参数进行监测和控制。PC机具有强大的监控和管理能力,而单片机则具有快速及灵和的控制特点,通过PC 机的RS-232串行接口与外部设备进行通信,是许多测控系统中常用的一种通信解决方案。而随着USB接口技术的成熟和使用的普及,由于USB 接口有着 RS-232(DB-9)串口无法比拟的优点,RS-232(DB-9)串口正在逐步地为USB 接口所替代。而在现在的大多数笔记本电脑中,出于节省物理空间和用处不大等原因,RS-232(DB-9)串口已不再设置,这就约束了基于RS-232(DB-9)串口与PC 机联络的单片机设备的使用围。当前USB接口逐步取代RS-232(DB-9)串口已是大势所趋,单片机同计算机的USB通信在实际工作中的应用围也将越来越广。本文所介

51单片机与PC串口间通讯设计与分析

51单片机与PC串口间通讯设计与分析 摘要:51单片机是一种集CPU,RAM,FLASH ROM,I/O接口和定时中断系统于一体的微型计算机。只要有外加电源和晶体振荡器就可以独立完成对数字信号的算术运算,逻辑控制,串行通信等功能。由于单片机具有体积小,重量轻,功耗低,功能强,价格低,可靠性好等诸多优点,因而在仪器仪表,家用电器,数据采集等一些嵌入式控制领域被广泛应用。 当需要处理较复杂数据或需要对多个采集数据进行综合处理以及需要进行集散控制时,单片机的算术运算和逻辑运算能力显的不足,这时往往需要借助计算机系统。将单片机采集的数据通过串行口传给PC机,由PC机高级语言或数据库语言进行处理,或者实现PC 机对远程单片机进行控制。因此,实现单片机与PC机之间的远程通信更具有实际意义。 关键词:单片机、PC机、发送数据、接收数据串行通信

目录 摘要------------------------------------------------------------------(1)1、绪论---------------------------------------------------------------------------(3) 1.1单片机的发展阶段-------------------------------------------------(3) 1.2单片机的发展趋势-------------------------------------------------(3) 1.3单片机的应用模式-------------------------------------------------(4) 1.4单片机与PC串口间通讯设计的应用--------------------------(5) 2、系统设计-------------------------------------------------------------------(6) 2.1设计思路-------------------------------------------------------------(6) 2.2系统组成-------------------------------------------------------------(6) 3、单元硬件电路设计-------------------------------------------------------(7) 3.1硬件的实现过程-----------------------------------------------------(7) 3.1.1 RS-232C总线标准-------------------------------------------(8) 3.2 RS-232接口电路----------------------------------------------------(9) 3.2.1 MAX-232接口电路------------------------------------------(9) 3.3 51单片机与PC机串行通信电路-----------------------------(11) 4、软件设计------------------------------------------------------------------(12) 4.1 软件设计和硬件设计的关系-----------------------------------(12) 4.2 程序设计-----------------------------------------------------------(13) 4.3程序运行后的结果------------------------------------------------(17) 5、结论-----------------------------------------------------------------------(18) 6、参看文献------------------------------------------------------------------(19)

单片机与PC机串口通讯设计

第一章串口通讯的系统组成与原理 1.1 系统组成及通讯原理 1.1.1 系统构成 一、MSP430F149功能简介: 本设计选用的主要芯片为MSP430F149,该单片机属于德州仪器公司MSP430F14X/16X FLASH 系列。该系列是一组工业级超低功耗的微控制器,运行环境温度为-40~+85 摄氏度工作电压范围 1.8~3.6V,MSP430 单片机之所以有超低的功耗,是因为其在降低芯片的电源电压及灵活而可控的运行时钟方面都有其独到之处。由于具有16位RISC(精简指令集)结构,16位寄存器和常数寄存器,MSP430 达到了最大的代码效率。数字控制的振荡器提供快速从所有低功耗模式苏醒到活动模式的能力时间少于6ms。MSP430F149有较高的处理速度,在8MHz 晶体驱动下指令周期为125 ns。另外它带有两个16 位定时器(带看门狗功能)、速度极快的8 通道12 位A/D 转换器(ADC)(带内部参考电压、采样保持和自动扫描功能)、一个内部比较器和两个通用同步/异步发射接收器、48个I/O口(均可独立控制)的微处理器结构。硬件乘法器提高了单片机的性能并使单片机在编码和硬件上可兼容[3]。这些特点保证了可编制出高效率的源程序。 二、系统构成 1、系统框图 系统构成如图1-1所示,由上位机(即工业控制计算机)、通讯接口和下位机3部分组成。上位机选用的是工控机,智能终端由单片机MSP430F149和外围传感器放大电路等构成(本设计部涉及该部分的设计)。单片机与PC 机之间通信方式为串行异步方式(UART),下位机采用中断方式进行与上位机的数据交换,上位机采用按时查询方式对各串口进行读写操作。单片机MSP430要想与PC 串口连接或者其它带有串口的终端设备连接,接口电路部分必须要进行EIA-RS-232-C 与MSP430 电平和逻辑关系的转换[4]。本设计将采用MAX3221芯片,完成3V~5V 电平与串口电平的双向转换。

基于51单片机的串口通讯系统课程设计论文

引言 人类社会已经进入信息化时代,信息社会的发展离不开电子产品的进步。单片机的出现使人类实现利用编程来代替复杂的硬件搭建电路,它靠程序运行,并且可以修改。通过不同的程序实现不同的功能,尤其是特殊的独特的一些功能,这是别的器件需要费很大力气才能做到的,有些则是花大力气也很难做到的。一个不是很复杂的功能要是用美国50年代开发的74系列,或者60年代的CD4000系列这些纯硬件来搞定的话,电路一定是一块大PCB板!但是如果要是用美国70年代成功投放市场的系列单片机,结果就会有天壤之别!只因为单片机的通过你编写的程序可以实现高智能,高效率,以及高可靠性! 单片机应用的主要领域非常广,智能化家用电器、办公自动化设备商业营销设备、工业自动化控制、智能化仪表、智能化通信产品、汽车电子产品、航空航天系统和国防军事、尖端武器等领域。 单片机应用的意义不仅在于它的广阔围及所带来的经济效益,更重要的意义在于,单片机的应用从根本上改变了控制系统传统的设计思想和设计方法。以前采用硬件电路实现的大部分控制功能,正在用单片机通过软件方法来实现。以前自动控制中的PID调节,现在可以用单片机实现具有智能化的数字计算控制、模糊控制和自适应控制。这种以软件取代硬件并能提高系统性能的控制技术称为微控技术。随着单片机应用的推广,微控制技术将不断发展完善。 电路的集成化不仅对硬件电路的设计相关,与电路的布局同样相关。印刷版的出现使得电路产品更加规,体积更小。Protel99se是一款专业的绘制电路及印刷版的软件,近年来的不断升级使得其功能更加完善,出现了Altium Designer 、Protel DXP等升级版本。

MCS-51单片机串行接口

第七章MCS-51单片机串行接口 第一节串行通信的基本概念 (一)学习要求 1.掌握串行通信的基本概念。 2. 掌握异步通信和同步通信的区别。 (二)内容提要 一:基本概念及分类 串行通信是将数据的各位一位一位地依次传送。适合于计算机之间、计算机与外部设备之间的远距离通信。 串行通信从传输方式分为: 单工方式、半双工方式、全双工方式。 从接收方式来说,串行通信有两种方式: 异步通信方式、同步通信方式。 二:串行口的功能 MCS-51单片机中的异步通信串行接口能方便地与其他计算机或传送信息的外围设备(如串行打印机、CPU终端等)实现双机、多机通信。 串行口有4种工作方式,见表7-1。方式0并不用于通信,而是通过外接移位寄存器芯片实现扩展并行I/O接口的功能。该方式又称为移位寄存器方式。方式1、方式2、方式3都是异步通信方式。方式1是8位异步通信接口。一帧信息由10位组成,其格式见图7-2a。方式1用于双机串行通信。方式2、方式3都是9位异步通信接口、一帧信息中包括9位数据,1位起始位,1位停止位,其格式见图7-2b。方式2、方式3的区别在于波特率不同,方式2、方式3主要用于多机通信,也可用于双机通信。 表7-1 (三)习题与思考题 1、什么是并行通信?什么是串行通信?各有何优缺点? 答:并行通信指数据的各位同时传输的通信方式,串行通信是指各位数据逐位顺序传输的通信方式。 2、什么是异步通信?什么是同步通信?各有何优缺点? 3、什么是波特率?某异步串行通信接口每分钟传送1800个字符,每个字符由11位组成,请计算出传送波特率。 第二节MCS-51串行接口的组成 (一)学习要求

基于51单片机的双机串行通信

机电高等专科学校2015-2016学年第1学期通信实训报告 系别:电子通信工程系 班级: xxxxxx 学号: 13xxxxxxxxx : xxxxxxx 2015年12月

基于51单片机的双机串行通信 摘要:串行通信是单片机的一个重要应用,本次课程设计就是要利用单片机来完成一个系统,实现爽片单片机床航通信,通信的结果使用数码管进行显示,数码管采用查表方式显示,两个单片机之间采用RS-232进行双击通信。在通信过程中,使用通信协议进行通信。 关键字:通信双机 一、总体设计 1设计目的 1.通过设计相关模块充分熟悉51单片机的最小系统的组成和原理; 2.通过软件仿真熟悉keil和proteus的配合使用; 3.通过软件编程熟悉51的C51编程规; 4.通过实际的硬件电路搭设提高实际动手能力。 2.设计要求: 两片单片机之间进行串行通信,A机将0x06发送给B机,在B机的数码管上静态显示1,B机将0~f动态循环发送到A机,并在其数码管上显示。 3.设计方案: 软件部分,通过通信协议进行发送接收,A机先送0x06(B机数码管显示1)给B机(B机静态显示),当从机接收到后,向B机发送代表0-f的数码管编码数组。B收到0x06后就把数码表TAB[16]中的数据送给从机。 二、硬件设计 1.51单片机串行通信功能 计算机与外界的信息交换称为通信,常用的通信方式有两种:并行通信和串行通信。51单片机用4个接口与外界进行数据输入与数据输出就是并行通信,并行通信的特点是传输信号的速度快,但所用的信号线较多,成本高,传输的距离较近。串行通信的特点是只用两条信号线(一条信号线,再加一条地线作为信号回路)即可完成通信,成本低,传输的距离较远。 51单片机的串行接口是一个全双工的接口,它可以作为UART(通用异步接受和发送器)用,也可以作为同步移位寄存器用。51单片机串行接口的结构如下:

51单片机与串口通信(含代码)

51单片机与串口通信(含代码) 串口调试 1. 发送:向总线上发命令 2. 接收:从总线接收命令,并分析是地址还是数据。 3. 定时发送:从内存中取数并向主机发送. 经过调试,以上功能基本实现,目前可以通过上位机对单片机进行实时控制。 程序如下: //这是一个单片机C51串口接收(中断)和发送例程,可以用来测试51单片机的中断接收 //和查询发送,另外我觉得发送没有必要用中断,因为程序的开销是一样的 #i nclude #i nclude #i nclude #define INBUF_LEN 4 //数据长度 unsigned char inbuf1[INBUF_LEN]; unsigned char checksum,count3 , flag,temp,ch; bit read_flag=0; sbit cp=P1^1; sbit DIR=P1^2; int i; unsigned int xdata *RAMDATA; /*定义RAM地址指针*/ unsigned char a[6] ={0x11,0x22,0x33,0x44,0x55,0x66} ; void init_serialcomm(void) { SCON=0x50; //在11.0592MHz下,设置串行口波特率为9600,方式1,并允许接收

PCON=0x00; ES=1; TMOD=0x21; //定时器工作于方式2,自动装载方式TH0=(65536-1000)%256; TL0=(65536-1000)/256; TL1=0xfd; TH1=0xfd; ET0=1; TR0=1; TR1=1; // TI=0; EA=1; // TI=1; RAMDATA=0x1F45; } void serial () interrupt 4 using 3 { if(RI) { RI=0; ch=SBUF; TI=1; //置SBUF空 switch(ch) { case 0x01 :printf("A"); TI=0;break; case 0x02 :printf("B"); TI=0;break; case 0x03 :printf("C"); TI=0;break; case 0x04 :printf("D"); TI=0;break; default :printf("fg"); TI=0;break; } }

51单片机串口通信,232通信,485通信,程序

51单片机串口通信,232通信,485通信,程序代码1:232通信 #include #define uchar unsigned char #define uint unsigned int uchar flag,a,i; uchar code table[]="i get"; void init() { TMOD=0X20; TH1=0XFD; TH0=0XFD; TR1=1; REN=1; SM0=0; SM1=1; EA=1; ES=1; } void main() { init();

while(1) { if(flag==1) { ES=0; for(i=0;i<6;i++) { SBUF=table[i]; while(!TI); TI=0; } SBUF=a; while(!TI); TI=0; ES=1; flag=0; } } } void ser() interrupt 4 {

RI=0; a=SBUF; flag=1; } 代码2:485通信 #include #include"1602.h" #define uchar unsigned char #define uint unsigned int unsigned char flag,a,i; uchar code table[]="i get "; void init() { TMOD=0X20; TH1=0Xfd; TL1=0Xfd; TR1=1; REN=1; SM0=0; SM1=1; EA=1; ES=1;

} void main() { init_1602(); init(); while(1) { if(flag==1) { display(0,a); } } } void ser() interrupt 4 { RI=0; a=SBUF; flag=1; }

单片机双机之间的串行通信设计

单片机双机之间的串行通 信设计 Prepared on 24 November 2020

专业方向课程设计报告题目:单片机双机之间的串行通信设计单片机双机之间的串行通信设计 一.设计要求: 两片单片机利用串行口进行串行通信:串行通信的波特率可从键盘进行设定,可选的波特率为1200、2400、4800和9600bit/s。 二、方案论证: 方案一:以两片51单片机作为通信部件,以4*4矩阵键盘作为数据输入接口,通过16个不同键值输入不同的信息,按照51单片机的方式3进行串口通信,从机采用中断方式接收信息并按照通信协议改变波特率或者用I/O口输出、CD4511译码、数码管显示相关数据,整个系统的软件部分采用C语言编写。 方案二:整个系统的硬件设计与方案一样,但是通信方式采用方式一进行通信,主从机之间的访问采用查询方式,数据输出直接由单片机的译码程序输出译码数据,同时软件编写采用汇编语言。 两种方式从设计上来说各有特色,而且两种方式都应该是可行的。方案一中按照方式三通信可以输出九位数据而方式一只能输出八位数据,但就本题的要求来说方式一就可以了。主从机之间的交流采用中断方式是一种高效且保护

单片机的选择,但是相比之下本人对查询方式的理解更好一些。数码管的显示若采用CD4511译码则直接输出数据就可以了,但是这样会增加硬件陈本,而且单片机的资源大部分都还闲置着,所以直接编写一段译码程序是比较好的做法。另外在软件编写上,采用C语言在后续设计中对硬件的考虑稍少一些,换言之采用汇编可以使自己对整个通信过程及单片机的部分结构有更清晰地认识所以综合考虑采用方案二。 三、理论设计: 采用AltiumDesigner绘制的原理图(整图) 本系统主要包括五个基本模块:单片机最小系统(包括晶振电路、电源、复位电路及相关设置电路)、4*4矩阵键盘、功能控制电路、数据显示电路、波特率更改指示电路。 本设计的基本思路是通过控制口选择将要实现的功能,然后矩阵键盘输入数据,单片机对数据进行处理(加校验码、设置功能标志位),然后与从机握手,一切就绪之后后就开始发送数据,然后从机对接收数据校验,回发校验结果,主机根据校验结果进行下一步动作,或者重发,或者进入下一数据的发送过程,然后按照此过程不段循环,直到结束。 单片机最小系统:接上电源和地,

基于51单片机的双机串行通信

河南机电高等专科学校2015-2016学年第1学期通信实训报告 系别:电子通信工程系 班级:xxxxxx 学号:13xxxxxxxxx 姓名:xxxxxxx 2015年12月

基于51单片机的双机串行通信 摘要:串行通信是单片机的一个重要应用,本次课程设计就是要利用单片机来完成一个系统,实现爽片单片机床航通信,通信的结果使用数码管进行显示,数码管采用查表方式显示,两个单片机之间采用RS-232进行双击通信。在通信过程中,使用通信协议进行通信。 关键字:通信双机 一、总体设计 1设计目的 1.通过设计相关模块充分熟悉51单片机的最小系统的组成和原理; 2.通过软件仿真熟悉keil和proteus的配合使用; 3.通过软件编程熟悉51的C51编程规范; 4.通过实际的硬件电路搭设提高实际动手能力。 2.设计要求: 两片单片机之间进行串行通信,A机将0x06发送给B机,在B机的数码管上静态显示1,B机将0~f动态循环发送到A机,并在其数码管上显示。 3.设计方案: 软件部分,通过通信协议进行发送接收,A机先送0x06(B机数码管显示1)给B机(B机静态显示),当从机接收到后,向B机发送代表0-f的数码管编码数组。B收到0x06后就把数码表TAB[16]中的数据送给从机。 二、硬件设计

1.51单片机串行通信功能 计算机与外界的信息交换称为通信,常用的通信方式有两种:并行通信和串行通信。51单片机用4个接口与外界进行数据输入与数据输出就是并行通信,并行通信的特点是传输信号的速度快,但所用的信号线较多,成本高,传输的距离较近。串行通信的特点是只用两条信号线(一条信号线,再加一条地线作为信号回路)即可完成通信,成本低,传输的距离较远。 51单片机的串行接口是一个全双工的接口,它可以作为UART(通用异步接受和发送器)用,也可以作为同步移位寄存器用。51单片机串行接口的结构如下: 图1.AT89C51(52) (1)数据缓冲器(SBUF) 接受或发送的数据都要先送到SBUF缓存。有两个,一个缓存,另一个接受,

51单片机与蓝牙串口通信程序

#include #include #include #include "LCD1602.h" #include "matrix_key.h" #define uint unsigned int #define uchar unsigned char #define Nop() _nop_() sbit P10 = P1^0; /*定义独立对地按键端口*/ sbit P11 = P1^1; /*定义独立对地按键端口*/ sbit P12 = P1^2; /*定义独立对地按键端口*/ sbit P13 = P1^3; /*定义独立对地按键端口*/ //shift键 bit shift_flag; bit call_flag ; bit CallIn_flag=0; bit reci_flag; bit reci_flag1; sbit sled_en_port = P3^6; /*定义数码管数据锁存器控制端口*/ sbit led_en_port = P2^5; /*定义发光二极管数据锁存器控制端口*/ sbit ds1302_en_port = P2^2; /*定义时钟的选片脚*/ uchar CallIn_Num[15];//={"00000000000"}; uchar CallOut_Num[15]={" "}; uchar m=0; //拨号指针 uchar temp='?'; uchar code clr[16]={" "}; uchar code lcd_table[16] = {"Ky: Cm: Re: "}; //uchar send_buff[15]; uchar reci_buff[15]={" "}; uchar z; //接收缓冲区指针 uchar time;//定时器中断次数 uchar code mun_to_char[]={"0123456789ABCDEF"}; /*1MS为单位的延时程序*/ void init(); void send(uchar cc); void send_f(uchar ccc); void interrupt_pro(); void key_pro(); void call_out();

基于51单片机的双机串行通信课程设计 1000110061

基于AT89C51单片机的双机串行通信设计 姓名:杨应伟 学号:100110061 专业:机械设计制造及其制动化 班级:机电二班

前言 单片机广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等领域随着计算机技术的发展及工业自动化水平的提高, 在许多场合采用单机控制已不能满足现场要求,因而必须采用多机控制的形式,而多机控制主要通过多个单片机之间的串行通信实现。串行通信作为单片机之间常用的通信方法之一, 由于其通信编程灵活、硬件简洁并遵循统一的标准, 因此其在工业控制领域得到了广泛的应用。 在测控系统和工程应用中,常遇到多项任务需同时执行的情况,因而主从式多机分布式系统成为现代工业广泛应用的模式。单片机功能强、体积小、价格低廉、开发应用方便,尤其具有全双工串行通讯的特点,在工业控制、数据采集、智能仪器仪表、家用电器方面都有广泛的应用。同时,IBM-PC机正好补充单片机人机对话和外围设备薄弱的缺陷。各单片机独立完成数据采集处理和控制任务,同时通过通信接口将数据传给PC机,PC机将这些数据进行处理、显示或打印,把各种控制命令传给单片机,以实现集中管理和最优控制。串行通信是单片机的一个重要应用,本次课程设计就是要利用单片机来完成一个系统,实现爽片单片机床航通信,通信的结果使用数码管进行显示,数码管采用查表方式显示,两个单片机之间采用RS-232进行双击通信。 在通信过程中,使用通信协议进行通信。在测控系统和工程应用中,常遇到多项任务需同时执行的情况,因而主从式多机分布式系统成为现代工业广泛应用的模式。单片机功能强、体积小、价格低廉、开发应用方便,尤其具有全双工串行通讯的特点,在工业控制、数据采集、智能仪器仪表、家用电器方面都有广泛的应用。同时,IBM-PC机正好补充单片机人机对话和外围设备薄弱的缺陷。各单片机独立完成数据采集处理和控制任务,同时通过通信接口将数据传给PC机,PC机将这些数据进行处理、显示或打印,把各种控制命令传给单片机,以实现集中管理和最优控制。 串行通信是单片机的一个重要应用,本次课程设计就是要利用单片机来完成一个系统,实现爽片单片机床航通信,通信的结果使用数码管进行显示,数码管采用查表方式显示,两个单片机之间采用RS-232进行双击通信。在通信过程中,使用通信协议进行通信。

基于51单片机串行通信的无线发射极和接收机设计

基于51单片机串行通信的无线发射极和接收机设计---- 1 概述 1.1 课题的目的、背景和意义 最近几年来,由于无线接入技术需求日益增大,以及数据交换业务(如因特 网、电子邮件、数据文件传输等)不断增加,无线通信和无线网络均呈现出指数增 加的趋势。有力的推动力无线通信向高速通信方向发展。然而,工业、农业、车载 电子系统、家用网络、医疗传感器和伺服执行机构等无线通信还未涉足或者刚刚涉 足的领域,这些领域对数据吞吐量的要求很低,功率消耗也比现有标准提供的功率 消耗低。此外,为了促使简单方便的,可以随意使用的无线装置大量涌现,需要在 未来个人活动空间内布置大量的无线接入点,因而低廉的价格将起到关键作用。为 降低元件的价格,以便这些装置批量生产,所以发展了一个关于这种网络的标准方案。Zigbee就是在这一标准下一种新兴的短距离、低功耗、低数据传输的无线网 络技术,它是一种介于无线标记技术和蓝牙之间的技术方案。 对于这种短距离、低功耗、低数据传输无线技术,它不仅在工业、农业、军 事、环境、医疗等传统领域有着巨大的应用价值,未来应用中还可以涉及人类日常 生活和社会生产活动的所有领域。由于各方面的制约,这种技术的大规模商业应用 还有待时日,但已经显示出了非凡的应用价值,相信随着相关技术的发展和推进, 一定会得到更广泛应用。 1.2国内外无线技术相关现状及Zigbee现状 无线通信从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段: 第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短波频及电子 管技术,至该阶段末期出现才出现150MHVHF单工汽车公用移动电话系统MTS。

51单片机与上位机串口通信程序设计

51单片机与上位机串口通信程序设计 1. 发送:向总线上发命令 2. 接收:从总线接收命令,并分析是地址还是数据。 3. 定时发送:从内存中取数并向主机发送. 经过调试,以上功能基本实现,目前可以通过上位机对单片机进行实时控制。程序如下: //这是一个单片机C51串口接收(中断)和发送例程,可以用来测试51单片机的中断接收 //和查询发送,另外我觉得发送没有必要用中断,因为程序的开销是一样的 #include< reg51.h> #include< stdio.h> #include< string.h> #define INBUF_LEN 4 //数据长度 unsigned char inbuf1[INBUF_LEN]; unsigned char checksum,count3 , flag,temp,ch; bit read_flag=0; sbit cp=P1^1; sbit DIR=P1^2; int i; unsigned int xdata *RAMDATA; /*定义RAM地址指针*/ unsigned char a[6] ={0x11,0x22,0x33,0x44,0x55,0x66} ; void init_serialcomm(void) { SCON=0x50; //在11.0592MHz下,设置串行口波特率为9600,方式1,并允许接收 PCON=0x00; ES=1;

TMOD=0x21; //定时器工作于方式2,自动装载方式TH0=(65536-1000)%256; TL0=(65536-1000)/256; TL1=0xfd; TH1=0xfd; ET0=1; TR0=1; TR1=1; // TI=0; EA=1; // TI=1; RAMDATA=0x1F45; } void serial () interrupt 4 using 3 { if(RI) { RI=0; ch=SBUF; TI=1; //置SBUF空 switch(ch) { case 0x01 :printf("A"); TI=0;break; case 0x02 :printf("B"); TI=0;break; case 0x03 :printf("C"); TI=0;break; case 0x04 :printf("D"); TI=0;break; default :printf("fg"); TI=0;break; } }

51单片机与串口通信代码

51单片机与串口通信代码 2011年04月22日 17:18 本站整理作者:佚名用户评论(0) 关键字:串口通信(35) 串口调试 1. 发送:向总线上发命令 2. 接收:从总线接收命令,并分析是地址还是数据。 3. 定时发送:从内存中取数并向主机发送. 经过调试,以上功能基本实现,目前可以通过上位机对单片机进行实时控制。 程序如下: //这是一个单片机C51串口接收(中断)和发送例程,可以用来测试51单片机的中断接收 //和查询发送,另外我觉得发送没有必要用中断,因为程序的开销是一样的 #i nclude #i nclude #i nclude #define INBUF_LEN 4 //数据长度 unsigned char inbuf1[INBUF_LEN]; unsigned char checksum,count3 , flag,temp,ch; bit read_flag=0; sbit cp=P1^1; sbit DIR=P1^2; int i; unsigned int xdata *RAMDATA; /*定义RAM地址指针*/ unsigned char a[6] ={0x11,0x22,0x33,0x44,0x55,0x66} ; void init_serialcomm(void) { SCON=0x50; //在11.0592MHz下,设置串行口波特率为9600,方式1,并允许接收

PCON=0x00; ES=1; TMOD=0x21; //定时器工作于方式2,自动装载方式 TH0=(65536-1000)%256; TL0=(65536-1000)/256; TL1=0xfd; TH1=0xfd; ET0=1; TR0=1; TR1=1; // TI=0; EA=1; // TI=1; RAMDATA=0x1F45; } void serial () interrupt 4 using 3 { if(RI) { RI=0; ch=SBUF; TI=1; //置SBUF空 switch(ch) { case 0x01 :printf("A"); TI=0;break; case 0x02 :printf("B"); TI=0;break; case 0x03 :printf("C"); TI=0;break;

基于51单片机的双机串行通信课程设计

基于51单片机的双机串行通信课程设计

基于A789C51单片机的双机串行通信课程设计 一、总体设计 1设计目的 1.通过设计相关模块充分熟悉A789C51单片机的最小系统的组成和原理; 2.通过软件仿真熟悉keil和proteus的配合使用; 3.通过软件编程熟悉A789C51的CA789C51编程规范; 4.通过实际的硬件电路搭设提高实际动手能力。 2.设计要求: 两片单片机之间进行串行通信,A机将0x06发送给B机,在B机的数码管上静态显示1,B 机将0~f动态循环发送到A机,并在其数码管上显示。 3.设计方案: 软件部分,通过通信协议进行发送接收,A机先送0x06(B机数码管显示1)给B机(B机静态显示),当从机接收到后,向B机发送代表0-f 的数码管编码数组。B收到0x06后就把数码表TAB[16]中的数据送给从机。 二、硬件设计 1.A789C51单片机串行通信功能

图1.AT89CA789C51(52) 计算机与外界的信息交换称为通信,常用的通信方式有两种:并行通信和串行通信。A789C51单片机用4个接口与外界进行数据输入与数据输出就是并行通信,并行通信的特点是传输信号的速度快,但所用的信号线较多,成本高,传输的距离较近。串行通信的特点是只用两条信号线(一条信号线,再加一条地线作为信号回路)即可完成通信,成本低,传输的距离较远。 A789C51单片机的串行接口是一个全双工的接口,它可以作为UART(通用异步接受和发送器)用,也可以作为同步移位寄存器用。A789C51单片机串行接口的结构如下:

(1)数据缓冲器(SBUF) 接受或发送的数据都要先送到SBUF缓存。有两个,一个缓存,另一个接受,用同一直接地址99H,发送时用指令将数据送到SBUF即可启动发送;接收时用指令将SBUF中接收到的数据取出。 (2)串行控制寄存器(PCON) SCON用于串行通信方式的选择,收发控制及状态指示,各位含义如下: SM0,SM1:串行接口工作方式选择位,这两位组合成00,01,10,11对应于工作方式0、1、2、3。串行接口工作方式特点见下表

相关文档
最新文档