球墨铸铁的金相组织

球墨铸铁的金相组织
球墨铸铁的金相组织

球墨铸铁的金相组织(GB/T9441-1988)2007-03-30 17:52:33 浏览次数:287

球化分级(GB/T9441-1988)

石墨大小分级(GB/T9441-1988)(mm)

分散分布铁素体数量分级(GB/T9441-1988)

珠光体粗细分级(GB/T9441-1988)

珠光体数量分级(GB/T9441-1988)

渗碳体分级(GB/T9441-1988)

磷共晶数量分级(GB/T9441-1988)

球墨铸铁常见缺陷的分析与对策

球墨铸铁件常见缺陷的分析与对策 一、常见的缺陷及分析 球墨铸铁件常见缺陷的分析与对策 (1) 球铁是近40年来我国发展起来的重要铸造金属材料。由于球状石墨造成的应力集中小,对基体的割裂作用也较小,故球铁的抗拉强度,塑性和韧性均高于其他铸铁。与相应组织的钢相比,塑性低于钢,疲劳强度接近一般中碳钢,屈强比可达0 7~0 8,几乎是一般碳钢的2倍,而成本比钢低,因此其应用日趋广泛。当然,球铁也不是十全十美的,它除了会产生一般的铸造缺陷外,还会产生一些特有的缺陷,如缩松、夹渣、皮下气孔、球化不良及衰退等。这些缺陷影响铸件性能,使铸件废品率增高。为了防止这些缺陷的发生,有必要对其进行分析,总结出各种影响因素,提出防止措施,才能有效降低缺陷的产生,提高铸件的力学性能及生产效益。本文将讨论球铁件的主要常见缺陷:缩孔、缩松、夹渣、皮下气孔、石墨漂浮、球化不良及球化衰退。 1 缩孔缩松 1.1影响因素 (1)碳当量:提高碳量,增大了石墨化膨胀,可减少缩孔缩松。此外,提高碳当量还可提高球铁的流动性,有利于补缩。生产优质铸件的经验公式为C%+1/7Si%>3 9%。但提高碳当量时,不应使铸件产生石墨漂浮等其他缺陷。 (2)磷:铁液中含磷量偏高,使凝固范围扩大,同时低熔点磷共晶在最后凝固时得不到补给,以及使铸件外壳变弱,因此有增大缩孔、缩松产生的倾向。一般工厂控制含磷量小于0 08%。 (3)稀土和镁:稀土残余量过高会恶化石墨形状,降低球化率,因此稀土含量不宜太高。而镁又是一个强烈稳定碳化物的元素,阻碍石墨化。由此可见,残余镁量及残余稀土量会增加球铁的白口倾向,使石墨膨胀减小,故当它们的含量较高时,亦会增加缩孔、缩松倾向。 (4)壁厚:当铸件表面形成硬壳以后,内部的金属液温度越高,液态收缩就越大,则缩孔、缩松的容积不仅绝对值增加,其相对值也增加。另外,若壁厚变化太突然,孤立的厚断面得不到补缩,使产生缩孔缩松倾向增大。 (5)温度:浇注温度高,有利于补缩,但太高会增加液态收缩量,对消除缩孔、缩松不利,所以应根据具体情况合理选择浇注温度,一般以1300~1350℃为宜。 (6)砂型的紧实度:若砂型的紧实度太低或不均匀,以致浇注后在金属静压力或膨胀力的作用下,产生型腔扩大的现象,致使原来的金属不够补缩而导致铸件产生缩孔缩松。 (7)浇冒口及冷铁:若浇注系统、冒口和冷铁设置不当,不能保证金属液顺序凝固;另外,冒口的数量、大小以及与铸件的连接当否,将影响冒口的补缩效果。 1.2 防止措施 (1)控制铁液成分:保持较高的碳当量(>3 9%);尽量降低磷含量(<0 08%);降低残留镁量(<0 07%);采用稀土镁合金来处理,稀土氧化物残余量控制在0 02%~0 04%。 (2)工艺设计要确保铸件在凝固中能从冒口不断地补充高温金属液,冒口的尺寸和数量要适当,力求做到顺序凝固。 (3)必要时采用冷铁与补贴来改变铸件的温度分布,以利于顺序凝固。 (4)浇注温度应在1300~1350℃,一包铁液的浇注时间不应超过25min,以免产生球化衰退。 (5)提高砂型的紧实度,一般不低于90;撞砂均匀,含水率不宜过高,保证铸型有足够的刚度。 2 夹渣 2 .1 影响因素 (1)硅:硅的氧化物也是夹渣的主要组成部分,因此尽可能降低含硅量。 (2)硫:铁液中的硫化物是球铁件形成夹渣缺陷的主要原因之一。

球墨铸铁中所含的化学成分及其含量对性能的影响

球墨铸铁简介: 球墨铸铁是通过球化和孕育处理得到球状石墨,有效地提高了铸铁的机械性能,特别是提高了塑性和韧性,从而得到比碳钢还高的强度。球墨铸铁是20世纪五十年代发展起来的一种高强度铸铁材料,其综合性能接近于钢,正是基于其优异的性能,已成功地用于铸造一些受力复杂,强度、韧性、耐磨性要求较高的零件。球墨铸铁已迅速发展为仅次于灰铸铁的、应用十分广泛的铸铁材料。所谓“以铁代钢”,主要指球墨铸铁。 析出的石墨呈球形的铸铁。球状石墨对金属基体的割裂作用比片状石墨小,使铸铁的强度达到基体组织强度的70~90%,抗拉强度可达120kgf/mm2,并且具有良好的韧性。球墨铸铁除铁外的化学成分通常为:含碳量3.6~3.8%,含硅量2.0~3.0%,含锰、磷、硫总量不超过1.5%和适量的稀土、镁等球化剂。 制造步骤: (一)严格要求化学成分,对原铁液要求的碳硅含量比灰铸铁高,降低球墨铸铁中锰,磷,硫的含量 (二)铁液出炉温度比灰铸铁更高,以补偿球化,孕育处理时铁液温度的损失(三)进行球化处理,即往铁液中添加球化剂 (四)加入孕育剂进行孕育处理 (五)球墨铸铁流动性较差,收缩较大,因此需要较高的浇注温度及较大的浇注系统尺寸,合理应用冒口,冷铁,采用顺序凝固原则 (六)进行热处理

球墨铸铁中所含的化学成分及其含量对性能的影响 球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五种元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。以下就球墨铸铁中所含的化学成分及其含量对性能的影响做详细的阐述: 1、碳的作用和影响: 碳是球墨铸铁的基本元素,碳高有助于石墨化。由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在3.5~3.9%之间,碳当量在4.1~4.7%之间。铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。但是,碳含量过高,会引起石墨漂浮。 2、硅的作用和影响 在球墨铸铁中,硅是第二个有重要影响的元素,它不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。但是,硅提高铸铁的韧脆性转变温度,降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。 3、硫的作用和影响 硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷。球墨铸铁中硫的含量一般要求小于0.06%。 4、磷的作用和影响

球墨铸铁缺陷分析

大批量生产球墨铸铁金相缺陷分析及其对策 李明宽 摘 要:通过对石墨变异的各种特征的观察,分析形成缺陷的原因,提出防止缺陷产生的措施,有效地控制和减少 废品的产生,提高了铸件合格率。 关键词:蠕虫状石墨 爆炸性石墨 粗短型石墨 钉状石墨 石墨漂浮 表面片状石墨 列队石墨球 铸造缺陷 1. 问题的提出 在大批量球铁生产中,往往因过程及原材料等原因,会使铸件产生各种金相组织缺陷,从而影响铸件的内在质量,降低铸件的力学性能。笔者就多年来在球铁金相分析中所观察到的蠕虫状石墨、爆炸性石墨、粗短型石墨、钉状石墨、石墨漂浮、表面片状石墨和列队石墨球七种缺陷并作相应的分析,提出防止缺陷产生的办法,以减少废品,提高铸件合格率。 2. 蠕虫状石墨 (1) 特征 短而粗、呈卷曲的厚片状端部较钝常与球状石墨联结在一起。如图 1 图1 QT450-12球铁蠕虫状石墨显微组织 100× (2) 原因分析 形成蠕虫状石墨的主要原因是球化反应时中间合金数量不够所造成A 合金加 入量少;B 球化剂数量合适,但铁水中含硫量高;C 铁水被氧化致使镁量烧损而造成球化剂含量不足,D 温度过高或停留时间过长,E 铁水中钛和铝过量等原因。 (3) 生产中防止蠕虫状石墨应采取的措施 A 球化剂要有足够的加入量;B 在球化处理时,应尽量防止镁的烧损,提高球化剂吸收率;C 严格控制原铁水含硫量,应选用低硫生铁;C 铁水温度应控制在工艺要求范围内(1510±10℃),铁水温度过高会产生球化剂烧损过多,缩短浇注时间,D 钛含量控制在≤0.05%,铝含量≤0.06%。 3. 爆炸性石墨 (1) 特征 爆炸性石墨由球状石墨爆裂而成,外形如花瓣,常出现在强过共晶球铁中,在厚大断面或石墨飘浮区内。如图 图2 QT450-10球铁中爆炸性石墨 100× (2) 原因分析 产生爆炸性石墨的主要原因为:A 碳硅当量过高(碳当量>4.6%,B 稀土量过多,尤其是中频炉熔炼。 (3) 防止爆炸性石墨应采取的措施 A 严格控制碳硅当量,碳不应超过3.8%,硅不应超过3%,厚大铸件的碳硅量应更低;B 加入少量强烈阻止石墨化的元素,如加入钼可防止爆炸性石墨;C 严格控制稀土元素残留量。 4. 粗短型石墨 (1) 特征 粗短型石墨呈现粗短的条状形常出现在厚大断面的中心或铸件的热节处.如图 3 图3 QT450-10球铁粗短型石墨 100×

铸铁金相性能及缺陷方面的知识

1、金相、机械性能方面: 铸铁组织: 铁素体:是碳在α-Fe中的固溶体,其性能接近于纯铁。 奥氏体:是碳在γ-Fe中的固溶体,其强度低、塑性好。 石墨: (1)灰铸铁石墨: A型石墨:均匀分布五方向性石墨,是理想的灰铸铁石墨。 B型石墨:片状和点状石墨聚集成菊花状,常在C、Si含量较高、冷却速度较大的近共晶或过共晶成分铸件中形成。开始过冷较大,成核条件。 C型石墨:初生的粗大直片状石墨。可以增加热导率,降低弹性模量,降低热应力,从而提高抗热冲击能力。过共晶成分形成(缓冷条件)。 D型石墨:细小卷曲的片状石墨在枝晶间无方向性分布。 不加合金往往伴随有铁素体的产生。石墨形核条件差,冷却速度大而造成过冷时形成,因而保留初生奥氏体的形态,石墨细小而分支发。 E型石墨:片状石墨在枝晶二次分支晶呈方向性分布。往

往在珠光体上得,其耐磨性像珠光体加A型石墨组织一样。容 易在CE较低(亚共晶层度大)奥氏体枝晶多而发达的铸铁中形 成,由于枝晶间共晶液少,析出共晶石墨只好沿枝晶方向分布, 故有方向性。 F型石墨:初生的星状与蜘蛛状石墨。过共晶成分快速冷却形成。 (2)球墨铸铁石墨: 球状石墨:球墨铸铁想要得到的理想石墨形态。 不规则状石墨:是指那些仍保持个体完整,但是外形很不规则、近视球状的石墨。球化元素残留量不足,稀土加入量过 多,强过共晶成分 异态球型石墨:包括开花型石墨、雪花型石墨、碎块型石墨、球虫型石墨、球片型石墨、蟹型石墨。 开花型石墨、雪花型石墨:都是由相互无联系的快形石墨组成。从形貌上看都是有石墨爆裂而生成,但爆裂程度不同。 在显微镜下观察区别:开花型石墨像是由很多个单晶体组成的花团,外表具有明显的螺旋生长的特征,它的外周大体保持圆整,雪花状石墨的爆裂程度较大,但是碎裂的石墨通过一个核心联系起来,外形已经不能保持圆整。 碎块状石墨:形状很不规则,在光学显微镜下呈厚度多变的条状、点状和扇状。 球虫状石墨和片状石墨:形貌相似,由球状石墨表面生长

球墨铸铁件的检验

球墨铸铁的检验 常见的球墨铸铁缺陷有:气孔,夹砂,夹渣,疏松或缩孔等宏观缺陷以及球化不良,晶粒过大等微观缺陷。 球墨铸铁的工序:铸造(造型-浇铸)-去砂-打磨-喷丸-检验。 铸造------型砂的要求是粘土和树脂砂混合。不能太干也不能太湿。太干造成模具不好脱落路,太湿容易脱落。型砂造型后,在内部表面要用涂沫剂烘干以避免铁水冲 击砂型而造成砂泥进入铸铁内部。烘干涂抹剂的方式一般采用点燃烘干(因为 涂抹剂中含有酒精)。有些砂型中会添加冷铁,冷铁的作用是加速冷却,减少 缩孔的产生。所以一般冷铁放在厚壁处。 浇铸------包子中的铁水通过过滤网过滤后进入砂型中。 喷丸------喷丸机的结构有吊抛和固定式。一般喷丸机有5-7个喷嘴,每个喷嘴连着一个马达,马达高速转动时会带动在边上的钢丸运动而加速抛向被检工件,然后通 过下面的钢丸收集装置把收集起来的钢丸送向各个马达口。 球墨铸件的检验包括外观检验,磁粉检验以及超声波检验。 其中外观检验是球墨铸铁中最繁重的工作,其中需要大量的打磨的配合。一般而言外观检验要求要达到以下几点: 1.无裂纹,无焊接,无表面非金属夹杂和加砂。 2. 表面清洁度:Sa 2.5 (可参考标准:ISO 8501-1) 2.表面粗糙度:A2或者其他 3.气孔:C2或者其他 4.冷隔:D1或者其他 5.机械划痕:H1或者其他 其中2-5的要求可根据英国铸造发展中心的SCRATA对比试块进行对比检验。 在外观检验中特别要注意的是表面气孔与表面砂眼的区别。表面气孔一般而言内壁光滑,较规则;而表面砂眼比较不规则,内部含有较多的灰尘或者其砂等非金属家杂物。如果表面凹处缺陷为气孔的话,可根据SCRATA试块进行对比检验;但如果判断为表面砂眼时,一般要进行打磨修补,因为大多数砂眼的根部还会向金属内部延伸。 外观检验时还要注意喷丸的效果,在喷丸效果不好时,会造成粗糙度达不到要求。铸件表面存留氧化皮,以及存留涂抹剂等较难打磨的大面积表面缺陷时,应该考虑进行重新喷丸或者打磨。因为这类缺陷会影响外观检验,特别容易产生表面砂泥的漏检。 磁粉检验,一般对球墨铸铁的磁粉检验用的是:荧光磁粉探伤,由于铸件表面本身的粗糙度不是很高,使用荧光磁粉探伤可以减少表面状态对探伤灵敏度的影响。我们做了一组对比试验,在有金属氧化物夹渣的位置,我们先用非荧光水基磁悬液加反差增强剂,然后用砂轮机打磨掉缺陷痕迹,直到最后没有缺陷痕迹。然后我们用荧光磁粉探伤,还是发现有大量的非金属夹渣物的磁痕存在。相对于油基磁悬液而言,水基磁悬液更加适合铸件表面的磁粉探伤。干磁粉同样适用于铸件的表面探伤。由于表面粗糙度对磁粉探伤的影响很大,在条件允许的情况下,可以先打磨表面以提高检测灵敏度。一般铸件的交冒口位置容易出现疏松或缩孔等缺陷,有时也会出现皮下气孔,所以在做磁粉探伤的时候要特别注意。其次还要注意冷铁的位置的检验,该位置也极易出现裂纹。此外还有试块切割的位置,由于有些工厂采用的是火焰切割而导致容易出现热裂纹。

球墨铸铁金相检验标准解读

球墨铸铁金相检验标准解读

球墨铸铁金相检验标准解读【1】 摘要:本文主要介绍标准GB/T 9441-2009《球墨铸铁金相检验》,详细介绍了球墨铸铁中石墨的球化分级、石墨大小、石墨球数、珠光体数量、分散分布的铁素体数量、磷共晶和碳化物数量的评定方法。 关键词:球墨铸铁;铁素体;珠光体;磷共晶;碳化物 前言 球墨铸铁是通过球化和孕育处理得到球状石墨,有效地提高了铸铁的机械性能,特别是提高了塑性和韧性,从而得到比碳钢还高的强度。 球墨铸铁的石墨呈球状或接近球状,因此铸铁中因石墨引起的的应力集中现象远比片状石墨的灰铸铁小。此外,球状石墨不像片状石墨那样对金属基体存在严重的割裂作用,这就为通过热处理以提高球墨铸铁基体组织性能,从而发掘其性能潜力提供条件。因此,对球墨铸铁的石墨和基体组织的检验,是球墨铸铁生产的一个重要环节 1.GB/T 9441-2009标准简介 GB/T 9441-2009由中国机械工业联合会提出,并代替了GB/T 9441-1988。标准对球化分级、石墨大小、石墨球数、珠光体数量、分散分布的铁素体数量、磷共晶和碳化物数量的评定方法做了规定,列出了相应评级图。本标准适用于评定普通和低合金球墨铸铁铸态、正火态、退火态的金相组织。 2. 检验项目 2.1 球化分级 在抛光态下观察整个受检面,选三个球化差的视场的多数对照评级图目视评定,放大倍数为100倍。石墨为球状和团状石墨个数所占石墨总数的百分比作为球化率,将球化率分为六级,见表1和图1~图6。

图5 5级60% 图6 6级50% 2.2 石墨大小 在抛光态下观察整个受检面,选取有代表性视场,计算直径大于最大石墨半径的石墨球直径的平均值,对照相应的评级图评定。石墨大小分为6级,见表2和图7~图12。 表2 石墨长度的分级 级别 在100X 下观察,石墨长度/mm 实际石墨长度/mm 图号 3 >25~50 >0.25~0.5 7 4 >12~2 5 >0.12~0.25 8 5 >6~12 >0.06~0.12 9 6 >3~6 >0.03~0.06 10 7 >1.5~3 >0.015~0.03 11 8 ≤1.5 ≤0.015 12 注:石墨大小在6~8级时,可使用200X 或500X 放大倍数。

球墨铸铁金相检验标准解读

球墨铸铁金相检验标准解读【1】 摘要:本文主要介绍标准GB/T 9441-2009《球墨铸铁金相检验》,详细介绍了球墨铸铁中石墨的球化分级、石墨大小、石墨球数、珠光体数量、分散分布的铁素体数量、磷共晶和碳化物数量的评定方法。 关键词:球墨铸铁;铁素体;珠光体;磷共晶;碳化物 前言 球墨铸铁是通过球化和孕育处理得到球状石墨,有效地提高了铸铁的机械性能,特别是提高了塑性和韧性,从而得到比碳钢还高的强度。球墨铸铁的石墨呈球状或接近球状,因此铸铁中因石墨引起的的应力集中现象远比片状石墨的灰铸铁小。此外,球状石墨不像片状石墨那样对金属基体存在严重的割裂作用,这就为通过热处理以提高球墨铸铁基体组织性能,从而发掘其性能潜力提供条件。因此,对球墨铸铁的石墨和基体组织的检验,是球墨铸铁生产的一个重要环节 1.GB/T 9441-2009标准简介 GB/T 9441-2009由中国机械工业联合会提出,并代替了GB/T 9441-1988。标准对球化分级、石墨大小、石墨球数、珠光体数量、分散分布的铁素体数量、磷共晶和碳化物数量的评定方法做了规定,列出了相应评级图。本标准适用于评定普通和低合金球墨铸铁铸态、正火态、退火态的金相组织。 2. 检验项目 2.1 球化分级 在抛光态下观察整个受检面,选三个球化差的视场的多数对照评级图目视评定,放大倍数为100倍。石墨为球状和团状石墨个数所占石墨总数的百分比作为球化率,将球化率分为六级,见表1和图1~图6。

表1 球化分级 球化分级图(100X) 图1 1级≥95% 图2 2级90% 图3 3级80% 图4 4级70%

图5 5级60% 图6 6级50% 2.2 石墨大小 在抛光态下观察整个受检面,选取有代表性视场,计算直径大于最大石墨半径的石墨球直径的平均值,对照相应的评级图评定。石墨大小分为6级,见表2和图7~图12。 表2 石墨长度的分级

球墨铸铁件表面缺陷

球墨铸铁件表面缺陷 清华大学于震宗 引言 球墨铸铁件的缺陷分为表面缺陷和内在缺陷两大类,后者即有关金属材质方面的缺陷,不属于本文范围内。本文内容重点是砂型铸件的表面缺陷,包括用湿型砂、水玻璃砂、树脂砂等砂型和砂芯生产的铸件。砂型球墨铸件的表面缺陷有多种,本文仅选择①粘砂,②砂孔和渣孔,③夹砂,④气孔,⑤胀砂、缩孔和缩松等缺陷进行讨论。有的缺陷如灰班虽然发生在铸件表面上,而产生原因完全属于材质方面,则不包括在本文内: 一. 球墨铸件气孔缺陷 气孔是最难分析其形成原因和最难找出防治方法的铸件缺陷。这是因为气孔的形成原因很多,从外观上又不易分清气孔是属于那种类型的。虽然采用扫描电镜和能谱等微观分析方法有助于估计气孔的产生原因,但是这些先进的技术都还处于研究阶段,大多数铸造工厂尚难在生产中利用。根据气孔发生机理,可分为裹入、侵入、析出和反应四类气孔。其中裹入气孔是浇注时金属液中裹带着空气泡,随着液流进入型腔中而产生的气孔缺陷。侵入气孔是铸件表面凝固成壳以前,砂型、砂芯等造型材料受热产生的气体侵入金属液中,形成气泡而产生的气孔球铁铸件最常遇到的气孔缺陷是反应气孔和析出气孔。以下将分别讨论: 1. 析出气孔 金属液中溶解的原子态氢、氮气体元素,随金属温度下降而溶解度逐渐减小。下降至结晶温度或凝固温度时,溶解度突然变小,氢、氮以分子态气相析出形成气泡,使铸件产生气孔,称为析出气孔。生产铸铁的工厂中,最常见的析出气孔是使用树脂砂型和砂芯造成氨氮气孔,也有来自炉料和增碳剂的氮气孔。。 ①氨氮 酚醛树脂覆膜砂的硬化剂为乌洛托平(六亚甲基四胺(CH2)6N4)。铸铁件用热芯盒呋喃树脂含有尿素(CO(NH2)2)。硬化剂用含有尿素和NH4Cl的水溶液。冷芯盒和自硬砂用酚醛脲烷树脂的聚异氰酸酯组分中含有-RNCO基团。上述树脂砂都含有多少不等的氨或胺,都是引起析出气孔的根源。所含氮不同于空气中的氮,大气中78%是由氮组成,并不引起析出气孔缺陷。区别在于上述树脂的氮是“氨氮”。浇注时,树脂砂中粘结剂分解出NH3,在高温下NH3进一步分解出原子态的[N]和[H]。溶解在金属液中并向内扩散。随着金属液温度下降,溶解度也下降。凝固时溶解度突然变小,氢和氮以分子态析出成小气泡。两种气泡合称“氮气孔”。由于[N]在铁水中扩散较缓慢,气孔在远处少。除了一小部分露在铸件表面以外,大部分形成的气孔就位于表皮下面,经抛丸或初加工后显露出来,因此又称为“皮下气孔”。大多为表面光洁的细小圆球形孔洞,孔内有石墨膜。孔径大约只有~1mm

灰铸铁缺陷产生的原因分析及预防措施

灰铸铁缺陷产生的原因分析及预防措施

灰铸铁缺陷产生的原因分析及预防措施 一、影响灰铸铁力学性能的主要因素: 化学成分(C、Si、Mn、P、S合金元素)灰铸铁的力学性能金相组织 石墨的形状、大小、分布工艺因素和冶金因素 和数量以及基体组织 工艺、冶金因素:主要有冷却速度,铁液的过热处理、孕育处理、炉料特性等(1)关于冷却速度的影响铸铁是一种对冷却速度敏感性很大的材料,同一铸件的厚壁和薄壁部分,内部和外表都可能获得相差悬殊的组织,俗称为组织的不均匀性。因为石墨化过程在很大程度上取决于冷却速度。影响铸件冷却速度的因素较多:铸件壁厚和重量、铸型材料的种类、浇冒口和重量等等。由于铸件的壁厚、重量和结构取决于工作条件,不能随意改变,故在选择化学成分时应考虑到它们对组织的影响。 (2)关于铁液孕育处理的影响孕育处理就是在铁液进入铸件型腔前,把孕育剂附加到铁液中以改变铁液的冶金状态,从而可改善铸铁的显微组织和性能。 对灰铸铁而言,进行孕育处理是为了获得A型石墨、珠光体基体、细小共晶团的组织,以及减少铸件薄壁或边角处的白口倾向和对铸件壁厚的敏感性;对可锻铸铁而言,是为了缩短短退火周期,增大铸件的允许壁厚和改善组织的结构;对球墨铸铁而言,是为了减少铸件白口倾向,提高球化率和改善石墨的圆整性。 (3)关于铁液过热处理的影响。提高铁液过热温度可以:①增加化合碳含量和相应减少石墨碳含量,②细化石墨,并使枝晶石墨的形成,③消除铸铁的“遗传性”,④提高铸件断面上组织的均匀性,⑤有利于铸件的补缩。同样,铁液保温也有铁液过热的类似作用。

(4)关于炉料特性的影响实际生产中往往发现改变金属炉料(例如采用不同产地的生铁或改变炉料的配比等)而化学成分似乎无变化的情况下铸铁具有不同的组织和性能,这说明原材料的性质直接影响着用它熔炼出来的铸铁的性质,称为铸铁的:“遗传性”为此,采用提高铁液温度和使用多种铁料配料可消除这种“遗传性”,并改善铸铁的组织和性能。 综上所述,铸铁的工艺因素和冶金因素对铸铁的力学性能有着很大的影响,因此,不应忽视对这些影响因素的控制。 二、灰铸铁不可用热处理的方法来达到牌号要求 一般说来,热处理能在很大程度上改善铸造合金的组织和性能,但在灰铸铁条件下,热处理所能发挥的作用相对较小。在灰铸铁中,石墨对铸铁性能的影响很大,而任何的热处理方法都不能改变石墨的形态和分布,故不可通过热处理来有效地提高灰铸铁的性能使之达到牌号要求。 但是,提高灰铸铁力学性能的方法很多,如合理选配化学成分、改变炉料组成、过热处理铁液、孕育处理、微量或低合金化等,都可取得很好效果。 三、生产高牌号灰铸铁(孕育铸铁)的注意事项 生产产高牌号灰铸铁(一般指HT200以上)时,为了获得高的力学性能,必须尽可能地减少石墨的数量、减小石墨的长度。传统的方法就是降低铁液的碳、硅含量、提高铁液的冷凝速度,但幅度稍大时就会出现D型过冷石墨及白口,反而降低灰铸铁的力学性能。 在炉前或在浇注前往铁液中添加适量的、以硅铁为主的铁合金碎粒被称作孕育处理。孕育处理在铁液中提供大量的、石墨借以生核的生核质点。有效的

球墨铸铁件常见缺陷的分析与对策(1)

缩孔缩松 影响因素 (1)碳当量:提高碳量,增大了石墨化膨胀,可减少缩孔缩松。此外,提高碳当量还可提高球铁的流动性,有利于补缩。生产优质铸件的经验公式为C%+1/7Si%>3 9%。但提高碳当量时,不应使铸件产生石墨漂浮等其他缺陷。 (2)磷:铁液中含磷量偏高,使凝固范围扩大,同时低熔点磷共晶在最后凝固时得不到补给,以及使铸件外壳变弱,因此有增大缩孔、缩松产生的倾向。一般工厂控制含磷量小于0 08%。 (3)稀土和镁:稀土残余量过高会恶化石墨形状,降低球化率,因此稀土含量不宜太高。而镁又是一个强烈稳定碳化物的元素,阻碍石墨化。由此可见,残余镁量及残余稀土量会增加球铁的白口倾向,使石墨膨胀减小,故当它们的含量较高时,亦会增加缩孔、缩松倾向。 (4)壁厚:当铸件表面形成硬壳以后,内部的金属液温度越高,液态收缩就越大,则缩孔、缩松的容积不仅绝对值增加,其相对值也增加。另外,若壁厚变化太突然,孤立的厚断面得不到补缩,使产生缩孔缩松倾向增大。 (5)温度:浇注温度高,有利于补缩,但太高会增加液态收缩量,对消除缩孔、缩松不利,所以应根据具体情况合理选择浇注温度,一般以1300~1350℃为宜。 (6)砂型的紧实度:若砂型的紧实度太低或不均匀,以致浇注后在金属静压力或膨胀力的作用下,产生型腔扩大的现象,致使原来的金属不够补缩而导致铸件产生缩孔缩松。移砂缩松 (7)浇冒口及冷铁:若浇注系统、冒口和冷铁设置不当,不能保证金属液顺序凝固;另外,冒口的数量、大小以及与铸件的连接当否,将影响冒口的补缩效果。 缩松缩孔防止措施 (1)控制铁液成分:保持较高的碳当量(>3 9%);尽量降低磷含量(<0 08%);降低残留镁量(<0 07%);采用稀土镁合金来处理,稀土氧化物残余量控制在0 02%~0 04%。 (2)工艺设计要确保铸件在凝固中能从冒口不断地补充高温金属液,冒口的尺寸和数量要适当,力求做到顺序凝固。 (3)必要时采用冷铁与补贴来改变铸件的温度分布,以利于顺序凝固。

球墨铸铁金相缺陷

从金相组织判断球铁牌号 从金相组织方面无法具体判别球铁的牌号,具体看看 GB/T9441-2009《球墨铸铁金相检验》和GB/T1348-2009《球墨铸铁 件》就知道了,主要判别球铁牌号的依据还是力学性能的数据,成 分和金相都不作为标准,成分主要控制大概球铁的工艺性能,金相 主要看球化率和珠光体的含量其实也还是看工艺性能指标。 球墨铸铁与铸铁的区别 球铁是球墨铸铁的简称,球墨铸铁是铸铁的一种 铸铁,含碳量在2%以上的铁碳合金。工业用铸铁一般含碳量为2%~4%。碳在铸铁中多以石墨形态存在,有时也以渗碳体形态存在。除碳外,铸铁中还含有1%~3%的硅,以及锰、磷、硫等元素。合金铸铁还含有镍、铬、钼、铝、铜、硼、钒等元素。碳、硅是影响铸铁显微组织和性能的主要元素。 铸铁可分为: ①灰口铸铁。含碳量较高(2.7%~4.0%),碳主要以片状石墨形态存在,断口呈灰色,简称灰铁。熔点低(1145~1250℃),凝固时收缩量小,抗压强度和硬度接近碳素钢,减震性好。用于制造机床床身、汽缸、箱体等结构件。 ②白口铸铁。碳、硅含量较低,碳主要以渗碳体形态存在,断口呈银白色。凝固时收缩大,易产生缩孔、裂纹。硬度高,脆性大,不能承受冲击载荷。多用作可锻铸铁的坯件和制作耐磨损的零部件。 ③可锻铸铁。由白口铸铁退火处理后获得,石墨呈团絮状分布,简称韧铁。其组织性能均匀,耐磨损,有良好的塑性和韧性。用于制造形状复杂、能承受强动载荷的零件。 ④球墨铸铁。将灰口铸铁铁水经球化处理后获得,析出的石墨呈球状,简称球铁。比普通灰口铸铁有较高强度、较好韧性和塑性。用于制造内燃机、汽车零部件及农机具等。 ⑤蠕墨铸铁。将灰口铸铁铁水经蠕化处理后获得,析出的石墨呈蠕虫状。力学性能与球墨铸铁相近,铸造性能介于灰口铸铁与球墨铸铁之间。用于制造汽车的零部件。 ⑥合金铸铁。普通铸铁加入适量合金元素(如硅、锰、磷、镍、铬、钼、铜、铝、硼、钒、锡等)获得。合金元素使铸铁的基体组织发生变化,从而具有相应的耐热、耐磨、耐蚀、耐低温或无磁等特性。用于制造矿山、化工机械和仪器、仪表等的零部件。

球墨铸铁中所含的化学成分及其含量对性能的影响

球墨铸铁中所含的化学成分及其含量对性能的影响

————————————————————————————————作者:————————————————————————————————日期:

球墨铸铁简介: 球墨铸铁是通过球化和孕育处理得到球状石墨,有效地提高了铸铁的机械性能,特别是提高了塑性和韧性,从而得到比碳钢还高的强度。球墨铸铁是20世纪五十年代发展起来的一种高强度铸铁材料,其综合性能接近于钢,正是基于其优异的性能,已成功地用于铸造一些受力复杂,强度、韧性、耐磨性要求较高的零件。球墨铸铁已迅速发展为仅次于灰铸铁的、应用十分广泛的铸铁材料。所谓“以铁代钢”,主要指球墨铸铁。 析出的石墨呈球形的铸铁。球状石墨对金属基体的割裂作用比片状石墨小,使铸铁的强度达到基体组织强度的70~90%,抗拉强度可达120kgf/mm2,并且具有良好的韧性。球墨铸铁除铁外的化学成分通常为:含碳量 3.6~3.8%,含硅量2.0~3.0%,含锰、磷、硫总量不超过1.5%和适量的稀土、镁等球化剂。 制造步骤: (一)严格要求化学成分,对原铁液要求的碳硅含量比灰铸铁高,降低球墨铸铁中锰,磷,硫的含量 (二)铁液出炉温度比灰铸铁更高,以补偿球化,孕育处理时铁液温度的损失(三)进行球化处理,即往铁液中添加球化剂 (四)加入孕育剂进行孕育处理 (五)球墨铸铁流动性较差,收缩较大,因此需要较高的浇注温度及较大的浇注系统尺寸,合理应用冒口,冷铁,采用顺序凝固原则 (六)进行热处理 ?球墨铸铁中所含的化学成分及其含量对性能的影响

球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五种元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。以下就球墨铸铁中所含的化学成分及其含量对性能的影响做详细的阐述: 1、碳的作用和影响: 碳是球墨铸铁的基本元素,碳高有助于石墨化。由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在3.5~3.9%之间,碳当量在4.1~4.7%之间。铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。但是,碳含量过高,会引起石墨漂浮。 2、硅的作用和影响 在球墨铸铁中,硅是第二个有重要影响的元素,它不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。但是,硅提高铸铁的韧脆性转变温度,降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。 3、硫的作用和影响 硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷。球墨铸铁中硫的含量一般要求小于0.06%。 4、磷的作用和影响 磷是一种有害元素。它在铸铁中溶解度极低,当其含量小于0.05%时,固溶于基体中,对力学性能几乎没有影响。当含量大于0.05%时,磷极易偏析于共晶团

球墨铸铁中所含的化学成分及其含量对性能的影响

球墨铸铁中所含的化学成分及其含量对性能的影响 球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五种元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。以下就球墨铸铁中所含的化学成分及其含量对性能的影响做详细的阐述: 1、碳的作用和影响: 碳是球墨铸铁的基本元素,碳高有助于石墨化。由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在3.5~3.9%之间,碳当量在4.1~4.7%之间。铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。但是,碳含量过高,会引起石墨漂浮。 2、硅的作用和影响 在球墨铸铁中,硅是第二个有重要影响的元素,它不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。但是,硅提高铸铁的韧脆性转变温度,降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。 3、硫的作用和影响 硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷。球墨铸铁中硫的含量一般要求小于0.06%。 4、磷的作用和影响 磷是一种有害元素。它在铸铁中溶解度极低,当其含量小于0.05%时,固溶于基体中,对力学性能几乎没有影响。当含量大于0.05%时,磷极易偏析于共晶团边界,形成二元、三元或复合磷共晶,降低铸铁的韧性。磷提高铸铁的韧脆性转变温度,当含磷量增加时,韧脆性转变温度就会提高。

球墨铸铁金相缺陷完整版

球墨铸铁金相缺陷 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

从金相组织判断球铁牌号 从方面无法具体判别球铁的牌号,具体看看GB/T9441-2009和 GB/T1348-2009《就知道了,主要判别球铁牌号的依据还是力学性 能的数据,成分和金相都不作为标准,成分主要控制大概球铁的, 金相主要看球化率和珠光体的含量其实也还是看指标。 与铸铁的区别 球铁是的简称,是铸铁的一种 铸铁,含碳量在2%以上的。工业用铸铁一般含碳量为2%~4%。碳在铸铁中多以石墨形态存在,有时也以渗碳体形态存在。除碳外,铸铁中还含有1%~3%的硅,以及锰、磷、硫等元素。还含有镍、铬、钼、铝、铜、硼、钒等元素。碳、硅是影响铸铁显微组织和性能的主要元素。 铸铁可分为: ①。含碳量较高(%~%),碳主要以片状石墨形态存在,断口呈灰色,简称灰铁。熔点低(1145~1250℃),凝固时收缩量小,抗压强度和硬度接近碳素钢,减震性好。用于制造机床床身、汽缸、箱体等结构件。 ②。碳、硅含量较低,碳主要以渗碳体形态存在,断口呈银白色。凝固时收缩大,易产生缩孔、裂纹。硬度高,脆性大,不能承受冲击载荷。多用作可锻铸铁的坯件和制作耐磨损的零部件。 ③可锻铸铁。由后获得,石墨呈团絮状分布,简称韧铁。其组织性能均匀,耐磨损,有良好的塑性和韧性。用于制造形状复杂、能承受强动载荷的零件。 ④。将铁水经后获得,析出的石墨呈球状,简称球铁。比普通有较高强度、较好韧性和塑性。用于制造内燃机、及农机具等。 ⑤蠕墨铸铁。将灰口铸铁铁水经蠕化处理后获得,析出的石墨呈蠕虫状。力学性能与球墨铸铁相近,铸造性能介于灰口铸铁与球墨铸铁之间。用于制造汽车的零部件。 ⑥。普通铸铁加入适量合金元素(如硅、锰、磷、镍、铬、钼、铜、铝、硼、钒、锡等)获得。合金元素使铸铁的基体组织发生变化,从而具有相应的耐热、耐磨、耐蚀、耐低温或无磁等特性。用于制造矿山、化工机械和仪器、仪表等的零部件。

球墨铸铁金相缺陷

球墨铸铁金相缺陷 This manuscript was revised by the office on December 10, 2020.

从金相组织判断球铁牌号 从方面无法具体判别球铁的牌号,具体看看GB/T9441-2009和 GB/T1348-2009《就知道了,主要判别球铁牌号的依据还是力学性 能的数据,成分和金相都不作为标准,成分主要控制大概球铁的, 金相主要看球化率和珠光体的含量其实也还是看指标。 与铸铁的区别 球铁是的简称,是铸铁的一种 铸铁,含碳量在2%以上的。工业用铸铁一般含碳量为2%~4%。碳在铸铁中多以石墨形态存在,有时也以渗碳体形态存在。除碳外,铸铁中还含有1%~3%的硅,以及锰、磷、硫等元素。还含有镍、铬、钼、铝、铜、硼、钒等元素。碳、硅是影响铸铁显微组织和性能的主要元素。 铸铁可分为: ①。含碳量较高(%~%),碳主要以片状石墨形态存在,断口呈灰色,简称灰铁。熔点低(1145~1250℃),凝固时收缩量小,抗压强度和硬度接近碳素钢,减震性好。用于制造机床床身、汽缸、箱体等结构件。 ②。碳、硅含量较低,碳主要以渗碳体形态存在,断口呈银白色。凝固时收缩大,易产生缩孔、裂纹。硬度高,脆性大,不能承受冲击载荷。多用作可锻铸铁的坯件和制作耐磨损的零部件。 ③可锻铸铁。由后获得,石墨呈团絮状分布,简称韧铁。其组织性能均匀,耐磨损,有良好的塑性和韧性。用于制造形状复杂、能承受强动载荷的零件。 ④。将铁水经后获得,析出的石墨呈球状,简称球铁。比普通有较高强度、较好韧性和塑性。用于制造内燃机、及农机具等。 ⑤蠕墨铸铁。将灰口铸铁铁水经蠕化处理后获得,析出的石墨呈蠕虫状。力学性能与球墨铸铁相近,铸造性能介于灰口铸铁与球墨铸铁之间。用于制造汽车的零部件。 ⑥。普通铸铁加入适量合金元素(如硅、锰、磷、镍、铬、钼、铜、铝、硼、钒、锡等)获得。合金元素使铸铁的基体组织发生变化,从而具有相应的耐热、耐磨、耐蚀、耐低温或无磁等特性。用于制造矿山、化工机械和仪器、仪表等的零部件。

铸铁金相组织分析

球墨铸铁金相组织 球墨铸铁金相组织球墨铸铁牌号球墨铸铁是指铁液经球化处置后,使石墨大部或全体呈球状形态的铸铁。 与灰铸铁比拟,球墨铸铁的力学性能有明显提高。由于它的石石墨呈球状,对基体的切割作用最小,可有效地应用基体强度的70%~80%(灰铸铁-般只能应用基体强度的30%)。球墨铸铁还可以通过合金化和热处理,进一步提高强韧性、耐磨性、耐热性和耐蚀性等各项性能。球墨铸铁自1947年问世以来,就获得铸造工作者的青睐,很快地投入了产业性生产。而且,各个时代都有代表性的产品或技巧。20世纪50年代的代表产品是动员机的球墨铸铁曲轴,20世纪60年代是球墨铸铁铸管和铸态球墨铸铁,20世纪70年代是奥氏体-贝氏体球墨铸铁,20世纪80年代以来是厚大断面球墨铸铁和薄小断面(轻量化、近终型)球墨铸铁。 如今,球墨铸铁已在汽车、铸管、机床、矿山和核产业等范畴获得普遍的利用。据统计,2000年世界的球墨铸铁产量已超过1500万吨o 球墨铸铁的牌号是按力学性能指标划分的,国标GB/T 1348-1988《球墨铸铁件》中单铸试块球墨铸铁牌号,见表1。 表1 单铸试块球墨铸铁牌号 牌号 抗拉强度Rm (MPa) 断后伸长率A (%) 布氏硬度 HBW 重要金相组织 QT400-18 400

18 130~180 铁素体 QT400-15 400 15 130~180 铁素体 QT450-10 450 10 160~210 铁素体 QT500-7 500 7 170~230 铁素体+珠光体QT600-3 600 3

190~270 珠光体+铁素体 QT700-2 700 2 225~305 珠光体 QT800-2 800 2 245~335 珠光体 或回火组织 QT900-2 900 2 280~360 贝氏体 或回火组织 球墨铸铁中常见的石墨形态有球状、团状、开花、蠕虫、枝晶等几类。其中,最具代表性的形态是球状。在光学显微镜下察看球状石墨,低倍时,外形近似圆形;高倍时,为

球墨铸铁金相缺陷

从金相组织判断球铁牌号 从方面无法具体判别球铁的牌号,具体看看GB/T9441-2009和 GB/T1348-2009《就知道了,主要判别球铁牌号的依据还是力学性 能的数据,成分和金相都不作为标准,成分主要控制大概球铁的, 金相主要看球化率和珠光体的含量其实也还是看指标。 与铸铁的区别 球铁是的简称,是铸铁的一种 铸铁,含碳量在2%以上的。工业用铸铁一般含碳量为2%~4%。碳在铸铁中多以石墨形态存在,有时也以渗碳体形态存在。除碳外,铸铁中还含有1%~3%的硅,以及锰、磷、硫等元素。还含有镍、铬、钼、铝、铜、硼、钒等元素。碳、硅是影响铸铁显微组织和性能的主要元素。 铸铁可分为: ①。含碳量较高(%~%),碳主要以片状石墨形态存在,断口呈灰色,简称灰铁。熔点低(1145~1250℃),凝固时收缩量小,抗压强度和硬度接近碳素钢,减震性好。用于制造机床床身、汽缸、箱体等结构件。 ②。碳、硅含量较低,碳主要以渗碳体形态存在,断口呈银白色。凝固时收缩大,易产生缩孔、裂纹。硬度高,脆性大,不能承受冲击载荷。多用作可锻铸铁的坯件和制作耐磨损的零部件。 ③可锻铸铁。由后获得,石墨呈团絮状分布,简称韧铁。其组织性能均匀,耐磨损,有良好的塑性和韧性。用于制造形状复杂、能承受强动载荷的零件。 ④。将铁水经后获得,析出的石墨呈球状,简称球铁。比普通有较高强度、较好韧性和塑性。用于制造内燃机、及农机具等。 ⑤蠕墨铸铁。将灰口铸铁铁水经蠕化处理后获得,析出的石墨呈蠕虫状。力学性能与球墨铸铁相近,铸造性能介于灰口铸铁与球墨铸铁之间。用于制造汽车的零部件。 ⑥。普通铸铁加入适量合金元素(如硅、锰、磷、镍、铬、钼、铜、铝、硼、钒、锡等)获得。合金元素使铸铁的基体组织发生变化,从而具有相应的耐热、耐磨、耐蚀、耐低温或无磁等特性。用于制造矿山、化工机械和仪器、仪表等的零部件。

灰铸铁缺陷产生的原因分析与预防措施

灰铸铁缺陷产生的原因分析及预防措施 一、影响灰铸铁力学性能的主要因素: 化学成分(C、Si、Mn、P、S合金元素) 灰铸铁的力学性能金相组织 石墨的形状、大小、分布工艺因素和冶金因素 和数量以及基体组织 工艺、冶金因素:主要有冷却速度,铁液的过热处理、孕育处理、炉料特性等(1)关于冷却速度的影响铸铁是一种对冷却速度敏感性很大的材料,同一铸件的厚壁和薄壁部分,内部和外表都可能获得相差悬殊的组织,俗称为组织的不均匀性。因为石墨化过程在很大程度上取决于冷却速度。影响铸件冷却速度的因素较多:铸件壁厚和重量、铸型材料的种类、浇冒口和重量等等。由于铸件的壁厚、重量和结构取决于工作条件,不能随意改变,故在选择化学成分时应考虑到它们对组织的影响。 (2)关于铁液孕育处理的影响孕育处理就是在铁液进入铸件型腔前,把孕育剂附加到铁液中以改变铁液的冶金状态,从而可改善铸铁的显微组织和性能。 对灰铸铁而言,进行孕育处理是为了获得A型石墨、珠光体基体、细小共晶团的组织,以及减少铸件薄壁或边角处的白口倾向和对铸件壁厚的敏感性;对可锻铸铁而言,是为了缩短短退火周期,增大铸件的允许壁厚和改善组织的结构;对球墨铸铁而言,是为了减少铸件白口倾向,提高球化率和改善石墨的圆整性。 (3)关于铁液过热处理的影响。提高铁液过热温度可以:①增加化合碳含量和相应减少石墨碳含量,②细化石墨,并使枝晶石墨的形成,③消除铸铁的“遗传性”,④提高铸件断面上组织的均匀性,⑤有利于铸件的补缩。同样,

铁液保温也有铁液过热的类似作用。 (4)关于炉料特性的影响实际生产中往往发现改变金属炉料(例如采用不同产地的生铁或改变炉料的配比等)而化学成分似乎无变化的情况下铸铁具有不同的组织和性能,这说明原材料的性质直接影响着用它熔炼出来的铸铁的性质,称为铸铁的:“遗传性”为此,采用提高铁液温度和使用多种铁料配料可消除这种“遗传性”,并改善铸铁的组织和性能。 综上所述,铸铁的工艺因素和冶金因素对铸铁的力学性能有着很大的影响,因此,不应忽视对这些影响因素的控制。 二、灰铸铁不可用热处理的方法来达到牌号要求 一般说来,热处理能在很大程度上改善铸造合金的组织和性能,但在灰铸铁条件下,热处理所能发挥的作用相对较小。在灰铸铁中,石墨对铸铁性能的影响很大,而任何的热处理方法都不能改变石墨的形态和分布,故不可通过热处理来有效地提高灰铸铁的性能使之达到牌号要求。 但是,提高灰铸铁力学性能的方法很多,如合理选配化学成分、改变炉料组成、过热处理铁液、孕育处理、微量或低合金化等,都可取得很好效果。 三、生产高牌号灰铸铁(孕育铸铁)的注意事项 生产产高牌号灰铸铁(一般指HT200以上)时,为了获得高的力学性能,必须尽可能地减少石墨的数量、减小石墨的长度。传统的方法就是降低铁液的碳、硅含量、提高铁液的冷凝速度,但幅度稍大时就会出现D型过冷石墨及白口,反而降低灰铸铁的力学性能。 在炉前或在浇注前往铁液中添加适量的、以硅铁为主的铁合金碎粒被称作

相关文档
最新文档