半导体物理之名词解释

半导体物理之名词解释
半导体物理之名词解释

1.迁移率 参考答案: 单位电场作用下,载流子获得的平均定向运动速度,反映了载流子在电场作用下的输运能力,是半导体物理中重要的概念和参数之一。迁移率的表达式为:*

q m τ

μ=

可见,有效质量和弛豫时间(散射)是影响迁移率的因素。 影响迁移率的主要因素有能带结构(载流子有效质量)、温度和各种散射机构。

n p

neu peu σ=+

2.过剩载流子 参考答案:

在非平衡状态下,载流子的分布函数和浓度将与热平衡时的情形不同。非平衡状态下的载流子称为非平衡载流子。将非平衡载流子浓度超过热平衡时浓度的部分,称为过剩载流子。 非平衡过剩载流子浓度:00,n n n p p p ?=-?=-,且满足电中性条件:n p ?=?。可以产生过剩载流子的外界影响包括光照(光注入)、外加电压(电注入)等。

对于注入情形,通过光照或外加电压(如碰撞电离)产生过剩载流子:2

i np n >,对于抽取情形,通过外加电压使得载流子浓度减小:2

i np n <。 3. n 型半导体、p 型半导体

N 型半导体:也称为电子型半导体.N 型半导体即自由电子浓度远大于空穴浓度的杂质半导体.在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N 型半导体.在N 型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电.自由电子主要由杂质原子提供,空穴由热激发形成.掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强.

P 型半导体:也称为空穴型半导体.P 型半导体即空穴浓度远大于自由电子浓度的杂质半导体.在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P 型半导体.在P 型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电.空穴主要由杂质原子提供,自由电子由热激发形成.掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强. 4. 能带

当N 个原子处于孤立状态时,相距较远时,它们的能级是简并的,当N 个原子相接近形成晶体时发生原子轨道的交叠并产生能级分裂现象。当N 很大时,分裂能级可看作是准连续的,

形成能带。

5.能带理论

这是讨论晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论;对于晶体中的价电子而言,等效势场包括原子实的势场、其他价电子的平均势场和考虑电子波函数反对称而带来的交换作用,是一种晶体周期性的势场。能带理论就是认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动;结果得到:共有化电子的本征态波函数是Bloch函数形式,能量是由准连续能级构成的许多能带。

6.有效质量

7.回旋共振

8. 空穴

空穴是未被电子占据的空量子态,代表价带顶附近的电子激发到导带后留下的价带空状态,是一种为讨论方便而假设的粒子。

9.深能级

半导体中的深能级杂质原子对其价电子的束缚比较紧,则其产生的能级在半导体能带中位于禁带较深处(即比较靠近禁带中央),故称为深能级杂质。杂质电离能大,施主能级远离导带底,受主能级远离价带顶。深能级杂质有三个基本特点:

一、是不容易电离,对载流子浓度影响不大。

二、是一般会产生多重能级,甚至既产生施主能级也产生受主能级。

三、是能起到复合中心作用,使少数载流子寿命降低

四、是深能级杂质电离后变为带电中心,对载流子起散射作用,使载流子迁移率减小,

导电性能下降。

10. 激子

在半导体中,如果一个电子从满的价带激发到空的导带上去,则在价带内产生一个空穴,而在导带内产生一个电子,从而形成一个电子-空穴对。空穴带正电,电子带负电,它们之间的库仑吸引互作用在一定的条件下会使它们在空间上束缚在一起,这样形成的复合体称为激子。

11.有效能态密度

对导带中不同能级上所有的电子,看作是处于导带底Ec,密度为Nc的能级上。这里的Nc 就是电子有效能态密度,对于价带中的空穴同理。

12.费米能级

费米能级标志电子填充能级的水平。费米能级位于禁带之中(即位于价带之上,导带之下),费米能级是量子态是否被电子占据的分界线。在热力学温度0K时,能量高于费米能级的量子态基本是空的,能量低于费米能级的量子态基本上全部被电子所占据。

对于N型半导体费米能级在禁带中央以上;掺杂浓度越大,费米能级离禁带中央越远,越靠近导带底部

对于P 型半导体费米能级在禁带中央以下;掺杂浓度越大,费米能级离禁带中央越远,越靠近价带顶部

13.费米分布 费米分布:1()1

F E E KT

f E e

-=

+表示能量为E 的能级被电子占据的几率,而1()f E -表示能级被空

穴占据的几率。

14.声学波、光学波 声学波:基元的整体运动。

光学波:非共价键性化合物基元中原子的相对运动。 声学波:频率较低,接近声波频率。 光学波:1频率较高,与红外光频率相近。

2有偶极矩,可与光波相互作用。

15.散射机制

(1)载流子散射的原因:只要是破坏晶格周期性势场,(即能够产生附加势场的因素),

就都是散射载流子的根源。 (2)散射分为:

晶格振动散射,杂质电离散射,还有等能谷散射,中性杂质散射,位错散射等。 (3)杂质电离散射

半导体电离的施主或受主杂质是带电的离子,在他们周围有库伦势场,当载流子从离子周围通过时,由于库伦势场的作用,载流子会被散射。

电离杂质散射

32

p NT -

∝( N 是电离杂质浓度),随着温度升高,散射几率变小。

(4)使用条件:低温时比较重要 (5)晶格振动散射

横声学波和横光学波不起作用。 只有长波起作用

长声学纵波:因为纵长声学波会使晶体产生体变——原子分布发生疏密变化,则将导致禁带宽度随之发生变化,即能带极值在晶体中出现波动,从而使得载流子的势能发生了改变,即产生了周期性势场之外的附加势场——称为形变势,所以就将散射载流子。

3*

2

1

ac

P m T τ=

长光学纵波:对于极性晶体(如砷化镓)中的载流子,纵长光学波散射作用较大,因为这种格波在晶体中会产生局部的极化电场——附加势场。

1kT P ωτ

-=∝h

使用条件:高温时比较重要 16.间接复合

电子和空穴通过禁带中的能级(复合中心)复合。 复合中心指的是晶体中的一些杂质或缺陷,他们在禁带中引入离导带底和价带顶都比较远的局域化能级,即复合中心能级。在间接复合过程中,电子跃迁到负荷中心能级。然后再跃迁到价带的空状态,使电子和空穴成对消失。换一种说法是复合中心从导带俘获一个电子,再从价带俘获一个空穴,完成电子与空穴的复合。

17.爱因斯坦关系

18.连续性方程

19.扩散长度

公式:空穴的扩散长度p L =

含义:p L 是空穴在一边扩散一边复合过程中其浓度减少到1/e 时所扩散的距离。

它标志着非平衡载流子深入样品的平均距离。扩散长度与非平衡少子的扩散系数和寿命有关系。

20.热载流子

在强电场作用下,半导体中载流子的平均动能显著超过热平衡载流子的平均动能。这种被显著加热了的载流子称为热载流子。有关现象通常称热电子现象。

所谓热载流子,是指比零电场下的载流子具有更高平均动能的载流子。零电场下,载流子通过吸收和发射声子与晶格交换能量,并与之处于热平衡状态,其温度与晶格温度相等。在有电场的作用存在时,载流子可以从电场直接获取能量,而晶格却不能。晶格只能借助载流子从电场间接获取能量,就从电场获取并积累能量又将能量传递给晶格的稳定之后,载流子的平均动能将高于晶格的平均动能,自然也高于其本身在零电场下的动能,成为热载流子。 对于MOS 器件,由于沟道存在热载流子,将引起陷阱(氧化层陷阱、界面陷阱)产生,导致器件特性的退化。表现为漏电流减少,跨导减小,及阈值电压漂移等。

21.耗尽近似

在空间电荷中,与电离杂质浓度相比,自由载流子浓度可以忽略,这称为耗尽近似。

22.载流子寿命

是指非平衡载流子中非平衡电子衰减到原来数值的1/e所需的时间。

载流子的寿命与复合率有关,复合率越大,寿命越短。

23.扩散系数

定义在单位时间内通过单位面积的载流子数目为扩散流密度S. 则

其中D就是扩散系数,N是载流子密度。

扩散系数与半导体中的密度差异有关。

24.陷阱效应

杂质能级积累非平衡载流子的作用就称为陷阱效应。

陷阱效应是指非平衡载流子落入位于禁带中的杂质或缺陷能级Et 中,使在Et 上的电子或空穴的填充情况比热平衡时有较大的变化,从引起Δn≠Δp,(如何没有陷阱存在时,杂质半导体中产生非平衡载流子的Δn=Δp,如果存在陷阱,一部分非平衡载流子就会落入陷阱之中,仅仅是落入位于禁带中的杂质或缺陷能级Et 中,并没有复合,从而使得Δn≠Δp)这种效应对瞬态过程的影响很重要。

【间接复合效应是指非平衡载流子通过位于禁带中特别是位于禁带中央的杂质或缺陷能级Et 而逐渐消失的效应,Et 的存在可能大大促进载流子的复合;此外,最有效

的复合中心在禁带中央,而最有效的陷阱能级在费米能级附近。一般来说,所有的杂质

或缺陷能级都有某种程度的陷阱效应,而且陷阱效应是否成立还与一定的外界条件有关。】

25.平均自由程与扩散长度有何不同?平均自由时间与非平衡载流子的寿命又有何不

同?

平均自由程是在连续两次散射之间载流子自由运动的平均路程。而扩散长度则是非平

衡载流子深入样品的平均距离。它们的不同之处在于平均自由程由散射决定,而扩散长

度由扩散系数和材料的寿命来决定。

平均自由时间是载流子连续两次散射平均所需的自由时间,非平衡载流子的寿命是指

非平衡载流子的平均生存时间。前者与散射有关,散射越弱,平均自由时间越长;后者

由复合几率决定,它与复合几率成反比关系。

26. 杂质的扩散有哪两种类型

间隙式扩散和替位式扩散

【Na、K、Fe、Cu、Au 在半导体中为间隙式杂质,扩散系数要比替位式杂质大6~7个数量级,掺入它们会污染器件,导致器件无法使用。】

27.雪崩击穿、齐纳击穿以及,掺杂浓度和禁带宽度对他们的影响

齐纳击穿:在高掺杂的情况下,因耗尽层宽度很小,不大的反向电压就可在耗尽层形成很强的电场,而直接破坏共价键,使价电子脱离共价键束缚,产生电子—空穴对,致使电流急剧增大,这种击穿称为齐纳击穿。也称为隧道击穿。齐纳击穿是暂时性的,可以恢复。

齐纳击穿一般发生在低反压、高掺杂的情况下。

雪崩击穿:材料掺杂浓度较低的PN结中,当PN结反向电压增加时,空间电荷区中的电场随着增强。这样通过空间电荷区的电子和空穴,就会在电场作用下,使获得的能量增大。在晶体中运行的电子和空穴将不断的与晶体原子发生碰撞,通过这样的碰撞可使束缚在共价键中的价电子碰撞出来,产生自由电子-空穴对。新产生的载流子在电场作用下撞出其他价电子,

又产生新的自由电子和空穴对。如此连锁反应,使得阻挡层中的载流子的数量雪崩式地增加,流过PN结的电流就急剧增大击穿PN结,这种碰撞电离导致击穿称为雪崩击穿,也称为电子雪崩现象。

雪崩击穿有正温度系数。而齐纳击穿有负温度系数。可以利用这一点减小温漂。

28.说明肖特基二极管与PN结二极管电流输运机制的不同点;这种输运机制的不同,对

器件性能有何影响。

肖特基二极管和PN结二极管具有类似的电流—电压关系,即它们都具有单向导电性;但前者又具有区别于后者的一下显著特点:

首先,就载流子的运动形式而言,PN结正向导通时,由n区注入p区的电子或由p区注入n 区的空穴,都是少数载流子,它们先形成一定的积累,然后靠扩散运动形成电流。这样引起电荷存储效应,严重影响pn结的高频性能。而肖特基二极管的正向电流,主要是由

半导体中的多数载流子进入金属形成的。它是多数载流子器件,不存在电荷存储效应。

因此,肖特基二极管比pn结二极管有更好的高频特性。

其次,对于同样的使用电流,肖特基二极管比pn结二极管具有更低的正向导通电压,一般为0.3V左右。

正因为有以上特点,肖特基二极管在高速集成电路、微波技术等多领域都有很重要的应用。

29.欧姆接触

欧姆接触指的是它不产生明显的附加阻抗,而且不会使半导体内部的平衡载流子浓度发生显著的改变。

是金属-半导体接触的非整流接触,具有线性和对称的电流-电压关系,无整流特性;电阻很低,压降很小,且在结两边都能形成电流,不会使半导体内部的平衡载流子浓度发生显著的变化。

欲形成好的欧姆接触,有二个先决条件:

(1)金属与半导体间有低的势垒高度(Barrier Height)

(2)半导体有高浓度的杂质掺入(N ≧10EXP12 cm-3)

1.半导体表面薄层形成高掺杂,使半导体与金属接触时形成很薄的表面耗尽层以至发生隧道效应,具有较小的接触电阻;

2.半导体表面做粗糙,形成大量的复合中心,使表面耗尽区的复合成为控制电流的主要机构,降低接触电阻;

3.选择使用低势垒欧姆接触。

30.热电子发射效应

热电子发射效应:载流子具有足够的热能时,电荷流过势垒的过程。对Ge、Si、GaAs 等有较高载流子迁移率的半导体,它们的肖特基势垒电流输运机构主要是多数载流子的热发射。特基二极管的正向电流,主要是由半导体中的多数载流子进入金属形成的。这种电流的载流子靠的就是热电子发射。

31.镜像力降低效应

又称肖特基效应,金属与半导体接触时由于功函数的不同,在系统达到热平衡之后,在半导体表面区域产生净电荷。这种净电荷会在金属感应形成镜像电荷,二者形成镜像力,这种镜像力作用引起肖特基势垒降低的现象。

32.表面态

半导体表面由于体内周期场的终止形成不饱和键以及不可避免的沾污,在表面处引起局域化的电子状态。表面态可以是施主型,也可以是受主型。理想表面是指表面层中原子排列的对称性与体内原子完全相同,且表面上不附着任何原子或分子的半无限晶体表面(即晶体的自由表面)。当一块半导体突然被中止时,表面理想的周期性晶格发生中断,从而导致禁带中出现电子态(能级),该电子态称为表面态(Tamm state)

33.亲和势

真空能级与导带底能量差,即。导带底电子逸出体外所需要的最小能量。

34.表面势

金属与半导体接触,由于其功函数的不同,发生电子转移,从而产生接触电势差。当金属与半导体紧密接触(间距减小到原子间距)时,整个接触电势差全部降落在半导体表面,形成表面空间电荷区,使能带发生弯曲,引起半导体表面和内部之间存在电势差,即表面势。

35.肖特基势垒(高度)

金属-半导体结中从金属到半导体的势垒。

36.高表面态密度钉扎

若n 型半导体表面存在受主型表面态,它们将从半导体体内夺取电子而带负电,使半导体表面形成正的空间电荷区即电子势垒。当半导体表面态密度很大时,表面势的变化引起表面态上的电子数目的变化比势垒区中电子数目的变化大很多倍,屏蔽了与金属接触的影响,使半导体内的势垒高度与金属功函数几乎无关,完全由表面态为电中性时的费米能级位置决定,这时的势垒高度被称为高表面态密度钉扎。

37.简并半导体

简并半导体(degenerate semiconductor)是杂质半导体的一种,它具有较高的掺杂浓度,因而它表现得更接近金属。导带中量子态被电子占据(或价带中量子态被空穴占据)的概率比较大,必须考虑泡利不相容原理的限制。这时玻耳兹曼分布函数不再适用,而必须应用费米分布函数来分析能带中的载流子统计分布问题。这种情况称为载流子简并化,发生载流子简并化的半导体称为简并半导体。

①载流子浓度很高

②温度较低

③有效质量m*较小。

Ec-Ef<=0 简并

0< Ec-Ef<=2.3KT 弱简并

Ec-Ef>2.3KT 非简并

38.半导体激光器

工作原理

39.电导-霍尔效应联合测量法

利用霍尔系数和电导率的联合测量,可以用来确定半导体的导电类型和 载流子浓度。通过测量霍尔系数与电导率随温度的变化,可以确定半导体的禁带宽度、杂质电离能及迁移率的温度系数等基本参数。

霍尔效应是一种电流磁效应(如图1)。当半导体样品通以电流Is ,并加一垂直于电流的磁场B ,则在样品两侧产生一横向电势差U H ,这种现象称为“霍尔效应”,U H 称为霍尔电压,

d

B

I R H S H U =

(1)

则:

IsB d

U H H R =

(2)

R H 叫做霍尔系数,d 为样品厚度。

对于P 型半导体样品,

qp H R 1

= (3)

式中q 为空穴电荷电量,p 为半导体载流子空穴浓度。 对于n 型半导体样品,

qn H R 1-= (4)

式中为n 电子电荷电量。

对于电子、空穴混合导电的情况,在计算R H 时应同时考虑两种载流子在磁场偏转下偏转的效果。对于球形等能面的半导体材料,可以证明:

2

2)()(nb p q nb p A R H +-= (7)

式中 p

b μμn =

,μp 、μn 分别为电子和空穴的迁移率,A 为霍尔因子,A 的大

小与散射机理及能带结构有关。

从霍尔系数的表达式可以看出:由R H 的符号可以判断载流子的型,正为P 型,

负为N 型。由R H 的大小可确定载流子浓度,还可以结合测得的电导率算出如下

的霍尔迁移率μH

μH =|R H |σ

(8)

对于P 型半导体μH =μP ,对于N 型半导体μH =μN

霍尔系数R H 可以在实验中测量出来,表达式为

IsB

d U H H R

(9)

式中U H 、Is 、d ,B 分别为霍尔电势、样品电流、样品厚度和磁感应强度。单位分别为伏特(V )、安培(A ),米(m )和特斯拉(T )。但为与文献数据相对应,一般所取单位为U H 伏(V )、Is 毫安(mA )、d 厘米(cm )、B 高斯(Gs ) 、则霍尔系数R H 的单位为厘米3/库仑(cm 3/C )。

但实际测量时,往往伴随着各种热磁效应所产生的电位叠加在测量值U H 上,

引起测量误差。为了消除热磁效应带来的测量误差,可采用改变流过样品的电流方向及磁场方向予以消除。 2.霍尔系数与温度的关系

R H 与载流子浓度之间有反比关系,当温度不变时,载流子浓度不变,R H 不变,

而当温度改变时,载流子浓度发生,R H 也随之变化。 实验可得|R H |随温度T 变化的曲线。 3.半导体电导率

在半导体中若有两种载流子同时存在,其电导率σ为

σ=qpu P +qnu n

(10)

实验中电导率σ可由下式计算出

σ=I/ρ=Il/U σad

(11)

式中为ρ电阻率,I 为流过样品的电流,U σ、l 分别为两测量点间的电压降和长度,a 为样品宽度,d 为样品厚度。

40.霍尔效应

载流子在磁场中受到洛伦兹力的作用而发生偏转,电子或空穴在极板上聚集,从而在两极板之间出现电势差的效应叫做霍尔效应。

41.电子亲和能

电子亲和能是指真空的自由电子能级与导带底能级之间的能量差,也就是把导带底的电子拿出到真空去而变成自由电子所需要的能量。

电子亲和能有如下特点:

(1)大多数元素原子的第一电子亲和能是负值,少数是正值。这一点与电离能不同。(2)第一亲和能值较小,与电离能相比,元素的第一电子亲和能的绝对值要小得多。(3)第二电子亲和能是正值。这是因为使一个负一价的离子再结合一个电子必须克服负离子与电子间的静电排斥力,克服排斥力需要吸收能量。

42.硅的导带特点

硅的导带极小值发生在<100>轴0.8Kx处,有6个彼此对称的能谷,等能面是旋转椭球面,旋转轴是<100>轴,

可以表示成

42.锗的导带特点

锗的导带极小值发生在<111>方向的布里渊区边界上,有4个彼此对称的能谷,等能面是旋转椭球面,旋转轴是<111>轴,

43.砷化镓的导带特点

简明教程P42

44. 影响平带电压VFB 的因素。

45.隧道二极管

46.为什么双异质结半导体激光器比同质结半导体激光器有低得多的阈值电流密度

异质结就是由带隙及折射率都不同的两种半导体材料构成的PN结。同质结就是同一种半导体形成的结。双异质结是利用不同折射率的材料对光波进行限制,利用不同带隙的材料对载流子进行限制。拿P-P-N型双异质结激光器来说,注入到“结”界面处的载流子受到异质结的阻挡,形成很好的侧向限制,产生所谓的超注入现象。这就像是十字路口堵车一样,这些载流子挤在一块,导致密度显著增加,只要加很小的泵浦电压即可以实现粒子束反转。而同质结激光器则没有这种情况,它的能带图不像双异质结的那样在“结”处有褶皱,而是平坦的,载流子不会在“结”处拥堵,密度远小于双异质结在“结”处的载流子密度。这导致了泵浦时它们阈值电流密度的差异。

47.耿氏效应

耿氏效应(Gunn effect)是 1963年,由耿氏(J.B.Gunn) 发现的一种效应。当高于临界

值的恒定直流电压加到一小块N型砷化镓相对面的接触电极上时,便产生微波振荡。在N型砷化镓薄片的二端制作良好的欧姆接触电极,并加上直流电压使产生的电场超过 3kV/cm时,由于砷化镓的特殊性质就会产生电流振荡,其频率可达10^9Hz,这就是耿氏二极管。这种在半导体本体内产生高频电流的现象称为耿氏效应。

砷化镓的能带结构中,导带有两个能谷,两能谷的能隙为0。36eV。把砷化镓材料置于外电场中时,外电场的作用使体内电子在能谷之间跃迁,导致其电导率随电场的增加时而增加,时而减小,从而形成了体内的高频振荡现象。

48.PN结反向偏压下偏离实际的因素

49.重掺杂禁带宽度变窄的原因

杂质能级都在禁带中,以N型半导体为例,杂质能级靠近导带,热激发后可以提供电子作为载流子。但是随着掺杂浓度增加,杂质提供的电子变多,但是每个能级上能够提供的态密度是一定的,所以杂质能级就会变成一个能带并向导带延伸,如果掺杂浓度足够高,杂质能带就有可能和导带连在一起了形成一个整体的能带,从而看起来就是禁带宽度变小,距离为价带到杂质能级的最低能级之差了

当杂质原子增多,原子间的间距减小,电子共有化现象发生。电子之前可以在所有杂质原子同一能级自由运动,随着原子增多,间距减小,电子可以在所有原子所有能级自由运动,这就表现为能级分裂,扩展成能带,所以禁带减小。能级分裂的程度与杂质材料和掺杂浓度有关。当浓度超过一定值后,能级扩展成能带,进一步增加浓度,对能带宽度影响不大,但是对当中的分裂能级之间的间隔有点影响,影响很小。所以禁带宽度趋于稳定值。

50.等电子杂质

当杂质的价电子数等于其所替代的主晶格原子的价电子数时,这种杂质称为等电子杂质.

所谓等电子杂质是与基质晶体原子具有相同数量价电子的杂质,它们替代了格点上的同族原子后,基本上仍是电中性的。但是由于原子系数不同,这些原子的共价半径和电负性有差别,因而他们能俘获某种载流子而形成带电中心。这个带电中心就称为等电子陷阱。只有当掺入原子与基质晶体原子在电负性和共价半径方面具有较大差别时,才能形成等电子陷阱

51.

半导体物理学第五章习题答案电子版本

半导体物理学第五章 习题答案

第五章习题 1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空 穴的寿命为100us 。计算空穴的复合率。 2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩 载流子,产生率为,空穴寿命为 。 (1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。 3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10 cm 。今用光照射该样品,光被半导体均匀的吸 收,电子-空穴对的产生率是1022 cm -3s-1 ,试计算光照下样 品的电阻率,并求电导中少数在流子的贡献占多大比例? s cm p U s cm p U p 31710 10010 313/10U 100,/10613 ==?= ====?-??-τ τμτ得:解:根据?求:已知:τ τ τ ττ g p g p dt p d g Ae t p g p dt p d L L t L =?∴=+?-∴=?+=?+?-=?∴-. 00 )2()(达到稳定状态时,方程的通解:梯度,无飘移。 解:均匀吸收,无浓度g p L 0 .=+?-τ 光照达到稳定态后

4. 一块半导体材料的寿命=10us ,光照在材料中会产生 非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几? 5. n 型硅中,掺杂浓度N D =1016 cm -3 , 光注入的非平衡载流子浓度 n=p=1014cm -3 。计算无光照和有光照的电导率。 % 2606 .38 .006.3500106.1109.,.. 32.0119161 0' '==???=?∴?>?Ω==-σσ ρp u p p p p cm 的贡献主要是所以少子对电导的贡献献 少数载流子对电导的贡 。 后,减为原来的光照停止%5.1320%5.13) 0() 20()0()(1020 s e p p e p t p t μτ ==???=?-- cm s q n qu p q n p p p n n n cm p cm n cm p n cm n K T n p n i /16.21350106.110:,/1025.2,10/10.105.1,30019160000003403160314310=???=≈+=?+=?+=?===?=??==---μμσ无光照则设本征 空穴的迁移率近似等于的半导体中电子、注:掺杂有光照131619140010(/19.20296.016.2)5001350(106.11016.2)(: --=+=+???+≈+?++=+=cm cm s nq q p q n pq nq p n p n p n μμμμμμσ

半导体物理试卷b答案

一、名词解释(本大题共5题每题4分,共20分) 1. 直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合。 2.本征半导体:不含任何杂质的纯净半导体称为本征半导体,它的电子和空穴数量相同。 3.简并半导体:半导体中电子分布不符合波尔兹满分布的半导 体称为简并半导体。 过剩载流子:在光注入、电注入、高能辐射注入等条件下,半导体材料中会产生高于热平衡时浓度的电子和空穴,超过热平衡浓度的电子△0和空穴△0称为过剩载流子。 4. 有效质量、纵向有效质量与横向有效质量 答:有效质量:由于半导体中载流子既受到外场力作用,又受到半导体内部周期性势场作用。有效概括了半导体内部周期性势场的作用,使外场力和载流子加速度直接联系起来。在直接由实验测得的有效质量后,可以很方便的解决电子的运动规律。 5. 等电子复合中心 等电子复合中心:在 V族化合物半导体中掺入一定量与主原子等价的某种杂质原子,取代格点上的原子。由于杂质原子与主原子之间电性上的差别,中性杂质原子可以束缚电子或空穴而成为带电中心。带电中心吸引与被束缚载流子符号相反的载流子,形成一个激子束缚态。这种激子束缚态叫做等电子复合中心。二、选择题(本大题共5题每题3分,共15分)

1.对于大注入下的直接辐射复合,非平衡载流子的寿命与(D ) A. 平衡载流子浓度成正比 B. 非平衡载流子浓度成正比 C. 平衡载流子浓度成反比 D. 非平衡载流子浓度成反比 2.有3个硅样品,其掺杂情况分别是: 甲.含铝1×10-153乙.含硼和磷各1×10-173丙.含镓1×10-173 室温下,这些样品的电子迁移率由高到低的顺序是(C )甲乙丙 B. 甲丙乙 C. 乙甲丙D. 丙甲乙 3.有效复合中心的能级必靠近( A ) A.禁带中部 B.导带 C.价带 D.费米能级 4.当一种n型半导体的少子寿命由直接辐射复合决定时,其小注入下的少子寿命正比于(C ) A.10 B.1/△n C.10 D.1/△p 5.半导体中载流子的扩散系数决定于其中的( A ) A.散射机构 B. 复合机构 C.杂质浓变梯度 D.表面复合速度 6.以下4种半导体中最适合于制作高温器件的是( D )

半导体物理作业与答案

3.试用掺杂半导体的能带图解释说明右图中 N 型硅中载流子浓度随温度的变化过程。并在图上标出低温弱电离区, 中间电离区,强电离区,过渡区,高温本征激发区。 第四章:半导体的导电性 1.半导体中有哪几种主要的散射机构,它们跟温度的变化关系如何?并从散射的观点解释下图中硅电阻率随温度的变化曲线。 (1)电离杂质的散射 温度越高载流子热运动的平均速度越大,可以较快的掠过杂质离子不易被散射P 正比NiT (-3/2) (2)晶格振动的散射随温度升高散射概率增大 (3)其他散射机构 1.中性杂质散射 在温度很低时,未电离的杂志的书目比电离杂质的数目大的多,这种中性杂质也对周期性势场有一定的微扰作用而引起散射,当温度很低时,晶格振动散射和电离杂志散射都很微弱的情况下,才引起主要的散射作用 2.位错散射 位错线上的不饱和键具有中心作用,俘获电子形成负电中心,其周围将有电离施主杂质的积累从而形成一个局部电场,称为载流子散射的附加电场 3.等同能谷间散射 对于Ge 、Si 、导带结构是多能谷的。导带能量极小值有几个不同的波矢值。对于多能谷半导体,电子的散射将不只局限于一个能谷内,可以从一个能谷散射到另一个,称为谷间散射 AB 段温度很低本征激发可忽略,载流子主要有杂志电离提供,随温度升高增加散射主要由电离杂质决定,迁移率随温度升高而增大,所以电阻率随温度升高而下降 BC 段 温度继续升高,杂质已经全部电离,本征激发还不显著,载流子基本上不随温度变化,晶格振动上升为主要矛盾,迁移率随温度升高而降低,所以电阻率随温度升高而下增大 C 段温度继续升高,本征激发很快增加,大量的本征载流子产生远远超过迁移率减小对电阻率的影响,杂质半导体的电阻率将随温度升高极具的下降,表现出同本征半导体相似的特征 第六章:pn 结 1证明:平衡状态下(即零偏)的pn 结 E F =常数u 得则考虑到则因为dx x qV d dx dE dx dE dx dE q nq J dx dE dx dE q T k dx n d T k E E n n e n n dx n d q T k nq J q T k D dx dn qD nq J i i F n n i F i F i T k E E i n n n n n n n i F )] ([)(1)()(ln ln ln )(ln ,00)/()(0 00-=∴ ? ?????-+=-=?-+ ==?? ? ???+== +=-E E E μμμμ dx dE p J dx dE n J F p p F n n μμ==,平衡时Jn ,Jp =0,所以EF 为常数 2.推导计算pn 结接触电势差的表达式。 假设:P 区:Ec=Ecp Ev=Evp no=npo po=ppo

半导体物理之名词解释

1.迁移率 参考答案: 单位电场作用下,载流子获得的平均定向运动速度,反映了载流子在电场作用下的输运能力,是半导体物理中重要的概念和参数之一。迁移率的表达式为:* q m τμ= 可见,有效质量和弛豫时间(散射)是影响迁移率的因素。 影响迁移率的主要因素有能带结构(载流子有效质量)、温度和各种散射机构。 n p neu peu σ=+ 2.过剩载流子 参考答案: 在非平衡状态下,载流子的分布函数和浓度将与热平衡时的情形不同。非平衡状态下的载流子称为非平衡载流子。将非平衡载流子浓度超过热平衡时浓度的部分,称为过剩载流子。 非平衡过剩载流子浓度:00,n n n p p p ?=-?=-,且满足电中性条件:n p ?=?。可以产 生过剩载流子的外界影响包括光照(光注入)、外加电压(电注入)等。 对于注入情形,通过光照或外加电压(如碰撞电离)产生过剩载流子:2i np n >,对于抽取情形,通过外加电压使得载流子浓度减小:2i np n <。 3. n 型半导体、p 型半导体 N 型半导体:也称为电子型半导体.N 型半导体即自由电子浓度远大于空穴浓度的杂质半导体.在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N 型半导体.在N 型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电.自由电子主要由杂质原子提供,空穴由热激发形成.掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强. P 型半导体:也称为空穴型半导体.P 型半导体即空穴浓度远大于自由电子浓度的杂质半导体.在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P 型半导体.在P 型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电.空穴主要由杂质原子提供,自由电子由热激发形成.掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强. 4. 能带 当N 个原子处于孤立状态时,相距较远时,它们的能级是简并的,当N 个原子相接近形成晶体时发生原子轨道的交叠并产生能级分裂现象。当N 很大时,分裂能级可看作是准连续

半导体物理学第五章习题答案

第五章习题 1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。计算空穴的复合率。 2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空 穴寿命为。 (1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。 3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10??cm 。今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例 s cm p U s cm p U p 31710 10010 313/10U 100,/10613 ==?= ====?-??-τ τμτ得:解:根据?求:已知:τ τ τ ττ g p g p dt p d g Ae t p g p dt p d L L t L =?∴=+?-∴=?+=?+?-=?∴-. 00 )2()(达到稳定状态时,方程的通解:梯度,无飘移。 解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p p n p n p n p n L /06.396.21.0500106.1101350106.11010.0:101 :1010100 .19 16191600'000316622=+=???+???+=?+?++=+=Ω=+==?==?=?=+?-----μμμμμμσμμρττ光照后光照前光照达到稳定态后

4. 一块半导体材料的寿命=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几 5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度n=p=1014cm -3。计算无光照和有光照的电导率。 6. 画出p 型半导体在光照(小注入)前后的能带图,标出原来的的费米能级和光照时的准费米能级。 % 2606.38.006.3500106.1109. ,.. 32.0119 161 0' '==???=?∴?>?Ω==-σσ ρp u p p p p cm 的贡献主要是所以少子对电导的贡献献 少数载流子对电导的贡Θ。 后,减为原来的光照停止%5.1320%5.13) 0() 20()0()(1020 s e p p e p t p t μτ ==???=?--cm s q n qu p q n p p p n n n cm p cm n cm p n cm n K T n p n i /16.21350106.110:,/1025.2,10/10.105.1,30019160000003403160314310=???=≈+=?+=?+=?===?=??==---μμσ无光照则设半导体的迁移率) 本征 空穴的迁移率近似等于的半导体中电子、 注:掺杂有光照131619140010(/19.20296.016.2)5001350(106.11016.2)(: --=+=+???+≈+?++=+=cm cm s nq q p q n pq nq p n p n p n μμμμμμσ

半导体物理试卷b答案

半导体物理试卷b答案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

一、名词解释(本大题共5题每题4分,共20分) 1. 直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合。 2.本征半导体:不含任何杂质的纯净半导体称为本征半导体,它的电子和空穴数量相同。 3.简并半导体:半导体中电子分布不符合波尔兹满分布的半导体称为简并半导体。 过剩载流子:在光注入、电注入、高能辐射注入等条件下,半导体材料中会产生高于热平衡时浓度的电子和空穴,超过热平衡浓度的电子△n=n-n 和空穴 称为过剩载流子。 △p=p-p 4. 有效质量、纵向有效质量与横向有效质量 答:有效质量:由于半导体中载流子既受到外场力作用,又受到半导体内部周期性势场作用。有效概括了半导体内部周期性势场的作用,使外场力和载流子加速度直接联系起来。在直接由实验测得的有效质量后,可以很方便的解决电子的运动规律。 5. 等电子复合中心 等电子复合中心:在III- V族化合物半导体中掺入一定量与主原子等价的某种杂质原子,取代格点上的原子。由于杂质原子与主原子之间电性上的差别,中性杂质原子可以束缚电子或空穴而成为带电中心。带电中心吸引与被束缚载流子符号相反的载流子,形成一个激子束缚态。这种激子束缚态叫做等电子复合中心。 二、选择题(本大题共5题每题3分,共15分) 1.对于大注入下的直接辐射复合,非平衡载流子的寿命与(D ) A. 平衡载流子浓度成正比 B. 非平衡载流子浓度成正比 C. 平衡载流子浓度成反比 D. 非平衡载流子浓度成反比2.有3个硅样品,其掺杂情况分别是: 甲.含铝1×10-15cm-3乙.含硼和磷各1×10-17cm-3丙.含镓1×10-17cm-3室温下,这些样品的电子迁移率由高到低的顺序是(C ) 甲乙丙 B. 甲丙乙 C. 乙甲丙 D. 丙甲乙

刘恩科—半导体物理习题

半导体物理习题解答 (河北大学电子信息工程学院 席砺莼) 1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为: E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0 2 23m k h ; m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。试求: ①禁带宽度; ②导带底电子有效质量; ③价带顶电子有效质量; ④价带顶电子跃迁到导带底时准动量的变化。 [解] ①禁带宽度Eg 根据dk k dEc )(=0232m k h +0 12)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值: k min = 14 3 k , 由题中E C 式可得:E min =E C (K)|k=k min = 2 10 4k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0; 并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =2 02 48a m h =11 28282 27106.1)1014.3(101.948)1062.6(----???????=0.64eV ②导带底电子有效质量m n 0202022382322 m h m h m h dk E d C =+=;∴ m n =022 283/m dk E d h C = ③价带顶电子有效质量m ’ 022 26m h dk E d V -=,∴022 2'61/m dk E d h m V n -== ④准动量的改变量 h △k =h (k min -k max )= a h k h 83431= [毕] 1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

半导体物理考试名词解释

1. 有效质量:粒子在晶体中运动时具有的等效质量,它概括 了半导体内部势场的作用。 2. 费米能级:费米能级是T=0 K时电子系统中电子占据态和未占据态的分界线,是T=0 K时系统中电子所能具有的最高能量。 3. 准费米能级:半导体处于非平衡态时,导带电子和价带空穴不再有统一的费米能级,但可以认为它们各自达到平衡,相应的费米能级称为电子和空穴的准费米能级。 4. 金刚石型结构:金刚石结构是一种由相同原子构成的复式 晶体,它是由两个面心立方晶胞沿立方体的空间对角线彼此位移四分之一空间对角线长度套构而成。每个原子周围都有4个最近邻的原子,组成一个正四面体结构。 5. 闪锌矿型结构:闪锌矿型结构的晶胞,它是由两类原子各 自组成的面心立方晶格,沿空间对角线彼此位移四分之一空间对角线长度套构而成。 6. N型半导体:在纯净的硅晶体中掺入五价元素(如磷),使 之取代晶格中硅原子的位置,就形成了N型半导体。7. P型半导体:在纯净的硅晶体中掺入三价元素(如硼), 使之取代晶格中硅原子的位置,形成P型半导体。 8. 状态密度:在能带中能量E附近每单位能量间隔内的量子 态数 9. 费米分布函数:大量电子在不同能量量子态上的统计分布 10.非平衡载流子:半导体处于非平衡态时,比平衡态时多出来的那一部分载流子称为非平衡载流子。Δp=Δn 11.直接复合:电子从导带直接跃迁至价带与空穴相遇而复 合。 12.间接复合:电子通过禁带中的能级而跃迁至价带与空穴 相遇而复合。 13.施主能级:通过施主掺杂在半导体的禁带中形成缺陷能 级,被子施主杂质束缚的电子能量状态称施主能级。 14 受主能级:通过受主掺杂在半导体的禁带中形成缺陷能 级。正常情况下,此能级为空穴所占据,这个被受主杂质束缚的空穴的能量状态称为受主能级。 15.陷阱中心:半导体中的杂质和缺陷在禁带中形成一定的能 级,这些能级具有收容部分非平衡载流子的作用,杂质能级的这种积累非平衡载流子的作用称为陷阱效应。把产生显著陷阱效应的杂质和缺陷称为陷阱中心。 16.复合中心:半导体中的杂质和缺陷可以在禁带中形成一定 的能级,对非平衡载流子的寿命有很大影响。杂质和缺陷越多,寿命越短,杂质和缺陷有促进复合的作用,把促进复合的杂质和缺陷称为复合中心。(2分) 17等电子复合中心:等电子复合中心:在Ⅲ-Ⅴ族化合物半导体中掺入一定量的与主原子等价的某种杂质原子,取代格点上的原子。由于杂质原子和主原子之间电负性的差别,中性杂质原子可以束缚电子或空穴而成为带电中心,带电中心会吸引和被束缚载流子符号相反的载流子,形成一个激子束缚态。 18.迁移率:单位电场作用下,载流子获得的平均定向运动速度,反映了载流子在电场作用下的输运能力,是半导体物 理中重要的概念和参数之一。迁移率的表达式为:μ=qτ/m* 。可见,有效质量和弛豫时间(散射)是影响迁移率的因素。 19.漂移运动:载流子在电场作用下的运动。总漂移电流密度方程 E pq nq J J J p n p n ) (μ μ+ = + = 20.扩散运动:当半导体内部的载流子存在浓度梯度时,引起载流子由浓度高的地方向浓度低的地方扩散,扩散运动是载流子的有规则运动。电子扩散电流dx dn qD J n diff n = , 空穴扩散电流dx dp qD J p diff p - = , 21.简并半导体:对于重掺杂半导体,费米能级接近或进入导带或价带,导带/价带中的载流子浓度很高,泡利不相容原理起作用,电子和空穴分布不再满足玻耳兹曼分布,需要采用费米分布函数描述。称此 类半导体为简并半导体。满足的条件 为 22.非简并半导体:掺杂浓度较低,其费米能级EF在禁带中 的半导体;半导体中载流子分布可由经典的玻尔兹曼分布代替费米分布描述时,称之为非简并半导体 23迁移率:单位电场作用下,载流子获得的平均定向运动速度,反映了载流子在电场作用下的输运能力,是半导体物理中重要的概念和参数之一。迁移率的表达式为:μ=qτ/m* 。可见,有效质量和弛豫时间(散射)是影响迁移率的因素。 24硅中掺金的工艺主要用于制造__器件。 若某材料电阻率随温度上升而先下降后上升,该材料是__。 25.Pn结外加反向偏压时,流过pn结的电流比由扩散理论得 到的理论结果要大,而且随外加反向偏压的增大而缓慢增加。除扩散电流外,该电流还包括__。 26若某半导体导带中发现电子的几率为零,则该半导体必定__。 27室温下,,已知Si的电子迁移率为, Dn为。 28在光电转换过程中,硅材料一般不如砷化镓量子效率高,因其。 28.有效陷阱中心的位置靠近。 29.对于只含一种杂质的非简并n型半导体,费米能级Ef随 温度上升而。 30.长声学波对载流子的散射几率Ps与温度T的关系 是,由此所决定的迁移率与温度的关系为31.已知硅的禁带宽度为1.12eV,则本征吸收的长波限为 (微米),锗的禁带宽度为0.67eV,则长波限为(微米)。 32.复合中心的作用是。起有效复合中 心的杂质能级必须位于,而且对电子和空穴的俘获系数rn 和rp 须满足。 0.026 k T q V =

半导体物理期末试卷(含部分答案

一、填空题 1.纯净半导体Si 中掺错误!未找到引用源。族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半导体称 N 型半导体。 2.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载流子将做 漂移 运动。 3.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不变 ;当温度变化时,n o p o 改变否? 改变 。 4.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 5. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载 q n n 0=μ ,称为 爱因斯坦 关系式。 6.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 7.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主要作用 对载流子进行复合作用 。 8、有3个硅样品,其掺杂情况分别是:甲 含铝1015cm -3 乙. 含硼和磷各1017 cm -3 丙 含镓1017 cm -3 室温下,这些样品的电阻率由高到低的顺序是 乙 甲 丙 。样品的电子迁移率由高到低的顺序是甲丙乙 。费米能级由高到低的顺序是 乙> 甲> 丙 。 9.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那么 T k E E F C 02>- 为非简并条件; T k E E F C 020≤-< 为弱简并条件; 0≤-F C E E 为简并条件。 10.当P-N 结施加反向偏压增大到某一数值时,反向电流密度突然开始迅速增大的现象称为 PN 结击穿 ,其种类为: 雪崩击穿 、和 齐纳击穿(或隧道击穿) 。 11.指出下图各表示的是什么类型半导体? 12. 以长声学波为主要散射机构时,电子迁移率μn 与温度的 -3/2 次方成正比 13 半导体中载流子的扩散系数决定于其中的 载流子的浓度梯度 。 14 电子在晶体中的共有化运动指的是 电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由地运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动 。 二、选择题 1根据费米分布函数,电子占据(E F +kT )能级的几率 B 。 A .等于空穴占据(E F +kT )能级的几率 B .等于空穴占据(E F -kT )能级的几率 C .大于电子占据E F 的几率 D .大于空穴占据 E F 的几率 2有效陷阱中心的位置靠近 D 。 A. 导带底 B.禁带中线 C .价带顶 D .费米能级 3对于只含一种杂质的非简并n 型半导体,费米能级E f 随温度上升而 D 。 A. 单调上升 B. 单调下降 C .经过一极小值趋近E i D .经过一极大值趋近E i 7若某半导体导带中发现电子的几率为零,则该半导体必定_D _。 A .不含施主杂质 B .不含受主杂质 C .不含任何杂质 D .处于绝对零度

半导体物理作业

半导体物理作业 第一章:半导体中的电子状态 2.已知一维晶体的电子能带可写为式中,a 为晶格常数。试求: (1)能带的宽度; (2)电子的波矢k 状态时的速度; (3)能带底部和顶部电子的有效质量。 第三章:半导体中载流子的统计分布 1.推导半导体的状态密度分布函数 2.利用玻尔兹曼分布函数推导热平衡时半导体的载流子浓度:

并证明n0,p0满足质量作用定律: 3.试用掺杂半导体的能带图解释说明右图中N型硅中载流子浓度随温度的变化过程。并在图上标出低温弱电离区,中间电离区,强电离区,过渡区,高温本征激发区。 第四章:半导体的导电性 1.半导体中有哪几种主要的散射机构,它们跟温度的变化关系如何?并从散射的观点解释下图中硅电阻率随温度的变化曲线。 第五章:非平衡载流子 1.半导体因光照或电注入就可以产生非平衡载流子,从而在半导体中形成载流子的浓度梯度,产生载流子的扩散流,试分别从1)样品足够厚2)样品厚度一定两种条件推导相应的非平衡载流子浓度分布函数及相应的扩散流密度的表达式。

2.对于一个非均匀掺杂半导体,半导体中会产生一个内建电场,试说明内建电场的形成机制 并推导载流子漂移运动与扩散运动之间的爱因斯坦关系式。 第六章:pn结 1证明:平衡状态下(即零偏)的pn结E F=常数 2.推导计算pn结接触电势差的表达式。 3.画出pn结零偏,正偏,反偏下的能带图 4. 画出pn结零偏,正偏,反偏下的载流子分布图 5. 理想pn结的几个假设条件是什么,推导理想pn结的电流电压方程,并画图示出。 6.由图所示,试说明影响pn结电流电压特性偏离理想方程的各种因素。

半导体物理名词解释

半导体物理名词解释

1.单电子近似:假设每个电子是在周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。该势场是具有与晶格同周期的周期性势场。 2.电子的共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原于转移到相邻的原子上去,因而,电子将可以在整个晶体中运动。这种运动称为电子的共有化运动。 3.允带、禁带: N个原子相互靠近组成晶体,每个电子都要受到周围原子势场作用,结果是每一个N度简并的能级都分裂成距离很近能级,N个能级组成一个能带。分裂的每一个能带都称为允带。允带之间没有能级称为禁带。 4.准自由电子:内壳层的电子原来处于低能级,共有化运动很弱,其能级分裂得很小,能带很窄,外壳层电子原来处于高能级,特别是价电子,共有化运动很显著,如同自由运动的电子,常称为“准自由电子”,其能级分裂得很厉害,能带很宽。 6.导带、价带:对于被电子部分占满的能带,在外电场的作用下,电子可从外电场中吸收能量跃迁到未被电子占据的能级去,形成了电流,起导电作用,常称这种能带为导带。下面是已被价电子占满的满带,也称价带。 8.(本证激发)本征半导体导电机构:对本征半导体,导带中出现多少电子,价带中相应地就出现多少空穴,导带上电子参与导电,价带上空穴也参与导电,这就是本征半导体的导电机构。 9.回旋共振实验意义:这通常是指利用电子的回旋共振作用来进行测试的一种技术。该方法可直接测量出半导体中载流子的有效质量,并从而可求得能带极值附近的能带结构。当交变电磁场角频率W等于回旋频率Wc时,就可以发生共振吸收,Wc=qB/有效质量 10.波粒二象性,动量,能量 P=m0v E=1 2P2 m0 P=hk 1.间隙式杂质:杂质原子位于晶格原子间的间隙位置,称为间隙式杂质。

半导体物理学期末复习试题及答案一

1.与绝缘体相比,半导体的价带电子激发到导带所需要的能量 ( B )。 A. 比绝缘体的大 B.比绝缘体的小 C. 和绝缘体的相同 2.受主杂质电离后向半导体提供( B ),施主杂质电离后向半 导体提供( C ),本征激发向半导体提供( A )。 A. 电子和空穴 B.空穴 C. 电子 3.对于一定的N型半导体材料,在温度一定时,减小掺杂浓度,费 米能级会( B )。 A.上移 B.下移 C.不变 4.在热平衡状态时,P型半导体中的电子浓度和空穴浓度的乘积为 常数,它和( B )有关 A.杂质浓度和温度 B.温度和禁带宽度 C.杂质浓度和禁带宽度 D.杂质类型和温度 5.MIS结构发生多子积累时,表面的导电类型与体材料的类型 ( B )。 A.相同 B.不同 C.无关 6.空穴是( B )。 A.带正电的质量为正的粒子 B.带正电的质量为正的准粒子 C.带正电的质量为负的准粒子 D.带负电的质量为负的准粒子 7.砷化稼的能带结构是( A )能隙结构。 A. 直接 B.间接 8.将Si掺杂入GaAs中,若Si取代Ga则起( A )杂质作

用,若Si 取代As 则起( B )杂质作用。 A. 施主 B. 受主 C. 陷阱 D. 复合中心 9. 在热力学温度零度时,能量比F E 小的量子态被电子占据的概率为 ( D ),当温度大于热力学温度零度时,能量比F E 小的 量子态被电子占据的概率为( A )。 A. 大于1/2 B. 小于1/2 C. 等于1/2 D. 等于1 E. 等于0 10. 如图所示的P 型半导体MIS 结构 的C-V 特性图中,AB 段代表 ( A ),CD 段代表(B )。 A. 多子积累 B. 多子耗尽 C. 少子反型 D. 平带状态 11. P 型半导体发生强反型的条件( B )。 A. ???? ??=i A S n N q T k V ln 0 B. ??? ? ??≥i A S n N q T k V ln 20 C. ???? ??=i D S n N q T k V ln 0 D. ??? ? ??≥i D S n N q T k V ln 20 12. 金属和半导体接触分为:( B )。 A. 整流的肖特基接触和整流的欧姆接触 B. 整流的肖特基接触和非整流的欧姆接触 C. 非整流的肖特基接触和整流的欧姆接触 D. 非整流的肖特基接触和非整流的欧姆接触 13. 一块半导体材料,光照在材料中会产生非平衡载流子,若光照

半导体物理习题及复习资料

复习思考题与自测题 第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层 电子参与共有化运动有何不同。 答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。 2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量 3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么? 答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么? 答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。 5.简述有效质量与能带结构的关系; 答:能带越窄,有效质量越大,能带越宽,有效质量越小。 6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F

(完整版)半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k

半导体物理名词解释总结(不完全正确,仅供参考)

●有效质量:粒子在晶体中运动时具有的等效质量,它概括了半导体内部势场的作用。其 物理意义:1.有效质量的大小仍然是惯性大小的量度;2.有效质量反映了电子在晶格与外场之间能量和动量的传递,因此可正可负。 ●能带:晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些 区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 ●空穴:假想的粒子,与价带顶部的空状态相关的带正电“粒子”。 ●空穴:在电子挣脱价键的束缚成为自由电子,其价键中所留下来的空位。 ●空穴:定义价带中空着的状态看成是带正电荷的粒子,称为空穴。 ●替位式杂质:杂质原子取代晶格原子而位于晶格点处。 ●间隙式杂质:杂质原子位于晶格原子的间隙位置。 ●点缺陷:是最简单的晶体缺陷,它是在结点上或邻近的微观区域内偏离晶体结构正常排 列的一种缺陷。包括:间隙原子和空位是成对出现的弗仓克耳缺陷和只在晶体内形成空位而无间隙原子的肖特基缺陷。 ●施主能级:通过施主掺杂在半导体的禁带中形成缺陷能级,被子施主杂质束缚的电子能 量状态称为施主能级。 ●施主能级:离化能很小,在常温下就能电离而向导带提供电子,自身成为带正电的电离 施主,通常称这些杂质能级为施主能级。 ●受主杂质:能够接受电子而产生导电空穴,并形成负电中心的杂质。 ●受主杂质:Ⅲ族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负点中心,所以 称它们为受主杂质或p型杂质。 ●受主能级:通过受主掺杂在半导体的禁带中形成缺陷能级。正常情况下,此能级为空穴 所占据,这个被受主杂质束缚的空穴的能量状态称为受主能级。 ●n型半导体:以电子为主要载流子的半导体。 ●p型半导体:以空穴为主要载流子的半导体。 ●多数载流子:指的是半导体中的电子流。n型半导体中的电子和p型半导体中的空穴称 之为多数载流子。 ●少数载流子:指的是半导体中的电子流。n型半导体中的空穴和p型半导体中的电子称 之为少数载流子。 ●(半导体材料中有电子和空穴两种载流子。在 N 型半导体中,电子是多数载流子, 空穴 是少数载流子。在P型半导体中,空穴是多数载流子,电子是少数载流子。)

2009半导体物理试卷-B卷答案

………密………封………线………以………内………答………题………无………效…… 电子科技大学二零 九 至二零 一零 学年第 一 学期期 末 考试 半导体物理 课程考试题 B 卷 ( 120分钟) 考试形式: 闭卷 考试日期 2010年 元月 18日 课程成绩构成:平时 10 分, 期中 5 分, 实验 15 分, 期末 70 分 一、填空题: (共16分,每空1 分) 1. 简并半导体一般是 重 掺杂半导体,忽略。 2. 处在饱和电离区的N 型Si 半导体在温度升高后,电子迁移率会 下降/减小 ,电阻 3. 4. 随温度的增加,P 型半导体的霍尔系数的符号 由正变为负 。 5. 在半导体中同时掺入施主杂质和受主杂质,它们具有 杂质补偿 的作用,在制 造各种半导体器件时,往往利用这种作用改变半导体的导电性能。 6. ZnO 是一种宽禁带半导体,真空制备过程中通常会导致材料缺氧形成氧空位,存在 氧空位的ZnO 半导体为 N/电子 型半导体。 7. 相对Si 而言,InSb 是制作霍尔器件的较好材料,是因为其电子迁移率较 高/ 8. 掺金工艺通常用于制造高频器件。金掺入半导体Si 中是一种 深能级 9. 有效质量 概括了晶体内部势场对载流子的作用,可通过回旋共振实验来测量。 10. 某N 型Si 半导体的功函数W S 是4.3eV ,金属Al 的功函数W m 是4.2 eV , 该半导

………密………封………线………以………内………答………题………无………效…… 体和金属接触时的界面将会形成 反阻挡层接触/欧姆接触 。 11. 有效复合中心的能级位置靠近 禁带中心能级/本征费米能级/E i 。 12. MIS 结构中半导体表面处于临界强反型时,表面少子浓度等于内部多子浓度,表面 13. 金属和n 型半导体接触形成肖特基势垒,若外加正向偏压于金属,则半导体表面电 二、选择题(共15分,每题1 分) 1. 如果对半导体进行重掺杂,会出现的现象是 D 。 A. 禁带变宽 B. 少子迁移率增大 C. 多子浓度减小 D. 简并化 2. 已知室温下Si 的本征载流子浓度为310105.1-?=cm n i 。处于稳态的某掺杂Si 半导体 中电子浓度315105.1-?=cm n ,空穴浓度为312105.1-?=cm p ,则该半导体 A 。 A. 存在小注入的非平衡载流子 B. 存在大注入的非平衡载流子 C. 处于热平衡态 D. 是简并半导体 3. 下面说法错误的是 D 。 A. 若半导体导带中发现电子的几率为0,则该半导体必定处于绝对零度 B. 计算简并半导体载流子浓度时不能用波尔兹曼统计代替费米统计 C. 处于低温弱电离区的半导体,其迁移率和电导率都随温度升高而增大 D. 半导体中,导带电子都处于导带底E c 能级位置 4. 下面说法正确的是 D 。 A. 空穴是一种真实存在的微观粒子 B. MIS 结构电容可等效为绝缘层电容与半导体表面电容的的并联 C. 稳态和热平衡态的物理含义是一样的

半导体物理习题答案

第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。 解:K状态电子的速度为: ?????????????????????????????????????????? (1)同理,-K状态电子的速度则为: ????????????????????????????????????????(2)从一维情况容易看出:??????? ????????????????????????????????????????????????????????(3)同理有:????????????????????????????? ????????????????????????????????????????????????????????(4)???????????????????????????????????????????????????????? ?????????????????????(5) 将式(3)(4)(5)代入式(2)后得: ??????????????????????????????????????????(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。

例2.已知一维晶体的电子能带可写成: 式中,a为晶格常数。试求: (1)能带的宽度; (2)能带底部和顶部电子的有效质量。 解:(1)由E(k)关系??????????????????? ??????????????????????????????????????????????? (1) ????????????????????????????????????(2)令???得:????? 当时,代入(2)得: 对应E(k)的极小值。 ?当时,代入(2)得: 对应E(k)的极大值。 根据上述结果,求得和即可求得能带宽度。 故:能带宽度????????? (3)能带底部和顶部电子的有效质量: 习题与思考题: 1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。

相关文档
最新文档