光遗传学原理及运用

光遗传学的研究进展

光遗传学的研究进展 1111047 李双 摘要:光遗传学就是应用光来控制细胞的活性,已经被证明是神经科学中一种潜力无穷的研究工具。近来光遗传学的应用扩展到了信号转导的研究,也开始有医学临床的应用的报道,进一步发展光遗传学无疑将推动合成神经学、生理学及细胞生物学等多领域的研究。本文介绍光遗传学的发展历程,以及光遗传学在疾病治疗的多方面应用。 关键词:光遗传学疾病治疗神经病学 光遗传学(optogenet-ics)是一种通过使用光学技术和遗传技术来实现控制细胞行为的方法,它克服了传统的只用光学手段控制细胞或有机体活动的许多缺点,为神经科学提供了一种变革性的研究手段。通过光遗传学工具,能够激活清醒哺乳动物的单一神经元,并直接演示神经元激活表现出的行为结果,使得研究人员能够获得关于脊髓回路的一些重要信息。光遗传学研究使用的新技术可以推广到所有类型的神经细胞,比如大脑的嗅觉、视觉、触觉、听觉细胞等,开辟了一个新的让人激动的研究领域。 1.光遗传学的迅速崛起 在光遗传学领域中,格罗·米森伯克(Gero Miesenbck)实验室率先开展这方面的研究。2005 年,卡尔·迪瑟罗思(Karl Deisseroth)、爱德华·博伊登(Edward Boyden)和他们的同事们证明了来自于绿藻的视蛋白可以使神经元产生对光的应答。光遗传学开始引起人们的广泛注意。在其后的几年中,人们实现了活小鼠脑中光可控蛋白质的表达——甚至在活动中的、神志清醒的其他动物中也实现了这种表达——成为了神经科学中的一种重要的实验方法。在研究中,兴奋性的光学开关,比如蓝光激活了的通道视紫红质,已经与抑制性的光敏蛋白质(黄光激活的盐细菌视紫红质氯离子泵)联系起来了,从而开启了这

遗传学(终极版)

第一章绪论 1、遗传学:是研究生物遗传和变异的科学 遗传:亲代与子代相似的现象就是遗传。如“种瓜得瓜、种豆得豆” 变异:亲代与子代、子代与子代之间,总是存在着不同程度的差异,这种现象就叫做变异。 2、遗传学研究就是以微生物、植物、动物以及人类为对象,研究他们的遗传和变异。遗传是相对的、保守的,而变异是绝对的、发展的。没有遗传,不可能保持性状和物种的相对稳定性;没有变异,不会产生新的性状,也就不可能有物种的进化和新品种的选育。遗传、变异和选择是生物进化和新品种选育的三大因素。 3、1953年瓦特森和克里克通过X射线衍射分析的研究,提出DNA分子结构模式理念,这是遗传学发展史上一个重大的转折点。 4.(分离规律)(Mendel’s first law) (孟德尔第一定律) 一对基因在杂合状态互不干扰,保持相互独立,在配子形成时,各自分配到不同的配子中去。正常情况下,配子分离比为1∶1,F2代基因型比是1∶2∶1,F2代表型比为3∶1。 5.(独立分配规律,自由组合规律) (孟德尔第二定律) 控制两对性状的两对等位基因,分别位于不同的同源染色体上。在减数分裂形成配子时,每对同源染色体上的每一对等位基因各自独立分离,而位于非同源染色体上的基因之间则自由组合。 6.遗传的第三定律------连锁遗传规律 1910年以后,摩尔根(Morgan TH)同样发现性状连锁现象,并提出--连锁遗传规律。 7.遗传学的诞生和发展 第二章遗传的物质基础 1.染色质:在细胞尚未进行分裂的核中,可以见到许多由于碱性染料而染色较深的、纤细的网状物,这就是染色质。 2.染色体:含有许多基因的自主复制核酸分子。细菌的全部基因包容在一个双股环形DNA 构成的染色体内。真核生物染色体是与组蛋白结合在一起的线状DNA双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。 3.染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。 4.细胞的膜体系包括哪些膜结构?细胞质里包括哪些主要的细胞器?各有什么特点? 答:细胞的膜体系包括膜结构有:细胞膜、线粒体、质体、内质网、高尔基体、液泡、核膜。细胞质里主要细胞器有:线粒体、叶绿体、核糖体、内质网、中心体。 5.一般染色体的外部形态包括哪些部分?染色体形态有哪些类型? 答:一般染色体的外部形态包括:着丝粒、染色体两个臂、主溢痕、次溢痕、随体。 一般染色体的类型有:V型、L型、棒型、颗粒型。 6.有丝分裂和减数分裂有什么不同?用图表示并加以说明。 答:有丝分裂只有一次分裂。先是细胞核分裂,后是细胞质分裂,细胞分裂为二,各含有一个核。称为体细胞分裂。 减数分裂包括两次分裂,第一次分裂染色体减半,第二次染色体等数分裂。细胞在减数分裂时核内,染色体严格按照一定的规律变化,最后分裂成为4个子细胞,发育成雌性细胞或者雄性细胞,各具有半数的染色体。也称为性细胞分裂。 减数分裂偶线期同源染色体联合称二价体。粗线期时非姐妹染色体间出现交换,遗传物质进行重组。双线期时各个联会了的二价体因非姐妹染色体相互排斥发生交叉互换因而发生变异。有丝分裂则都没有。 减数分裂的中期I 各个同源染色体着丝点分散在赤道板的两侧,并且每个同源染色体

医学遗传学及答案

医学遗传学试卷 姓名 __________ 分数 _______________ 一、名词解释(每题3分,共18分) 1. 核型: 2. 断裂基因: 3. 遗传异质性: 4. 遗传率: 5. 嵌合体; 6. 外显率和表现度: 二、填空题(每空1分,共22分) 1. 人类近端着丝粒染色体的随体柄部次缢痕与( )形成有关,称为( ) )表示,近亲婚配后代基因纯合的可能性用 )和( )两类。 )。核型为46, XX, deL (2)(q35)的个体表明其体内 )或( )变化。 6.细胞分裂早中期、前中期、晚前期或更早时期染色体的带纹,称为( 2. 近亲的两个个体的亲缘程度用( ( )表示。 3. 血红蛋白病分为( 4. Xq27 代表( 的染色体发生了( )。 )-

)和( )的变化。 )造成的( )结构或合成量异常所引起的疾病。 )异常或缺失,使( )的合成受到抑制而引起 的溶血性贫血。 10. 在基因的置换突变中同类碱基卩密喘与卩密喘、瞟吟与瞟吟)的替换称( )-不同类型 碱基(P 密喘与瞟吟)间的替换称为( )<. 11. 如果一条X 染色体XQ27 — Xq28之间呈细丝样结构,并使其所连接的长臂末端形似随体, 则这条X 染色体被称为( )。 12. 多基因遗传病的再发风险与家庭中患者( )以及( )呈正相关。 三、选择题(单选题,每题1分,共25分) 1. 人类1号染色体长臂分为4个区,靠近着丝粒的为()。 A. O 区 B. 1区 C. 2区 D. 3区 E. 4区 2. DNA 分于中碱基配对原则是指( )A. A 配丁,G 配C B. A 配G, G 配T C. A 配 U, G 配 C D. A 配 C, G 配 T E. A 配 T, C 配 U 3. 人类次级精母细胞中有23个()<, A.单价体 B.二价体 C.单分体 D.二分体 E.四分体 4. 46, XY, t (2; 5)(Q21; q31)表示( )<,A —女性体内发生了染色体的插入B. 一男性体 内发生了染色体的易位 C 一男性带有等臂染色体 D. 一女性个体带有易位型的畸变染 色体 E. 一男性个体含有缺失型的畸变染色体 5. MN 基因座位上,M 出现的概率为o. 38,指的是()- A 基因库 B.基因频率 C 基因型频率 D 亲缘系数E.近婚系数 6. 真核细胞中的RNA 来源于( )<,A. DNA 复制 B. DNA 裂解 C. DNA 转化 D. DNA 转录 E .DNA 翻译 7. 脆性X 综合征的临床表现有()。A 智力低下伴眼距宽、鼻梁塌陷、通贯手、趾间距宽 B 智力低下伴头皮缺损、多指、严重唇裂及膊裂C .智力低下伴肌张力亢进。特殊握拳姿势、 摇椅足 D.智力低下伴长脸、大耳朵、大下颁、大睾丸E.智力正常、身材矮小、肘外 翻、乳腺发育差、乳间距宽、颈蹊 8. 基因型为P '邙'的个体表现为( )。A 重型9地中海贫血 B.中间型地中海贫血 C 轻型地中海贫血 D 静止型。地中海贫血E.正常 9. 慢性进行性舞蹈病属常染色体显性遗传病,如果外显率为90%, —个杂合型患者与正常人 结婚生下患者的概率为()<■ A. 50% B. 45% C. 75% D. 25% E. 100% 7. 染色体数日畸变包括( 8. 分子病是指由于( 9. 地中海贫血,是因(

遗传学名词解释E

E effective population size -- The number of individuals in a population that have an equal probability of contributing gametes to the next generation. effector molecule -- Small, biologically active molecule that acts to regulate the activity of a protein by binding to a specific receptor site on the protein. electrophoresis -- A technique used to separate a mixture of molecules by their differential migration through a stationary phase (such as a gel) in an electrical field. endocytosis -- The uptake by a cell of fluids, macromolecules, or particles by pinocytosis, phagocytosis, or receptor-mediated endocytosis. endomitosis -- Chromosomal replication that is not accompanied by either nuclear or cytoplasmic division. endonuclease -- An enzyme that hydrolyzes internal phosphodiester bonds in a polynucleotide chain or nucleic acid molecule. endoplasmic reticulum -- A membranous organelle system in the cytoplasm of eukaryotic cells. The outer surface of the membranes may be ribosome-studded (rough ER) or smooth ER. endopolyploidy -- The increase in chromosome sets that results from endomitotic replication within somatic nuclei. endosymbiont theory -- The proposal that self-replicating cellular organelles such as mitochondria and chloroplasts were originally free-living organisms that entered into a symbiotic relationship with nucleated cells. enhancer -- Originally identified as a 72-bp sequence in the genome of the virus, SV40, that increases the transcriptional activity of nearby structural genes. Similar sequences that enhance transcription have been identified in the genomes of eukaryotic cells. Enhancers can act over a distance of thousands of base pairs and can be located 5', 3' or internal to the gene they affect, and thus are different from promoters. environment -- The complex of geographic, climatic, and biotic factors within which an organism lives. enzyme -- A protein or complex of proteins that catalyzes a specific biochemical reaction.

光遗传学技术在神经生物学领域的发展及应用_邴杰

2014年第49卷第11期生物学通报5 1光遗传学技术 光遗传学技术是一种利用光学原理与基因工程相结合,使特定细胞类群表达或缺失某项功能的新兴实验技术。基于该项技术目的性强、精确度高等特点,近年来,在复杂的生物学机制尤其是脑科学、神经科学等领域的研究中得到了广泛应用,被《Nature Methods》定义为2010年的年度新兴实验方法[1],光遗传学技术被誉为21世纪神经生物学最有影响力的技术方法。 1.1光遗传学技术的发展过程光遗传学技术起源于神经生物学,1979年Francis Crick等认为神经生物学领域中面临的最大挑战是:如何在脑神经研究中精确控制一类被研究的神经元而不影响其他周边神经元的功能。传统研究一般采用的方法是电极刺激或药物处理,然而电极刺激的针对性不强,药物处理作用时间周期太长、作用靶细胞多样等局限性因素,并不能很好地解决此类问题。在20世纪70年代人们对光激活细胞表达机制还不是很清楚,Crick提出可否用光控制细胞中的特定事件。40年前,微生物学家发现一些微生物可产生光门控蛋白,能直接调控质膜离子通道,1971年Stoeckenius和Oesterhelt研究发现细菌视紫红质作为一种离子通道能被光迅速激活,1977年Matsuno-Yagi和Mukohata发现了盐细菌视紫红质,Hegemann等发现了光敏感通道。 传统认为外来膜蛋白对神经细胞具有毒害作用,所以感光蛋白的研究并没有引起神经生物学领域学者的重视。随着基因工程的发展和绿色荧光蛋白在生命科学领域的广泛应用,通过引进外来吸光复合物对相应蛋白进行研究示踪,人们才把视线重新转移到视蛋白的研究上。2005年发现了一种微生物视蛋白,该视蛋白在没有添加任何化学或光敏感复合体的情况下就可以极为敏感地响应光刺激。2010年研究证明通道视紫红质、细菌视紫红质和盐细菌视紫红质蛋白在不同光作用下对神经细胞可以迅速、安全地起到“开关”作用。后期发现哺乳动物体内含有光控蛋白辅因子—— —全反式视黄醛,随着GPRS信号通路的研究发现,光遗传学的应用在活体哺乳动物体内具有更广阔的前景[2]。 1.2光遗传学技术作用机理生物体中存在一类膜蛋白可以感受不同波长光的刺激并对该光学刺激产生一系列效应的响应机制,该类蛋白被称为视蛋白(opsin)。视蛋白属于一类视紫红质通道蛋白,可分为2种类型:typeI为一类微生物视蛋白,typeII为一类动物视蛋白。两者均需要视觉色素视黄醛作为辅基。视蛋白的种类和结构不同,导致蛋白对光的吸收峰有所不同。2种类型视蛋白虽然都可编码7次跨膜的蛋白,但序列同源性系数极低,相似性系数跨度达到25%~80%[3]。typeI 在原核生物、藻类和真菌中表达,是个庞大的亚家族,功能主要是感光和作为离子通道,作用原理为typeI编码的视紫红质通道蛋白与全反式视黄醛共价结合,当一定波长的光照时,全反式视黄醛异构化为13-顺式视黄醛,引起通道蛋白构象变化,打开离子通道,完成细胞生理功能;typeII在高等真核生物中表达,功能主要是视觉通路、昼夜节律和色觉分辨通路,作用原理为typeII基因编码GPCRS(G蛋白偶联受体),在黑暗环境中与11-顺式视黄醛结合,当视蛋白GPRS吸收光后,共价结 光遗传学技术在神经生物学领域的发展及应用 邴杰(北京师范大学生命科学学院北京100875) 摘要光遗传学技术是基因工程学与光学相结合的一项新兴技术。简要介绍了光遗传学技术的概念、发展过程及作用机理,概述了光遗传学技术中通道视蛋白的类型和该技术在神经生物学领域的应用。 关键词光遗传学技术视蛋白光学技术神经生物学 中国图书分类号:Q31文献标识码:A

医学遗传学中的多基因遗传

医学遗传学中的多基因遗传 【摘要】多基因遗传的教学,传统观念都是与单基因遗传对比,前者称为数量性状遗传,后者称为质量性状遗传,并且各自有其典型的变异分布图,数量性状的变异是连续的,质量性状的变异是不连续的,本文对这种传统观念提出商榷,阐释了几个要害问题,并建议将群体遗传学的部分相关内容与多基因遗传的内容合并,命名为数量遗传。 【关键词】多基因遗传质量性状数量性状 医学院校特别是高职高专中的医学遗传学课程,学时有限,往往将多基因性状的遗传与多基因病放在一起讲述,但是由于学生没有受过系统的统计学训练,也没有详细学过数量遗传,传统教材中仅凭多基因假说和一幅正态分布图,再加上轻描淡写的一句话:多基因性状变异的分布是连续的,就将多基因性状的遗传轻轻揭过,于是遗留问题很多。 1 现行教材中的弊端 1.1平面图的坐标系有问题 1.1.1图1为多种版本的教材所引用,但都无纵坐标(看起来纵坐标似乎表示人数),横坐标也无确指,如何能“从图中看出单基因性状变异的分布是不连续的”? 图1质量性状变异分布图 1.1.2图2横坐标为身高(性状),纵坐标为人数,与基因无涉,不能反映基因与性状的关系,更不能反映“多基因性状变异的分布是

连续的”。 图2人身高变异分布图 1.2数量性状的描述有重大失误 传统叙述方法:“如以人的身高为例,假设有三对非连锁的基因控制人类的身高,它们分别是AA’、BB’、CC’。这三对非连锁基因按分离律和自由组合律,可产生8种精子或卵子,精卵随机结合可产生64种基因型。 将各基因型按高矮数目分组,可以归并成7组:即6’0(表示有6个均带’的身高减低基因,0个不带’的身高增高基因)、5’1、4’2、3’3、2’4、1’5、0’6。(这7组基因型)它们的频数分布分别为1、6、15、20、15、6、1。再以基因组合类型为横坐标,以频数为纵坐标,将这7组基因型组合频数分布做成柱形图,最后将各柱形顶端连成曲线,就得到趋势近于正态分布的曲线(图3)。曲线中以平均值为众数,其它变异呈对称分布,构成正态曲线图,表示变异是连续的!” 图3子2代身高变异分布图 至此陷入万劫不回的境地:要讲的是多基因性状(数量性状),却用具有性状的人数(频数)来代替性状,不是偷换概念是什么? 接着往下的叙述也有很大问题: “从上述的叙述中我们可以看出,多基因遗传具有如下特点:①两个纯合的极端个体杂交,F1代都是中间类型,但是个体间也存在一定的变异,这是环境因素影响的结果;②两个中间类型的F1代个体杂

光遗传学

光遗传学技术与光起搏:心电生理研究中的新手段 [摘要] 光遗传学是2006年提出的一个将光控技术和遗传学技术相结合的新概念,以遗传学技术将光敏感蛋白表达于可兴奋的靶细胞或靶器官上,利用相应波长的光照激活光敏感蛋白以实现对细胞、组织、器官及动物生理功能的精准调控。该技术于2010年被引入心电生理研究,有离体及在体实验证实利用光遗传学技术实现光起搏心脏的可能性。研究表明光照刺激可引起心肌细胞电兴奋、恢复心肌细胞电传导、实现心脏再同步化,甚至可以模拟缓慢性、快速性心律失常。随着光敏感蛋白种类与功能的发掘、其转入心肌细胞方式和锚定心脏靶点多样化的研究,及安全便捷的光照条件和设备的研发,光遗传学技术与光起搏将成为临床心电生理研究及心律失常治疗等的重要新手段。 [关键词] 光遗传学光起搏 光遗传学(optogenetics)这一概念由Deisseroth等于2006年首次提出[1],是指一种将光控技术和遗传学技术相结合用以进行细胞生物学研究的新技术,即将光敏感的离子通道蛋白表达于可兴奋的靶细胞或靶器官上,利用相应波长的光照激活光敏感通道以实现对细胞、组织、器官及动物生理功能的精细调控。光遗传学技术原理的最初应用源于2002年Zemelman等将光敏感蛋白导入靶细胞进行神经活动的研究[2],此后光遗传学技术在大脑神经环路、神经功能调控的研究中得到了迅速发展,并于2011年被《Nature Methods》杂志评为2010年度技术[3]。2010年Arrenberg[4]和Bruegmann[5]先后将光遗传学技术引入斑马鱼及转基因小鼠的心脏节律控制研究,使光遗传学技术成为了心电生理研究的一个新手段[6-10]。本文拟就光遗传学技术及其在心脏电生理研究中的现状与前景介绍如下。 一、光遗传学技术的原理与实施 光遗传学技术转化应用的原理是以特定波长的外源光照射(刺激)激活或抑制表达在哺乳动物细胞或体内的光敏感蛋白,因光敏蛋白活性的改变进而调控靶细胞生物学行为,因此光敏感蛋白是该技术中一个至关重要的元件。光敏感蛋白是一类发现于单细胞微生物如绿藻、单胞菌的视蛋白(Opsin),目前最常用的是来源于绿藻(Chlamydomonas reinhardtii)的光敏感蛋白视紫红质通道蛋白2(channelrhodopsin-2,ChR2)[11,12]。ChR2是一种光敏感电压依赖性的非选择性阳离子通道蛋白,含737个氨基酸,有7个跨膜区域,其中第1、2、3、7跨膜区为导电孔。ChR2可被波长350~550nm的光活化,中心激活波长为470nm。ChR2对阳离子的选择强度依次为H+、Na+、K+、Ca2+,其介导的电流呈内向整流特性,反转电位为0mV,其大小与光源在单位面积的辐照度(irradiance)正相关。因ChR2通道快速激活和失活的动力学特性,在经470nm蓝光照射时可迅速引发离子流触发可兴奋细胞去极化,进而产生相应电生理效应。其他一些来源于藻类的光敏感蛋白亦被用于不同的光遗传学研究中,包括CyChR1、CraChR2、MChR1、DChR、VChR1。VChR1也是一种阳离子通道,可被波长为589nm的黄光激活[13],如将VChR1与ChR2同时表达于组织器官上的不同靶细胞,则可用两组不同波长的光照同时调控两类靶细胞。除驱动靶细胞兴奋的光敏感蛋白外,具抑制功能的光敏感蛋白亦必不可少,常用的抑制性光敏感蛋白有Halorhodopsin (HaloR、NpHR)和Archaerhodopsin-T(ArchT)[14,15]。NpHR为氯离子转运视紫红质蛋白,来源于嗜盐碱单孢菌,可被黄光激活,泵入氯离子使细胞膜超极化从而抑制其兴奋性。ArchT则对红光敏感,为一种抑制性的超极化质子泵。随着各种特性不同、激活波长不同的光敏感蛋白的逐步发现与丰富,利用光照精准调控细胞的光遗传学技术亦得到了迅速发展,使其在多种细胞如中枢神经元、外周神经元、视网膜细胞、骨骼肌细胞、心肌细胞、多能干细胞等,多种疾病如成瘾、抑郁、焦虑、自闭等精神疾病、帕金森症、视网膜疾病等的研究

遗传学总复习资料

遗传学总复习资料 遗传学: 遗传学是研究生物体遗传和变异规律的科学。 研究基因的结构和功能、复制与传递、变异与进化、表达与调控等规律的科学 遗传与变异 遗传:生物亲代繁殖与其相似的后代的现象 变异:指生物后代个体发生了变化,与其亲代不相同的现象。 了解遗传学的诞生和发展过程,掌握遗传学学科诞生的标志。 1900年孟德尔遗传规律的重新发现标志着遗传学的建立和开始发展,孟德尔被公认为现代遗传学的创始人。 (1)细胞遗传学时期(1900~1939年):主要特征是研究工作从个体水平进展到细胞水平。这一历史时期、研究工作的主要特征是从个体水平细胞水平建立了染色体遗传学说 摩尔根Morgan 基因学说主要内容: 种质(基因)是连续的遗传物质; 基因是染色体上的遗传单位,稳定性很高,能自我复制和发生变异; 在个体发育中,一定的基因在一定条件下,控制着一定的代谢过程,体现出相应的遗传特性和特征表现; 生物进化的材料主要是基因及其突变等论点。是对孟德尔遗传学说的重大发展,也是这一历史时期的巨大成就。 2)从细胞水平向分子水平过渡时期(1940~1952年):主要特征是以微生物为研究对象,采用生化方法探索遗传物质的本质及其功能。 3)分子遗传学时期(1953~1990):要特征是从分子水平上研究基因的本质,包括基因组织结构和功能,以及遗传信息的传递、表达和调控等。 (4)基因组和蛋白质时期标志:1990年4月美国人类基因组计划 两个方向①基因组学②体细胞克隆,干细胞研究 性状:生物体所表现的形态特征和生理特性,并能从亲代遗传给子代。 相对性状:指同一单位性状的相对差异。 单位性状:个体表现的性状总体区分为各个单位之后的性状。 显性性状:F1表现出来的性状; 隐性性状: F1未表现出来的性状。 分离现象:在子二代中有出现的性状。 基因座: 等位基因:成对的两个不同形式的基因位于同源染色体的对等位点上。 非等位基因:位于同源染色体的不同位置上或非同源染色体上的基因。 基因型:个体的基因组合即遗传组成 表现型:生物体所表现的性状,是可以观测的 纯合体:成对的基因相同。 杂合体:成对的基因不同 真实遗传:子代性状永远与亲代性状相同的方式。 回交:把被测验的个体与亲本进行交配的方式。 测交:把被测验的个体与隐性纯合基因的亲本杂交, 根据测交子代(Ft)出现的表现型和比例来测知该个体的基因型。

光遗传学_林其谁

第23卷 第10期2011年10月V ol. 23, No. 10 Oct., 2011 生命科学 Chinese Bulletin of Life Sciences 文章编号:1004-0374(2011)10-0935-03 光遗传学 林其谁 (中国科学院上海生命科学研究院生物化学与细胞生物学研究所,细胞生物学国家重点实验室(筹),上海 200031) 摘 要:虽然“光遗传学”只是一种技术方法,但它在文献中正愈来愈多地被提到。光遗传学结合了重组DNA 技术与光学技术,对细胞生物学的研究非常有用。它被广泛应用于活细胞内目标蛋白质的跟踪以及选择性地控制脑中某类细胞的特定的神经活动从而推动了神经科学研究的深入。近来光遗传学的应用扩展到了信号转导的研究,也开始有医学临床的应用的报道。进一步发展光遗传学无疑将推动合成生理学的研究。光遗传学被《自然-方法学》期刊评为2010年年度方法。关键词:光遗传学;光敏蛋白质;光激活离子通道;神经元中图分类号:Q784 文献标志码:A Optogenetics LIN Qi-Shui (State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China) Abstract: The term “Optogenetics” has been widely used in the literature, although it is simply a technical method. Optogenetics combines recombinant DNA technology and optic technology, and is very powerful for cell biology research. It has been widely used for tracing target protein in living cell as well as selectively controlling precise neural activity patterns within subtypes of cells of the brain for in depth study of neuroscience research. Recently optogenetics has been extended to the study of signal transduction and even be explored for clinical application. Further development of optogenetics will no doubt feasible the study of synthetic physiology. Optogenetics was selected by the journal of Nature Methods as method of the year 2010. Key words: Optogentics; photo-sensitive protein; photo-activated ion channel; neuron 收稿日期:2011-09-15 通信作者:E-mail: qslin@https://www.360docs.net/doc/7f5965114.html, “光遗传学”这个名称虽然并不准确,但已经被文献所广泛应用。它是一种技术,将重组DNA 技术与光学技术结合起来,成为细胞生物学研究的有力工具。光遗传学被广泛应用于目标蛋白在细胞内的示踪,更被用来精确地控制脑中特定类型的神经元的活动,从而有助于深入地开展神经科学研究。近年来光遗传学的应用扩展到信号转导的研究,甚至临床实际应用的探索。2011年,学术刊物Nature Methods 将光遗传学选为2010年年度方法[1]。 光遗传学(Optogenetics)是遗传学(重组DNA 技术)与光学相结合的一种细胞生物学研究技术方法。它的应用主要有二个方面:一个是向细胞内引进报告蛋白,也就是将荧光蛋白(发光蛋白)与目 标蛋白融合表达,从而可以方便地在显微镜下被显示、定位与跟踪;另一个是作为控制蛋白,用来调制活组织中靶细胞的专一活动。前者的代表性成果是2008年获得诺贝尔化学奖的“发现与发展绿色荧光蛋白(GFP)”。而后者在神经科学研究上得到愈来愈多的重视。近年来用光来调节细胞信号转导等的研究,更显示了该技术在细胞生物学甚至整体动物的研究上同样很有前途。本文介绍后一方面的应用。 神经科学家是首先开展光遗传学技术来控制细 ? 评述与综述 ? DOI:10.13376/j.cbls/2011.10.018

医学遗传学中的多基因遗传

医学遗传学中的多基因遗传 发表时间:2011-06-09T15:23:52.483Z 来源:《中外健康文摘》2011年第12期供稿作者:要学棣1 巨涛2 [导读] 在上述的坐标系里,有效频率为零时,是不会有“峰”出现的。 要学棣1 巨涛2 (1平凉医学高等专科学校甘肃平凉 744000;2平凉市人民医院甘肃平凉744000)【中图分类号】R394 【文献标识码】A 【文章编号】1672-5085 (2011)12-0050-02 【摘要】多基因遗传的教学,传统观念都是与单基因遗传对比,前者称为数量性状遗传,后者称为质量性状遗传,并且各自有其典型的变异分布图,数量性状的变异是连续的,质量性状的变异是不连续的,本文对这种传统观念提出商榷,阐释了几个要害问题,并建议将群体遗传学的部分相关内容与多基因遗传的内容合并,命名为数量遗传。【关键词】多基因遗传质量性状数量性状 医学院校特别是高职高专中的医学遗传学课程,学时有限,往往将多基因性状的遗传与多基因病放在一起讲述,但是由于学生没有受过系统的统计学训练,也没有详细学过数量遗传,传统教材中仅凭多基因假说和一幅正态分布图,再加上轻描淡写的一句话:多基因性状变异的分布是连续的,就将多基因性状的遗传轻轻揭过,于是遗留问题很多。 1 现行教材中的弊端 1.1平面图的坐标系有问题 1.1.1图1为多种版本的教材所引用,但都无纵坐标(看起来纵坐标似乎表示人数),横坐标也无确指,如何能“从图中看出单基因性状变异的分布是不连续的”? 图1 质量性状变异分布图 1.1.2图2横坐标为身高(性状),纵坐标为人数,与基因无涉,不能反映基因与性状的关系,更不能反映“多基因性状变异的分布是连续的”。 图2 人身高变异分布图 1.2数量性状的描述有重大失误 传统叙述方法:“如以人的身高为例,假设有三对非连锁的基因控制人类的身高,它们分别是AA'、BB'、CC'。这三对非连锁基因按分离律和自由组合律,可产生8种精子或卵子,精卵随机结合可产生64种基因型。 将各基因型按高矮数目分组,可以归并成7组:即6'0(表示有6个均带'的身高减低基因,0个不带'的身高增高基因)、5'1、4'2、3'3、2'4、1'5、0'6。(这7组基因型)它们的频数分布分别为1、6、15、20、15、6、1。再以基因组合类型为横坐标,以频数为纵坐标,将这7组基因型组合频数分布做成柱形图,最后将各柱形顶端连成曲线,就得到趋势近于正态分布的曲线(图3)。曲线中以平均值为众数,其它变异呈对称分布,构成正态曲线图,表示变异是连续的!”

医学遗传学试题及答案复习

题库医学遗传学- 。5.高血压是___B_____ E.体细胞病C.染色体病 D.线粒体病B.A.单基因病多基因病 6.基因表达时,遗传信息的基本流动方向是__C______。→蛋白质 C.DNA→mRNA B.hnRNA →mRNA→蛋白质 A.RNA→DNA→蛋白质 →蛋白质 E.DNA→rRNAD.DNA→tRNA→蛋白质 。7.断裂基因转录的过程是_____D___ mRNA B. 基因→hnRNA→剪接、戴帽→基因→hnRNA →剪接、加尾→mRNA A.mRNA 加尾→基因→hnRNA→剪接、戴帽、→戴帽、加尾→mRNA D. C.基因→hnRNAhnRNA 基因→E. 。型和B型,子女中可能出现的血型是___E_____8、双亲的血型分别为A C. AB型、O型 B. B型、O型A型、O型 AB型、O型 E. A型、B型、D. AB型、A型 连锁隐性遗传病而言,男性发病率等于____C____。、对于9X 致病基因频率的平方 B. A. 致病基因频率的2倍 1/2 致病基因频率的 D. C. 致病基因频率 致病基因频率的开平方E. 连锁隐性遗传病典型的传递方式为___E_____。10、从致病基因传递的角度考虑,X 男性→女性→男性B. 男性→男性→男性 A. 男性→女性→女性 D. C. 女性→女性→女性女性→男性→女性E. 、遗传病中,当父亲是某病患者时,无论母亲是否有病,他们子女中的女孩全部患此病,11 。这种遗传病最可能是____C____A. 常染色体显性遗传病 B. 常染色体 隐性遗传病 C. X连锁显性遗传病 D. X连锁隐性遗传病 12.在形成生殖细胞过程中,同源染色体的分离是___A_____的细胞学基础。 A.分离率 B.自由组合率 C.连锁互换率 D.遗传平衡定律 13.在形成生殖细胞过程中,非同源染色体可以自由组合,有均等的机会组合到一个生物细胞中,这是___D_____的细胞学基础。 A.互换率 B.分离率 C.连锁定律 D.自由组合率 14、当一种疾病的传递方式为男性→男性→男性时,这种疾病最有可能是___C____。 A. 从性遗传 B. 限性遗传 C. Y连锁遗传病 D. X连锁显性遗传病 E. 共显性遗传 15、一对糖原沉淀病Ⅰ型携带者夫妇结婚后,其子女中可能患病的几率是___D_____。 A. 1 B. 1/2 C. 1/3 D. 1/4 E. 0 D22

医学遗传学教学大纲(详细)

《医学遗传学》教学大纲 (讨论稿) 2013年11月修订 一、课程简介 本课程在医学生学习了细胞生物学、组织胚胎学、解剖学、生理学、生物化学等课程的基础上,从个体、细胞和分子水平阐释遗传性疾病的遗传规律、发病机制、诊断、治疗和遗传保健等基本理论、基本知识和基本技能,是一门从基础医学到临床医学的桥梁课程。 二、基本学习内容和教学要求 本课程的主要学习内容包括医学遗传学基本知识、医学遗传学基础理论和人类遗传学疾病。通过本课程的教学,学生既应掌握五大类遗传性疾病的基本特点,也应掌握常见的遗传性疾病的发病机制、主要临床特征、遗传学改变和遗传病再显危险率的估计,以达到理论联系实际的目的。 按要求程度的不同,将学习内容分为三级:第一级为“掌握”,要求理解和熟记所学内容,并能脱离书本进行简明扼要的口头与书面叙述;第二级为“熟悉”,要求理解所学内容,并记住内容提要;第三级为“了解”,要求基本理解所学内容。 三、教学方法 理论联系实际,基础结合临床,遗传病案例贯穿全程;课堂讲授与课外练习并重,文献检索与英文阅读并进,知识面拓展贯穿全程。。 四、建议教材 《医学遗传学》(第三版),顾鸣敏、王铸钢主编。上海科学技术文献出版社,2013年8月 五、参考书目 1. 陈竺主编,《医学遗传学》(第二版),人民卫生出版社,2010年7月 2. 左伋主编,顾鸣敏、张咸宁副主编,《医学遗传学》(第六版),人民卫生出版社,2013年3月 3. Robert Nussbaum, Roderick R. McInnes, Huntington F. Willard. Thompson & Thompson Genetics in Medicine, 7th edition, Saunders Elsevier, 2007 六、主要参考网址 1. 上海市精品课程——医学遗传学: https://www.360docs.net/doc/7f5965114.html,/jpkc/med_heredity/index.asp, 2.人类基因突变数据库:https://www.360docs.net/doc/7f5965114.html, 3. 美国生物技术信息中心:https://www.360docs.net/doc/7f5965114.html, 4. 人类孟德尔遗传数据库:https://www.360docs.net/doc/7f5965114.html, 5. 人类基因组委员会:https://www.360docs.net/doc/7f5965114.html, 七、本大纲的编写基础和适用对象及考核方法

学习笔记之光遗传学

学习笔记之光遗传学 光遗传学方法研究生物大脑 光遗传学(optogenetics),即结合遗传工程与光来操作个别神经细胞的活性,发现脑部如何产生γ波(gammaoscillations),并为它们在调控脑部功能中的角色提供新证据,这将有助于发展一系列脑相关失调的新疗法。 概述 光遗传学,是研究人员使用一种新的光控方法选择并打开了某种生物的一类细胞。这也帮助科学家解答一个长期存在的难题,即关于脊髓中某类神经元的特殊功能的研究。光遗传学(optogenetics)——结合遗传工程与光来操作个别神经细胞的活性,发现脑部如何产生γ波(gammaoscillations),并为它们在调控脑部功能中的角色提供新证据,这将有助于发展一系列脑相关失调的新疗法。 科学研究 光影响小白鼠的大脑 斯坦福大学的研究人员现在可以使用光来影响小白鼠的大脑,让一只患有帕金森症的小白鼠重新站立起来,甚至是重新走路。他们把这项技术称之为Optogenetics(opticalstimulationplusgeneticengineering光刺激基因工程/光遗传学)。 这个技术的关键是:科学家们必须事前向小白鼠体内注射一种植物基因,这种基因能够对不同颜色光的刺激作出敏感的反应,还能通过自生特性感染类似的细胞。 斑马鱼幼虫细胞中靶向插入光敏开关 研究人员在清醒的斑马鱼幼虫的这些细胞中靶向插入光敏开关,结果发现这些细胞产生了突发的游泳行为—幼虫典型的周期性摆尾。这项发现可能为人类相关的研究提供一种启发,因为哺乳动物也有类似的细胞。此外,这项研究也凸现了新技术的亮点,使用光控开关-光栅离子通道并结合基因靶向定位可以轻松研究某一类型的细胞。 人的神经病学疾病 研究表明在罹患精神分裂症与其他精神病学与神经病学疾病的患者身上(被扰乱)会出现γ波,光遗传学新工具给予科学家很大的机会来探索这些信号通路的功能。γ振荡反映出大型互连神经元网路的同步活动,以范围在每秒20-80周期的频率发射。这些振荡被认为由一种特殊的抑制细胞(inhibitorycells)称为快闪中间神经元(fast-spikinginterneurons)所控制,但是到目前为止,这一设想并未得到具体的证实。 光遗传学 为了测定哪些神经元负责驱动这种振荡,研究人员利用一种被称为channelrhodopsin-2(ChR2,第二型离子通道视紫质)的蛋白,这种蛋白能使神经元对光敏感。通过结合遗传学技术,研究人员在不同类型的神经元中表达了ChR2,通过激光与遍及脑部的光纤,精确调控它们的活性。 通过更进一步的实验,研究人员还发现根据刺激发生在振荡周期的哪个阶段,脑部对于触觉刺激的反应会更大或更小。从而支持了前文的构想:这些同步振荡对于控制我们如何感知刺激很重要。 前景预测 作用 使用这些光遗传学(optogenetic)工具,能够激活清醒哺乳动物的单一神经元,并直接演示神经元激活表现出的行为结果。该光遗传学方法使得研究人员能够获得关于脊髓回路的一些重要信息。 应用 光遗传学研究使用的新技术可以推广到所有类型的神经细胞,比如大脑的嗅觉,视觉,触觉,听觉细胞等。光遗传学开辟了一个新的让人激动的研究领域,可以挑选出一种类型的细胞然后发现其功能。 "光遗传学"当选《自然》2010年度研究方法 2010年12月27日16:21来源:中国经济网综合https://www.360docs.net/doc/7f5965114.html,张笑/编译 12月23日出版的新一期《自然》杂志推出2010年年度回顾专刊,其中以特别专题的形式报道了由其子刊《自然—方法学》(NatureMethods)评选出的2010年度研究方法——光遗传学(optogenetics)。 光遗传学是一种通过使用光学技术和遗传技术来实现控制细胞行为的方法,它克服了传统的只用光学手段控制细胞或有机体活动的许多缺点,为神经科学提供了一种变革性的研究手段。 光遗传学技术的运用包括四个步骤: 第一、找寻合适的光敏蛋白。蛋白可以是具有天然的光敏性,也可以是经过化学修饰而具有光敏性; 第二、遗传信息传递。通过转染、病毒转导、转基因动物系的建立等方式将光敏蛋白的遗传信息传递给目标细胞。 第三、可控性演示。通过从时间和空间上控制演示光线的特定性,实现对细胞活动的精确演示。

高中生物基因分离规律与遗传学规律知识点归纳

高中生物基因分离规律与遗传学规律知识点归纳 1、相对性状:同种生物同一性状的不同表现类型,叫做~。(此概念有三个要点:同种生物--豌豆,同一性状--茎的高度,不同表现类型--高茎和矮茎) 2、显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做~。 3、隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做~。 4、性状分离:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做~。 5、显性基因:控制显性性状的基因,叫做~。一般用大写字母表示,豌豆高茎基因用D表示。 6、隐性基因:控制隐性性状的基因,叫做~。一般用小写字母表示,豌豆矮茎基因用d表示。 7、等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做~。(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。显性作用:等位基因D和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。D∶d=1∶1;两种雌配子 D∶d=1∶1。) 8、非等位基因:存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。 9、表现型:是指生物个体所表现出来的性状。

10、基因型:是指与表现型有关系的基因组成。 11、纯合体:由含有相同基因的配子结合成的合子发育而成的个体。可稳定遗传。 12、杂合体:由含有不同基因的配子结合成的合子发育而成的个体。不能稳定遗传,后代会发生性状分离。 13、测交:让杂种子一代与隐性类型杂交,用来测定F1的基因型。测交是检验生物体是纯合体还是杂合体的有效方法。 14、基因的分离规律:在进行减数分裂的时候,等位基因随着同源染色体的分开而分离,分别进入两个配子中,独立地随着配子遗传给后代,这就是~。 15、携带者:在遗传学上,含有一个隐性致病基因的杂合体。 16、隐性遗传病:由于控制患病的基因是隐性基因,所以又叫隐性遗传病。 17、显性遗传病:由于控制患病的基因是显性基因,所以叫显性遗传病。 18、遗传图解中常用的符号:P-亲本♀一母本♂-父本×-杂交自交(自花传粉,同种类型相交)F1-杂种第一代F2-杂种第二代。 19、在体细胞中,控制性状的基因成对存在,在生殖细胞中,控制性状的基因成单存在。 20、一对相对性状的遗传实验: ①试验现象:P:高茎×矮茎→F1:高茎(显性性状)→F2:高茎∶矮茎=3∶1(性状分离) ②解释:3∶1的结果:两种雄配子D与d;两种雌配子D与d,受精就有四种结合方式,因

相关文档
最新文档