飞机起落架中减震缓冲装置及零部件的设计与加工工艺编制

飞机起落架中减震缓冲装置及零部件的设计与加工工艺编制
飞机起落架中减震缓冲装置及零部件的设计与加工工艺编制

目录

1 绪论 (4)

1.1 起落架常见类型 (5)

1.1.1前三点式 (5)

1.1.2后三点式 (6)

1.1.3自行车式 (7)

1.1.4多轮小车式 (6)

1.2起落架的设计要求 (8)

1.3起落架受到的外载荷 (9)

1.4起落架的结构......................................... 错误!未定义书签。

1.4.1简单支拄式和撑杆支柱式............................. 错误!未定义书签。

1.4.2摇臂支柱式......................................... 错误!未定义书签。

1.4.3多轮小车式起落架................................... 错误!未定义书签。

2 起落架的减震缓冲装置 (10)

2.1减震器的不同形式和对比 (11)

2.2油式减震器........................................... 错误!未定义书签。

2.2.1工作原理........................................... 错误!未定义书签。

2.2.2减震器中的气体..................................... 错误!未定义书签。

2.2.3油液和阻尼扎的作用及对功量图的影响................. 错误!未定义书签。

2.3油气式减震器......................................... 错误!未定义书签。

2.4全油式减震器的设计 (12)

2.5减震装置中的轮胎..................................... 错误!未定义书签。

2.5.1轮胎的类型......................................... 错误!未定义书签。

2.5.2轮胎的特性......................................... 错误!未定义书签。

2.5.3设计时选用轮胎力原则............................... 错误!未定义书签。

2.5.4轮胎的形式及发展情况............................... 错误!未定义书签。

3.起落架及缓冲减震装置的制造及其加工工艺 (13)

3.1起落架的制造 (13)

3.1.1国内外研究现状 (13)

3.1.2起落架的寿命 (13)

3.2起落架的材料和机械加工制造技术 (13)

3.2.1材料 (13)

3.2.2机械加工制造技术................................... 错误!未定义书签。

3.2.3接头设计........................................... 错误!未定义书签。

3.2.4减少应力集中设计................................... 错误!未定义书签。

3.2.5表面保护........................................... 错误!未定义书签。

3.3缓冲减震装置的制造及其加工工艺 (14)

3.3.1材料的选择 (14)

3.3.2加工注意事项....................................... 错误!未定义书签。

3.4外筒、活塞杆等大件的整体模锻工艺..................... 错误!未定义书签。

3.4.1整体锻件外形扒皮加工及数控加工..................... 错误!未定义书签。

3.5外筒的加工及加工工艺................................. 错误!未定义书签。

3.5.1材料的选择......................................... 错误!未定义书签。

3.5.2外筒的工序......................................... 错误!未定义书签。

3.6活塞杆的加工及加工工序 (14)

3.6.1材料的选择 (14)

3.6.2活塞杆的加工工序................................... 错误!未定义书签。

3.7外筒和活塞杆的密封垫片 (15)

3.7.1密封垫片的种类 (15)

3.7.2垫片的选择 (18)

4.常见的问题............................................ 错误!未定义书签。

4.1漏油原因分析......................................... 错误!未定义书签。

4.2电镀铬及铬层性质..................................... 错误!未定义书签。

4.3镀铬层的渗漏现象..................................... 错误!未定义书签。

4.4修复工艺............................................. 错误!未定义书签。

5 结语.................................................. 错误!未定义书签。

1 绪论

起落架是供飞机起飞、着陆时在地面(或水上)滑跑、滑行以及移动和停放用的,它是飞机的主要部件之一。它的工作性能的好坏以及可取性直接影响飞机的使用和安全。飞机上安装的起落架和减震缓冲装置,此装置是要达到两个目的:一是吸收并耗散飞机着陆时垂直速度所产生的动能,二是保证飞机能够自如而又稳定地完成在地面上的各种动作。然而起落架设计面临着结构设计、空气动力性能、跑道设计以及飞机驾驶员和维修人员对使用维修等方面所提出的一系列矛盾的要求,因此力求起落架设计能找到一个既能最好地协调这些要求,同时又结构轻、成本低的方案。现代飞机的起落架不单纯只是一个结构,而是一种相当复杂的机械装置。它包括减震系统、受力支校、机轮、刹车装置、收放机构和其他一些系统。在多数情况下,飞机起落架的整个装置的重量约占全机总重的(3.7—5)%,占结构重量的15%左右。它还必须在飞机升空后能收入到对机体结构和飞机阻力的影响最小的空间中去。现代飞机由于载荷日益增大,运输机比过去要重得多(如波音—747的重量是波音707—320 c的两倍多),于是就要求有大的起落架,然而收藏起落架的空间却日益狭窄,因此要使起落架的设计能有效、满意地完成其功能就变得越来越复杂了,因而也就促进了与起落架设计有关的各个方面的科学技术有了很大的发展[1]。

本文先介绍了解了不同的起落架类型和不同的减震缓冲装置,从而对比设计一种新型的减震缓冲装置。针对其材料的选择也相应的设计完成其机械加工工序。

1.1 起落架常见类型

起落架的类型除了常见的采用机轮起飞、降落之外,还有用于水上和雪地上的起落装置。水上飞机有船身式和浮筒式两种。船身式水上飞机没有专门的起落装置,飞机的起飞和陷落、漂浮和锚泊由作为机身的船身承担。浮筒式水上飞机的起落装置就是连接在机身和机翼下方的浮筒。浮筒采用胶布制作后充气,有双浮简式和单浮筒式两种。这种水上飞机常常采用陆上飞机加装浮筒的方式作为起落装置。要求飞机能在雪地上起飞、着陆时常采用雪橇。为了使飞机也能在无雪的地面上使用,装雪橇的飞机常装有机轮,视需要可将雪橇相机轮之中的某一种装置放下,接地使用。对于某些小型直升机还有用滑模式起落架。滑模应用的一般概念包括有一个小车或滚棒装置用于起飞,用滑橇作着陆,起飞的装置是留在地面上的。但也有用与地面接触的滑橇来起飞,此时要使用较高的推力/重量比,具有摩擦力非常低的地表面。滑橇一般没有刹车装置,它常比与其相当的有轮起落架要轻,且只需较少的维护,主要缺点是缺乏在地面上运动的能力。以上所述的采用机轮和浮简的起落架都属常规起落架,雪橇、滑撬则属于非常规的飞机起落架。还有其他一些非常规起落架,如履带式起落架和气垫起落系统,其目的主要是为了能在松软的表面上使用,同时气垫系统还可大大减轻起落架重量。但是这种起落架还在研发中,并不常见[2]。

1.1.1前三点式

前三点式起落架(图 1.—1)的两组主轮布置在飞机重心的稍后处,另一前轮布置在飞机头部。这种形式在现代喷气式和涡轮螺桨式飞机上被广泛采用,主要原因有以下几点:

(1)飞机在地面运动的方向稳定性好。两主轮上的摩擦力合力Pf绕飞机重心的力矩将减小偏向,使飞机转回到原来状态。

(2)飞机着陆时可猛烈刹车而不致使飞机翻倒,从而可采用高效刹车装置以大大缩短着陆滑跑距离,这对高速飞机很有利,着陆操纵也比较简单。

(3)飞机的纵轴线接近水平位置,因此乘员较舒适;驾驶员的前方视界好,飞机滑跑阻力起飞加速快,喷气式发动机的喷流对机场的影响也小[3]。

但前三点式起落架也有它的缺点,前起落架比较长,受力较大,重量也较大,

因而起飞时抬头难一些。有时布置稍困难(对于战斗机,飞机头部常装有雷达、电气、无线电设备和武器;当飞机头部装有发动机时,则前起落架的布置就更困难些)。另外,前轮在高速滑跑中还会出现摆振现象,需加装减摆器,使前起落架结构复杂。

前三点式图1—1 后三点式图1-2

1.1.2后三点式

对于小型低速装有活塞式发动机的飞机,一般采用后三点式起落架(图1-2),即将起落架的两个主轮布置在飞机重心的稍前处,另一尾轮布置在飞机尾部。

这种形式的起落架由于安装处的空间容易保证,尾起范架又短又小,故容易安置,受的外载小,重量较轻。但飞机在地面上运动的方向稳定性较差。当有偏向时,两主轮上产生的摩擦力合力Pf绕飞机重心的力矩将使飞机的偏向增大。另外,在着陆过程中猛烈刹车时Pf会使飞机有“翻倒”的倾向。不能与高效率的刹车装置相配合。因此,随着飞机着陆速度的增长,为保证降落的安全,现代高速飞机广泛采用前三点式[5]。

1.1.3自行车式

这种飞机的前、主起落架均安装并收藏在机身内,放下时像自行车一样在地面滑跑。为防止由于两主轮间距小而导致倾斜,通常在翼尖处还装有辅助轮(图1-4)。

这种形式基本上具备前三点的优点,但通常前起落架比前三点式更靠近重心,因此它分担的飞机重量较大(可达总载荷的40%),因而起飞时抬头较困难,有时要

安装自动增大起飞迎角的装置。因其转弯困难,一般依靠操纵机轮偏转来使飞机转弯。另外,起落架都收藏在机身内,机身上要开大洞,这将影响机身的结构强度、刚度和装载布置,一般耍增重15%(与其他形式比)。因而.这种形式仅在个别飞机上使用,英国的垂直—短距起落战斗机“猎兔狗”就采用自行车式起落架[6]。

自行车式图1-4

1.1.4多轮小车式

现代的大型运输机重量较大。因此起落架一般都采用多轮小车式起落架(图1-3)。对于一些重量很大的飞机,例如C—5A(330 t)、彼音—747(351t),为了提高漂浮性采用了四个多轮小车式主起落架。此时从排列上看,沿机身轴线方向的两组主起落架比较靠近,因此从总体上说,一般仍作为前三点式配置[4]。

C—5A起落架配置图1-3

1.2起落架的设计要求

起落架如同飞机其他结构一样,有一些共同的设计要求:如在保证起落架结构的强度、刚度以及预期的安全寿命的前提下,重量最小,又如应使起落架使用、维护方便,易于更换修理,还有空气动力和工艺性、经济性要求等。必须说明,起落架是由各种系统、结构和机构组成的复杂部件,在使用中,属于起落架系统范畴的问题也比较多,而它对飞机的安全又有很大关系.因此起落架应具有很高的可靠性。除上述结构设计的要求之外,起落架还应满足与本身特定的使用条件有关的下列各项要求:

(1)起落架应具有有良好的减震作用,能吸收飞机看陆时的正常撞击载荷,以减小看陆及高速滑跑时所产生的撞击过载。此外应能很快耗散撞击能量.使飞机在撞击后的跳跃能很快衰减,平稳下来。在不平的场地上滑跑时,起落架不应使飞机产生太大的颠簸.

(2)起落架应使飞机在地面运动时有良好的稳定性、操纵性和适应性。飞机起飞、着陆方便,滑行转弯灵活,转弯半径小,滑跑中不易偏向、滚翻或侧翻,不产生不稳定的前轮摆振。这些与起落架在飞机上的总体配置形式、配置参数及起落架的某些装置有关。

(3)起落架应有良好的刹车性能以减小着陆滑跑距离,缩短所需跑道的长度,便于使用。同时也要适当考虑在起飞滑跑前加大推力时能先刹住飞机。刹车装置必须有效可取,最大允许刹车力与跑道表面组糙度有关,故两者要相匹配。在测风着陆和高速滑行时.飞机不应有倾斜或‘在地上打转”等不稳定的倾向。对于舰载飞机来说,由于在甲板跑道上着舰时有拦截网或拦阻钩强制飞机停止,所以起落架上无须装强有力的刹车装置。

(4)漂浮性要求,轮胎的充气压力和起落架的构形应当根据飞机预定使用的机场跑道面的承裁能力进行选择,例如机场是很干坦印泥凝土,还是松软的泥地等,以使飞机能在预定的机场上顺利通行。

(5)起落架应便于在飞行时收藏于机体内,以减小飞行阻力,提高飞机的性能。因而应有较小的体积和可靠的收放机构、锁定装置、信号装置以及起落架操纵、定向和纠倔等装置。

(6)防护要求:这包括两个方面,一是对起落架本身的防护,因起落架常常在某些特定环境中使用,如温度、湿度、振动、尘土、盐雾等等。起落架要注意防止污泥进入减震器、轮轴的内腔,要特别注意密封。还要防止轮胎抛起的外来物损坏外部设施、设备、电缆、液压管道等,要注意这些附件的布置。另一方面也要注意当起露架结构失效时,不好使破损物穿入乘员区、驾驶舱或造成燃油大量泄漏[7]。

1.3起落架受到外载荷

飞机降落起飞时,起落架都会受到不同的载荷。

1.着落载荷

飞机降落时可能有三点着陆、两点着陆,甚至一点着陆、侧沿着陆等情况。以民航飞机为例,一般其使用中的着陆下沉速度为0.31至0.91m/s若超过1.32m /s便称为硬着陆。关于着陆下沉速度各国有不同规定,按美国和我国民航条例的规定,民航机的限制下沉速度为3.05m/s;

2.滑跑冲击载荷

飞机在起飞着陆的滑跑过程中,由于道面不平或道面上有杂物等都会引起对起落架的冲击裁荷。在着陆滑跑中还会有由于未被减震装置消耗掉的着能量引起的震动(衰减)载荷。一般情况下,这些载荷值比着陆撞击的小,但由于滑跑距离长.滑跑冲击载荷反复作用的次数较多,因而对结构的损伤也较大。

3.刹车载荷

为了缩短着陆滑跑距离,在滑跑过程中须要刹车。这时机轮上除了受有刹车力矩引起的Y向载荷外,还有较大的X向载荷F轮胎与地面的摩擦力.

4.静态操纵载荷和地面停放载荷

飞机在地面牵引、地面进入定位时,常用牵引架对起落架进行各方向的推、拉、扭、摆,造成静态操纵裁荷。飞机停放并固定在地面上时,可能受到大风而引起的载荷,这在沿海地区更应加以考虑[8]。

起落架还受有其他一些载荷,如收放过程中作用于收放机构上的载荷,多轮式起落架由于载荷不均匀而产生的偏心载荷等等。

总之,起落架的载荷是多种多样的。必须注意的是起落架所受的力大多是动

载荷。伴随着机轮的旋转相刹车、减震器的伸缩等可能出现各种振动,加之多次起落、重复受载(一般现代运输机可能要完成60000至70000个起落),因此对起落架因疲劳载荷引起的损伤和破坏应着重加以考虑。

2 起落架的减震缓冲装置

飞机起落架的减震系统由减震器和轮胎组成。其中,减震器(也称缓冲器)是所有现代起落架所必须具备的构件,也是最重要的构件。某些起落架可以没有轮胎、机轮、刹车、收起系统等,但是它们都必须具备有某种形式的减震器。而轮胎虽然也能吸收一部分能量,但仅占减震系统总能量的(10~15%)。减震系统的主要作用,是当飞机以一定的下沉速度(一般限制下沉速度为3.05m/s,美国规定某些短距起落或海军用舰载机等可能更大些)着陆时,起落架会受到很大的撞击,并来回振动,减震装置就是用来吸收着陆相在地面滑行时的撞击能,以使作用在机体上的过载减小到可以接受的程度,同时使振动衰减。由以上功用,对减震装置提出如下的设计要求:

(1)在压缩行程(正行程)时,减震装置应能吸收设计规范要求的全部撞击能,而使作用在起落架和机体上的载荷尽可能小。在压缩过程中载荷变化应匀滑、功量曲线应充实一—也即减震器应具有较高的效率。

(2)为了减小颠簸或在伸展行程(反行程)中不出现回跳,要求系统在压缩行程中所吸收能量中的较大部分(一般应有(65~80)%左右)转化为热能消散掉。

(3)为了让起落架能及时承受再次撞击,减震器应有必要的能量和伸展压力,使起落架恢复到伸出状态,伸展放能时应适当、柔和,支柱慢慢伸出,这样可消除回眺。减震器完成一个正、反行程的时间应短,一般不能大于0.8s。以上(2)、(3)项措施对提高乘员舒适性有利。

(4)着陆滑跑时,根据各种飞机对所预定的使用跑道的通过性(漂浮性)要求,规定在遇到某一高度的凸台和坑洼地时,过载不能超过允许值,(如某些次等跑道的路面包含有76mm高的凸台,以及一定波长和波幅的波形表面隆起)。

在上述吸收能量、减小过载和提高滑行时乘员舒适性方面,轮胎的弹性变形和弹性力均起一定作用,但是它不能消耗能量[16]。

2.1减震器的不同形式和对比

总的来说减震器可分为两大类:一类是由橡胶或钢制的固体“弹簧”式减震器;另一类是使用气体、油液或两者混合(通常称油气式)的流体“弹簧”式减震器。利用橡胶、钢弹簧和气体作为介质的减震器,是利用介质变形吸收撞击动能,靠介质内的分于摩擦消耗能量。因此这些减震器的热耗作用很小,只适用于轻型低速飞机以及后三点式起落架的尾轮。

对不同形式减震器的效率v和效率/重量比作了比较。效率v(%)=A/LS 式中A为减震器正行过程中吸收的能量;L为正行过程中最大载荷;S为试验得到最大行程。

由图2-1可知油气式减震目前效率最高、且效率/重量比最轻的减震器形式,实际上可达到的效率通常在(80-90)%之间。表示了波音—737主起落的防震试验曲线,其减震效率达到了90%,同时它还具有最好的能量消散能力。因此现代飞机一般多采用油气式减震器。

全油液式减震器工作可靠,效率也可达到75%以上、它由于高液压而需要加强减霞器的构件,导致减震器的重量比较大,但因结构强而较耐疲劳,且减震器尺寸相对较小。缺点是低温时液体容积约改变会影响减震器的性能,且高液压使密封比较困难。目前仍被使用。

式减震器因重量较大、效率较低、可靠性较差等原因,目前已不再使用。

团体“弹簧”式减震器虽然有效率/重量比小,耗散能量少等缺点,在一般速度较高的现代飞机上基本上不采用,但仍应对其构造简单、工作可靠性商、维护要求低以及相应的低价格子以应有的认识。对于某些轻型的简易飞机或多用途小飞机,若起落架不收放,此时通过折衷研究也有采用片贺式或橡胶压块式减震器,如加拿大的DHC-6(“双水獭”)飞机就是一个典型例子。该机为涡轮螺桨发动机短距起落的小型运输机.最大起飞重量为5.6t。它的不可收的主起范架就采用T橡胶压块式减震器,前起落架为油气式减震器。该机于1969年改型后的DHC-6-300系列有二百余架投入了使用[17]。

2.4设计全油式减震器

通过各种起落架减震缓冲装置对比,故设计新型减震器——全油液式减震器全油液式减震器的构造与油气式的基本相同图2-7。不过没有气体。在全神展的状态下,筒腔内全部充满液体。减震器工作时,油液被来回挤压流过油孔而起到吸功散能、缓冲减震作用。

着陆撞击压缩时,活塞杆上行,油室容积减小,油液被压缩,吸能随震,同时油液被挤过阻尼孔,摩擦生效而散能减震。当压力大过菜一定值时,定压活门被冲开,增大了流袖孔的面积,减小了流油阻力,从而减小了过载,改善了功量图。

伸展时油液膨胀,推活塞杆下行。此时油液反流挤过阻尼孔,关闭了定活门,减小了流油孔面积,提高了流油阻力,改善了功量固。

其次,由于是通过液体的压缩来减震,故内压很大(常达3.5×102MPa以上),设计时要仔细加以考虑。对减震器的密封装置也提出了很商的要求,即既要在异常高压下保证对油液的密封,还要经久耐用。

在应用过程中表明,全油液减震器几乎适用于所有形式的起露架结构。由于它的结构紧凑,因此特别适用于摇臂式起范架,对于机身离地面较近的起落架持别有利。它还可以设计出高效率酌减震器,曾经有一种全油液减震器,其效率达到97%。全油液减震器已应用于各类飞机上,如C—120喷气客机。特别是在一些战斗机上,由于空间上要求紧凑和限制较多,更适合使用全油液减震器,如米格—23、F—104和加拿大的CF—100。但这种形式,因为它的油液压力太高,需要高压密封装置,这种密封装置摩擦系数比较高,维护上不太理想,常会在密封益处漏油。且重量比较大,又低温时液体容积的改变会影响减震器性能,因此也限制了它的使用[21]。故此设计此中减震器。

3.起落架及缓冲减震装置的制造及其加工工艺

3.1起落架的制造

3.1.1国内外研究现状

起落架系统的主要受力构件选用300M钢、高强度钛合金的整体锻件,制造技术向自动化、数控化方向发展;热加工技术向真空化发展,采用材料双真空重熔、真空焊接、真空热处理等,以避免有害气体对零件的不利影响;零件表面采用强化工艺,如无氢脆电镀、金属喷涂、刷镀等,提高零件的疲劳寿命和抗力腐蚀能力;新材料逐步应用如钛合金、耐磨材料等。同时要加强对工艺过程的控制和检测,不断更新检测设备和检测方法。

3.1.2起落架的寿命

从目前看,歼击机、教练机等的寿命为4000~8000小时,民用飞机则更高。以波音737为例,假设飞机寿命为20年,每天平均飞十次起落,它的安全寿命就应保证完成75000次起落,约60000小时。而起范架需经受的疲劳试验次数应是安全寿命的三倍。为了达到这样高的疲劳寿命,大量的零件都必须精心设计。主要可从以下几个方面采取措施[23]。

3.2起落架的材料和机械加工制造技术

3.2.1材料

高强度钢是制造大多数起落架零件用得最多的材料,其极限强度商,延展性极好。国外在起落架上常用的钢有4130、4340、300 M等。为了获得良好的机械性能和疲劳特性,应注意以下几点,钢锻件应该使用真空电弧再熔炼件,起落架结构应进行喷丸强化处理;对于有的孔则可采用冷挤压方法进行强化处理(如波音—757、—767起落架上的承力孔),凡属结构的疲劳危险部件,加工表面的粗糙度应符合有

关的要求;应尽力减轻应力腐蚀(臂如采用卸载热处理)等等。

钛合金主要用于小型民用飞机的起落架上。钛合金虽然比强度高、疲劳寿命长、抗腐蚀好,但因材料本身和加工费用高,因此用得不广泛。碳/环氧、砌/环氯复合材料目前已有在起落架上使用,如可制造机轮:A—37B的主起落架也使用了复合材料。试验还表明纤维缠绕复合材料(持别对简形件)是可靠的。但总的说复合钉料目前成本高,在零件的制造、分折和设计等方面还有很多工作要做,但采用复合材料确实可以大大减轻重量。

故选择300M钢

3.3缓冲减震装置的制造及其加工工艺

3.3.1材料的选择

起落架的缓冲装置是飞机上的关键受力部件,要求制造起落架缓冲装置的材料具有很高的强度、刚性和良好的综合性能,300M钢完全符合这种要求。300M钢是一种成熟的航空结构材料,现代飞机起落架的主要承力构件(如外筒、活塞杆、轮轴等)多选用300M钢。目前,我国飞机起落架结构件也己逐步采用国产300M钢(低合金超高强度钢40CrNi2Si2MoVa)。

国产300M钢的抗拉强度为1960~2100 MPa(HRC52~56),比原航空工业常用的高强度钢30CrMnsiNiZA的抗拉强度高出22 .4%;其化学成分及机械性能见表1、2,对应力集中和应力腐蚀比较敏感,因此对制造工艺有更高、更新的要求。

3.6活塞杆的加工及加工工序

3.6.1材料的选择

根据活塞的工作情况,活塞的材料应满足:

a.材料密度小,以减少活塞的往复惯性力;

b.导热系数大,以降低活塞顶的温度;

c.线形系数膨胀小,以减少活塞的变形;

d.在高温下材料能保持足够的强度;

e.具有良好的摩擦性、耐磨性和腐蚀性;

f.工艺性好。

而这些要求又往往是相互矛盾的。最后综合参考,选择30CrMnSiNi2A。

3.7外筒和活塞杆的密封垫片

3.7.1密封垫片的种类

密封垫片的种类很多,主要有非金属垫片、聚四氟乙烯包覆垫、金属缠绕垫、金属包覆垫、柔性石墨复合垫、波齿复合垫、金属垫片等等。常用密封垫片的适用范围和经济性能如表1所示。

本团队全部是在读机械类研究生,熟练掌握专业知识,精通各类机械设计,服务质量优秀。可全程辅导毕业设计,知识可贵,带给你的不只是一份设计,

更是一种能力。联系方式:QQ712070844,请看QQ资料。

3.7.2垫片的选择

选用适当类型的垫片是保证良好密封效果的前提。垫片的选型主要是依据操作条件(温度、压力)及该条件下被密封介质的性质。首先,所选垫片的密封压力必须能满足使用压力的要求;其次,所选垫片材料的物理化学性能要适应被密封介质的性质,满足抗腐蚀性和抗氧化性等要求;再次,所选垫片要和法兰密封面的型式相匹配。

此外,还需要符合相应的标准和规定,参考同行业的使用经验,考虑垫片的经济性等。

故选择金属环垫

参考文献

[1] 王小平 .航空工程与维修2001/4

[2] 王志瑾、姚卫星编著.飞机结构设计.国防工业出版社,2004.06

[3] 宋静波编著 .飞机构造基础. 航空工业出版社,2004

[4] 陶梅贞主编 .现代飞机结构综合设计. 西北工业大学出版社,2001.02

[5] 陶梅贞主编 .现代飞机结构设计. 西北工业大学出版社,1997.02

[6]唐一平. 先进制造技术.北京:科学出版社,2000.9

[7] 贾玉红, 王建军.飞机起落架的主动控制与半主动控制研究. 兵工学报

2006年5第27卷第3期

[8] 隋福成陆华飞机设计,2001年6月第2期

[9] 齐呸骞牟让科航空学报,1998年5月第3期

[10] 沈阳航空工业学院学报,2002年6月第19卷第2期

[11] 杨昭明航空维修与工程2005年3月

[12] 李云飞姚念奎飞机设计,2006年6月第2期

[13] 液压气动与密封,2000年2月第1期

[14] 航空学报,1998年5月第19卷第3期

[15] 航空学报,2006年9月第27卷第5期

[16] 航空学报,2000年8月第16卷第4期

[17] 郦正能,张玉珠. 飞行器结构学. 北京:北京航空航天大学出版社

2003

[18] 陆晚洁,谢利理. 航空科学技术. 西安:西安工业出版社 2003

[19] 冯辛安,葛巧琴. 计算机辅助设计制造. 北京:机械工业出版社,1995

[20]王玉新. 数字化设计. 北京:机械工业出版社,2003

[21] 李梦群,武文革,孙厚芳. 21世纪的制造业. 南京:南京工业出版社,2003

(3)

[22] 赵汝嘉. 先进制造系统导论. 北京:机械工业出版社,2003

[23]冯之敬. 机械制造工程原理. 北京:清华大学出版社,1999

[24] 王隆太. 先进制造技术. 北京:机械工业出版社,2003

[25] 陈宏钧. 实用机械加工工艺手册. 北京:机械工业出版社,2003

[26] 西安飞机工业集团起落架加工车间工序说明

飞机起落架结构优化设计及制造加工

2011 年春季学期研究生课程考核 起落架结构优化设计及制造加工 关键词:起落架设计改进制造技术 为满足某型飞机的研制需要,采用现代起落架的设计理念,在保持原起落架结构以及起落架与飞机的协调关系(连接形式、接口尺寸、电液和操作习惯)等方面基本不变的情况下,从设计、T艺方面进行改进,达到了增强承载能力、减轻重量和提高寿命的目的。试验验证和装机使用表明,改型后的飞机起落架性能优于原型机的性能,实现了减重、增寿,以及增强飞机使用安全性的目标。 1 设计改进 根据飞机起落架改进技术方案要求,在保证飞机安全性的前提下,尽量减轻起落架的重量,并达到增寿的目的。经设计分析和计算,对不满足强度要求的零部件进行加强改进,对强度较富裕的零部件进行减重改进。 1.1 缓冲支柱优化设计 飞机着陆蕈量的增加,相应引起起落架吸收动量增加,导致起落架着陆冲击载荷的增加。为了尽可能地降低着陆冲击过载,须对起落架的缓冲系统进行优化设计。为此,在充分利用原结构的前提下,进行缓冲器充填参数、阻尼油针的优化设计,选取多组缓冲结构并通过落震试验验证。通过一系列比较和验证,阻尼油针选用圆角方形截面结构,如图1所示。该油针的选用,使飞机起落架阻尼特性稳定、磨损小,同时提高了缓冲器系统承载能力。 1.2部分零(组)件结构重新设计 对起落架的部分零(组)件结构重新进行设计,改善了零件的受力状态,从而提高了起落架的承载能力。如将主起落架斜撑杆由刚性结构改为弹性结构,以改善起落架斜撑杆的协调承载能力,减少结构不 圈1圆角方形截面油针 Fig.1 Square section pin with round comer 协调引起的结构超载损伤,降低中部接头的应力水平,提高主起落架外筒中部接头的寿命。改进前后的结 构如图2、图3所示。 图2刚性斜撑杆(原结构) Fig.2 Rigid batter brace(original structure)

飞机起落架结构及其系统设计

本科毕业论文题目:飞机起落架结构及其故障分析 专业:航空机电工程 姓名: 指导教师:职称: 完成日期: 2013 年 3 月 5 日

飞机起落架结构及其故障分析 摘要:起落架作为飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。为适应飞机起飞、着陆滑跑和地面滑行的需要, 起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机 轮上装有刹车或自动刹车装置。同时起落架又具有空气动力学原理和 功能,因此人们便设计出了可收放的起落架,当飞机在空中飞行时就 将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时 再将起落架放下来。本文重点介绍了飞机的起落架结构及其系统。对起落 架进行了系统的概述,对起落架的组成、起落架的布置形式、起落架的收 放形式、起落架的收放系统、以及起落架的前轮转弯机构进行了系统的论 述。并且给出了可以借鉴的起落架结构及其相关结构的图片。 关键词:起落架工作系统凸轮机构前轮转弯收放形式

目录 1. 引言 (1) 2. 起落架简述 (1) 2.1 减震器 (1) 2.2 收放系统 (1) 2.3 机轮和刹车系统 (2) 2.4 前三点式起落架 (2) 2.5 后三点式起落架 (3) 2.6 自行车式起落架 (5) 2.7 多支柱式起落架 (5) 2.8 构架式起落架 (6) 2.9 支柱式起落架 (6) 2.10 摇臂式起落架 (7) 3 起落架系统 (7) 3.1 概述 (7) 3.2 主起落架及其舱门 (7) 3.2.1 结构 (8) 3.2.2 保险接头 (8) 3.2.3 维护 (8) 3.2.4 主起落架减震支柱 (8) 3.2.5 主起落架阻力杆 (9) 3.2.6 主起落架耳轴连杆 (10) 3.3 前起落架和舱门 (10) 3.4 起落架的收放系统 (10) 3.4.1起落架收放工作原理 (10) 3.4.2 起落架收放过程中的的液压系统 (11) 3.4.3 主起落架收起时的液压系统工作过程 (12) 3.4.4 主起落架放下时的液压系统工作原理 (13) 3.4.5 在液压系统发生故障时应急放起 (14) 3.4.6 起落架收放的工作电路 (15) 3.5 前轮转弯系统 (17) 3.5.1 功用 (17) 3.5.2 组成 (17) 3.5.3 工作原理 (17) 3.6 机轮和刹车系统 (17) 4 歼8飞机主起落架机轮半轴裂纹故障分析 (17) 4.1 主起落架机轮半轴故障概况 (17) 4.2 主起落架机轮半轴失效分析 (18) 4.3 机轮半轴裂纹检测及断口分析 (20) 4.3.1 外场机轮半轴断裂检查 (20) 4.3.2 大修厂机轮半轴裂纹检查 (21) 4.4 主起落架机轮半轴疲劳试验结果 (22) 4.4.1 机轮半轴疲劳试验破坏部位 (22)

针对IO的缓冲器版图设计

《集成电路版图设计》实验(二): 针对IO的缓冲器版图设计 一.实验内容 参考课程教学中互连部分的有关讲解,根据下图所示,假设输出负载为5PF,单位宽长比的PMOS等效电阻为31KΩ,单位宽长比的NMOS等效电阻为13KΩ;假设栅极和漏极单位面积(um2)电容值均为1fF,假设输入信号IN、EN是理想阶跃信号。与非门、或非门可直接调用LEDIT标准单元库,在此基础上,设计完成输出缓冲部分,要求从输入IN到OUT的传播延迟时间尽量短,可满足30MHz时钟频率对信号传输速度的要求(T=2T p)。 二.实验要求 要求:实验报告要涵盖分析计算过程 图1.常用于IO的三态缓冲器

三、实验分析 为了满足时钟频率对信号传输速度的要求,通过计算与非门和或非门的最坏延时,再用全局的时钟周期减去最坏的延时,就得到了反相器的应该满足的延时要求,可以得到反相器N管和P管宽度应该满足什么要求。标准与非门和或非门的电容、电阻可以通过已知条件算出。由于与非门、或非门可直接调用LEDIT标准单元库,所以本设计的关键在于后级反相器的设计上(通过调整反相器版图的宽长比等),以满足题目对电路延时的要求。由于输入信号IN和是理想的阶跃信号,所以输入的延时影响不用考虑。所以计算的重点在与非门和或非门的延时,以及输出级的延时。对于与非门,或非门的延时,由于调用的是标准单元,所以它的延时通过提取标准单元的尺寸进行估算,输出级的尺寸则根据延时的要求进行设计。 四、分析计算 计算过程: (1)全局延时要求为: 30MHz的信号的周期为T=1/f=33ns; 全局延时对Tp的取值要求,Tp<1/2*T=16.7ns; (2)标准单元延时的计算:

飞机起落架的减震系统

8.6 起落架的减震系统 一、概述 飞机起落架的减震系统由减震器和轮胎组成.其中减震器(也称缓冲器)是所有现代起落架所必须具备的构件,也是最重要的构件.某些起落架可以没有机轮、刹车、收放系统等,但是它们都必须具备某种形式的减震器。而轮胎虽然也能吸收一部分能量,但仅占减震系统总量的10%~15%。当飞机以一定的下沉速度(一般“限制下沉速度”为3 m/s,美国规定某些短距起落或海军用舰载机等可以更大些)着陆时,起落架会受到很大的撞击,并来回振动.减震装置的主要作用就是用来吸收着陆和滑行时的撞击能,以使作用到机体上的载荷减小到可以接受的程度;同时须使振动很快衰减。由以上功用对减震装置提出如下的设计要求. (1)在压缩行程(正行程)时,减震装置应能吸收设计规要求的全部撞击能,而使作用在起落架和机体结构上的载荷尽可能小。在压缩过程中载荷变化应匀滑,功量曲线应充实——也即减震器应具有较高的效率. (2)为了减少颠簸或在伸展行程(反行程)中不出现回跳,要求系统在压缩行程中所吸收的能量中的较大部分(一般应有65%~80%左右)转化为热能消散掉。 (3)为了让起落架能及时承受再次撞击,减震器应有必要的能量和伸展压力使起落架恢复到伸出状态,伸展放能时应柔和,支柱慢慢伸出,这样可消除回跳。减震器完成一个正、反行程的时间应短,一般不能大于o.8s。以上(2),(3)项措施同时也对提高乘员舒适性有利。 (4)着陆滑跑时,根据各种飞机对所预定的使用跑道的通过性(漂浮性)要求,规定在遇到某一高度的凸台和坑洼地时载荷系数不能超过允许值,(如某些次等级跑道的路面包含有76 mm高的凸台.以及一定波长和波幅的波形表面隆起)。轮胎的弹性变形和弹性力对吸收能量、减小载荷系数和提高滑行时乘员的舒适性等方面均起一定作用,但是它不能消耗能量。 二、减震器的类型 总的说减震器可分为两大类广类是由橡胶或钢制的固体“弹簧”式减震器;另一类是使用气体、油液或两者混合(通常称油气式)的流体“弹簧”式减震器。利用橡胶、钢弹簧和气体作为介质的减震器是利用介质变形吸收撞击动能,靠介质的分子摩擦消耗能量,因此这些减震器的热耗作用很小,只适用于轻型低速飞机以及后三点式起落架的尾乾.图8.24对不同类型减震器的效率V和效率/重量比作了比较。 v(%)‘A/LS,其中A为减震器在正行程中实际吸收的能量;I为正行程中受到的最大载荷;s为正行程中的最大行程。由团可知油气式减震器是目前效率/重量比最高的减震器类型,其效率实际上可达到80%一90%之间。图8.25所示波音-737主起落架的试验曲线表明其效率达到了90%。此外它还具有很好的能量消散能力。因此现代飞机一般多采用泊气式减震器。全泊液式减震器结构紧凑,尺寸小,效率

飞机前起落架驱动系统设计与性能分析

飞机前起落架驱动系统设计与性能分析 陈炎 南京航空航天大学,南京 210000 摘要:本文以大型民机起落架液压系统为研究对象,结合具体设计要求,采用电力传动技术,设计了一套起落架收放系统的新型驱动系统。本系统还利用一套双余度电控应急方案取代了传统的钢索滑轮应急放机构,并针对其蜗轮蜗杆传动机构进行了初步设计。最后在https://www.360docs.net/doc/8012862201.html,b和https://www.360docs.net/doc/8012862201.html,b软件平台上分别建立起落架收放机构及其控制系统的联合仿真模型,并分别对系统在正常收放和应急放模式下的性能进行仿真分析,初步实现了飞机收放系统的机电液一体化仿真。通过本文的研究工作,可以为飞机起落架液压系统的改进提供了一些有价值的经验和结论,为进一步的优化设计和试验工作奠定了的基础,对我国飞机起落架相关设计工作提供了技术支持。 关键词:民机起落架、系统设计、Virtual Lab Motion、Amesim、联合仿真 0前言 起落架系统在飞机滑跑起飞、着陆时支撑飞行器重量、承受着当飞机与地面接触时产生的静、动载荷、吸收和消耗飞机在着陆撞击、跑道滑行等地面运动时所产生的能量,在减缓飞机发生振动,降低飞机地面载荷,提高乘员舒适性,保证飞机飞行安全等方面发挥着极其重要的作用,是飞机设计过程中的重要环节。传统的飞机起落架设计中一般采用液压驱动装置。液压系统具有技术成熟、输出功率大、动态响应好、定位精度高的优点,但是由于液压系统采用了集中式液压源,飞机全身布满液压管路、造成其易泄露、易污染、易燃、结构复杂、重量大等问题,同时为了维持输出,液压系统需要工作在连续模式下,这使得其利用率很低,由此可见液压系统的可靠性问题成为了整个飞机系统中的薄弱环节之一,致使飞机不得不采用多余度作动系统,这又带来了重量、体积增加等新的问题。 近些年来,随着“功率电传”系统的不断发展,国外提出了“多电或者全电”驱动的设计思路。利用多电/全电技术,广泛采用电力作动器和功率电传技术,可以取代飞机上机械传动、气压、液压和润滑系统,从而大大减少飞机的重量和复杂性,可使飞机的可靠性、维修性、效率、生存能力和灵活性大为改善,同时由于燃油消耗量的减少、飞机出勤率的提高,可明显节省飞行成本。 目前,用于飞行控制、环境控制、刹车、燃油和发动机启动系统的电力作动系统已得到验证,国外也已经开始对飞机起落架驱动系统进行研究,他们预测用新型电力作动系统取代原来的液压系统将显着提高起落架系统的可靠性。可以说起落架驱动系统全电化的实现,无论对我国民用还是军用飞机性能的提高都具有重要的意义,是未来飞机起落架系统发展的新趋势。 本文以我国大型民机为设计背景,以多电/全电飞机为设计思想,针对飞机起落架驱动系统开展分析、设计和仿真工作,初步形成一套集机电一体化设计、仿真、分析流程。 1驱动系统方案设计 1.1起落架驱动系统设计要求 飞机前起落架驱动系统的主要作用是实现起落架的收放和转弯功能。传统的前起落架驱动系统是通过集中液压源进行驱动的,但随着目前飞机向全电/多电化方向发展的趋势,飞机内不再设有集中液压源,所以原有的液压系统就需要重新设计。以起落架收放系统为例,其设计要求如下: 飞机起落架收放系统的主要作用是在飞机起飞离地后,将起落架及起落架舱门收起并上锁,在飞机着陆前,打开舱门控制起落架放下并上锁,是飞机中的关键系统之一。同时,收放系统在起落架收起过程中,能控制起落架及相关部件(如舱门)按顺序开、关。 飞机前起落架收放系统的具体设计要求是:

飞机起落架收放系统

歼七飞机起落架收放系统典型故障分析 【摘要】:飞机起落架液压收放系统的传动性能与系统或元件的结构参数、工作条件参数以及负载参数等有关.文中在对收放系统传动时间、传动速度等传动性能计算的基础上分析影响其性能的主要因素。比较其影响程度,并进一步探讨了判断故障原因的方法. 【关键词】:起落架自动收起传动性能压力流量特性液阻负载配合间隙摩擦力 【正文】: 一.歼七飞机前起落架自动收起的故障研究 起落架收放系统是飞机的重要组成部分,此系统的工作性能直接影响到飞机的安全性和机动性. 改进设计飞机起落架收放系统主要用于控制起落架的收上与放下,控制主起落架舱门和前起落架舱门的打开与关闭,是飞机一个重要的系统,其能否正常工作将直接影响飞行安全。因此对该系统的维护和对所出现的故障进行分析研究,并进行有效的预防就显得十分重要。某单位在对某新型飞机做出厂试飞准备时,当机组人员接上地面压力源和电源进行该机的停机刹车压力调整时,在供压13min后,前起落架开始缓慢收起,飞机机头失去支撑最终导致机头接地,造成雷达罩和前机身02段蒙皮撕裂、结构损坏和前起落架变形等严重后果。本文将对前起落架自动收起的故障进行分析研究,并在此基础上针对性地提出预防措施。 1起落架收放控制原理分析

图1 前起落架收放系统原理图 前起落架收放系统原理如图1所示。正常收起落间隙时,起落架收放手柄(下简称手柄)处于收上位时,电液换向阀l使高压油进入收上管路,放下管路b回油管路相通。在高压油的作用下,下位锁作动筒的活塞杆缩进,下位锁打开。另一路高压油一方面液控单向阀13打开,使舱门作动筒10、12的回油略沟通;另一方面油通过限流活门9进入收放作动筒,使活塞杆伸出,起落架收起,作动筒8的回油经脚向活门7、应急转换活门4、电液换向阀1和应急排油活门2流入油箱。当起落架收好后,协调活门11压通,高压油进入舱门作动筒lO、12的收上腔使舱门收起。当手柄处于放下位置时,来油与放下管路接通,收上管路与回油路相通,起落架放下。在系统中还设有地面联锁开关,当飞机停放时,联锁开关自动断开电液换向阀的电路,此时即使将手柄置于收起位置,电液换向阀也不会工作,从而防止了地面误收起落架。 2起落架自动收起原因分析 由起落架收放控制原理知道,前起落架放下位置是由带下位锁的

(完整word版)飞机起落架基本结构

起落架 起落架就是飞机在地面停放、滑行、起飞着陆滑跑时用于支撑飞机重力,承受相应载荷的装置。任何人造的飞行器都有离地升空的过程,而且除了一次性使用的火箭导弹和不需要回收的航天器之外,绝大部分飞行器都有着陆或回收阶段。对飞机而言,实现这一起飞着陆(飞机的起飞与着陆过程)功能的装置主要就是起落架。 基本介绍 起落架就是飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。简单地说,起落架有一点象汽车的车轮,但比汽车的车轮复杂的多,而且强度也大的多,它能够消耗和吸收飞机在着陆时的撞击能量。 概括起来,起落架的主要作用有以下四个:承受飞机在地面停放、滑行、起飞着陆滑跑时的重力;承受、消耗和吸收飞机在着陆与地面运动时的撞击和颠簸能量;滑跑与滑行时的制动;滑跑 与滑行时操纵飞机。 2结构组成 为适应飞机起飞、着陆滑跑和地面滑行的需要,起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机轮上装有刹车或自动刹车装置。此外还包括承力支柱、减震器(常用承力支柱作为减震器外筒)、收放机构、前轮减摆器和转弯操纵机构等。承力支柱将机轮和减震器连接在机体上,并将着陆和滑行中的撞击载荷传递给机体。前轮减摆器用于消除高速滑行中前轮的摆振。前轮转弯操纵机构可以增加飞机地面转弯的灵活性。对于在雪地和冰上起落的飞机,起落架上的机轮用滑橇代替。 2.1减震器 飞机在着陆接地瞬间或在不平的跑道上高速滑跑时,与地面发生剧烈的撞击,除充气轮胎可起小部分缓冲作用外,大部分撞击能量要靠减震器吸收。现代飞机上应用最广的是油液空气减震器。当减震器受撞击压缩时,空气的作用相当于弹簧,贮存能量。而油液以极高的速度穿过小孔,吸收大量撞击能量,把它们转变为热能,使飞机撞击后很快平稳下来,不致颠簸不止。 2.2收放系统 收放系统一般以液压作为正常收放动力源,以冷气、电力作为备用动力源。一般前起落架向前收入前机身,而某些重型运输机的前起落架是侧向收起的。主起落架收放形式大致可分为沿翼展方向收放和翼弦方向收放两种。收放位置锁用来把起落架锁定在收上和放下位置,以防止起落架在飞行中自动放下和受到撞击时自动收起。对于收放系统,一般都有位置指示和警告系统。 2.3机轮和刹车系统 机轮的主要作用是在地面支持收飞机的重量,减少飞机地面运动的阻力,吸收飞机着陆和地面运动时的一部分撞击动能。主起落架上装有刹车装置,可用来缩短飞机着陆的滑跑距离,并使飞机在地

飞机起落架中减震缓冲装置及零部件的设计与加工工艺编制

目录 1 绪论 (4) 1.1 起落架常见类型 (5) 1.1.1前三点式 (5) 1.1.2后三点式 (6) 1.1.3自行车式 (7) 1.1.4多轮小车式 (6) 1.2起落架的设计要求 (8) 1.3起落架受到的外载荷 (9) 1.4起落架的结构......................................... 错误!未定义书签。 1.4.1简单支拄式和撑杆支柱式............................. 错误!未定义书签。 1.4.2摇臂支柱式......................................... 错误!未定义书签。 1.4.3多轮小车式起落架................................... 错误!未定义书签。 2 起落架的减震缓冲装置 (10) 2.1减震器的不同形式和对比 (11) 2.2油式减震器........................................... 错误!未定义书签。 2.2.1工作原理........................................... 错误!未定义书签。 2.2.2减震器中的气体..................................... 错误!未定义书签。 2.2.3油液和阻尼扎的作用及对功量图的影响................. 错误!未定义书签。 2.3油气式减震器......................................... 错误!未定义书签。 2.4全油式减震器的设计 (12)

飞机起落架机构设计及安全性分析开题报告

毕业设计(论文)开题报告 题目飞机起落架机构设计及安全性分析 一、毕业设计(论文)依据及研究意义: 飞机的起落架是飞机起飞和着陆的重要装置,它在工作过程中承受着极大的冲击载荷,所以采用高强度钢或超高强度钢制作。起落架在长期使用的过程中,受到外界各种因素的影响,它的坚固程度会变差,甚至产生裂纹。本文针对起落架的焊接进行了深入的分析与研究,并在此基础上研究了完善和加强飞机起落架的焊接工艺与材料的焊接性,从而大大的降低了飞机起落架焊接时出现的问题并提高了其焊接质量。起落架是飞机起飞、着陆系统,对飞机的性能和安全起着十分重要的作用 起落架是飞机在地面停放、滑行、起飞着陆滑跑时用于支撑飞机重力,承受相应载荷的装置。简单地说,起落架有一点象汽车的车轮,但比汽车的车轮复杂的多,而且强度也大的多,它能够消耗和吸收飞机在着陆时的撞击能量。概括起来,起落架的主要作用有以下四个: ①承受飞机在地面停放、滑行、起飞着陆滑跑时的重力。 ②承受、消耗和吸收飞机在着陆与地面运动时的撞击和颠簸能量。 ③滑跑与滑行时的制动。

④滑跑与滑行时操纵飞机。 二、国内外研究概况及发展趋势 起落架的收放机构运动复杂,起落架的收放,上、下位锁开锁和上锁,舱门的打开和关闭等均要正确匹配和协调,否则将会发生飞行事故。 我国开展了与起落架现代设计技术密切相关的专题研究,并取得了一大批研究成果,其中有些达到世界先进水平,如变油孔双腔缓冲器设计技术,飞机前轮防摆技术,飞机地面运动动力学分析技术,长寿命、高可靠性起落架设计及寿命评估技术,起落架结构优化设计技术,起落架收放系统仿真分析技术,起落架主动控制技术等,这些成果部分地应用于型号研制中,并取得了一定效果。许多学者与研究生在理论方面也开展了一系列研究工作。《起落架设计与评定技术指南》集中反应了我国近年来在起落架现代设计理论与方法方面的进展情况。但与国外相比,我国的大量研究成果是分散的,孤立的,没有作为模型、算法或程序模块集成于一套系统中,成为设计师的实用工具,更没有在高水平的硬件与软件平台上形成一套先进、实用、高效的起落架专业CAD/CAE软件系统,因而我国型号研制基本上仍是完全采用传统模式,费时、费力、耗资。 国内起落架的研究软件主要有南京航空航天大学和西北工业大学共同开发的起落架设计分析软件系统LCAE,功能比较强大,能进行结构布局设计、起落架机构运动分析或应力分析、有限元总体应力分析、变形及载荷分析、缓冲性能分析、损伤绒线分析、及破坏危险性分析。可以实现图形及文本的前处理功能、后处理功能、分析程序的过程处理功能。另外还有南京理工大学和沈阳飞机研究所的起落架设计专家系统ALGDES,它能进行结构布局设计和强度分析、系统空间位置造型仿真机干涉分析,它建立了起落架设计的知识表示形式和组织形式,即专家系统。北京航空航天大学和西北工业大学都做过起落架防滑刹车系统的机械装置和仿真软件。有人研究了飞机接地时所受到的加速度的计算方法[6],介绍了最大过载对飞行、起落架和气动力参数的敏感性。从国外文献上来看,有的从动能的角度研究了起落架摆振,还有的对在各种条件下的起落架性能进行了仿真,主要是在载荷及变形方面给予仿真。 在起落架行业,国外在大力开展起落架理论与专题研究的基础上,发展和推广应用起落架现代设计技术。在与现代设计技术密切相关的起落架专业理论研究方面,国外从六十年代开始,己做了大量专题研究工作。如DAUTI等公司从六、

民航飞机起落架简介

飞机起落架系统简介 起落架是飞机的重要部件,用来保证飞机在地面灵活运动,减小飞机着陆撞击与颠簸,滑行刹车减速;收上起落架减小飞行阻力,放下支持飞机。本文将简要介绍现代民用飞机起落架的组成及工作。 一、起落架的作用 起落架就是飞机在地面停放、滑行、起飞着陆滑跑时用于支撑飞机重力,承受相应载荷的装置。概括起来,起落架的主要作用有以下四个: 1、承受飞机在地面停放、滑行、起飞着陆滑跑时的重力; 2、承受、消耗和吸收飞机在着陆与地面运动时的撞击和颠簸能量; 3、滑跑与滑行时的制动; 4、滑跑与滑行时操纵飞机。 二、起落架的配置形式 起落架的布置形式是指飞机起落架支柱(支点)的数目和其相对于飞机重心的布置特点。目前,飞机上通常采用四种起落架形式: 1、后三点式:这种起落架有一个尾支柱和两个主起落架。并且飞机的重心在主起落架之后。后三点式起落架的结构简单,适合于低速飞机,因此在四十年代中叶以前曾得到广泛的应用。目前这种形式的起落架主要应用于装有活塞式发动机的轻型、超轻型低速飞机上。 后三点式起落架具有以下优点: (1)在飞机上易于装置尾轮。与前轮相比,尾轮结构简单,尺寸、质量都较小; (2)正常着陆时,三个机轮同时触地,这就意味着飞机在飘落(着陆过程的第四阶段)时的姿态与地面滑跑、停机时的姿态相同。也就是说,地面滑跑时具有较大的迎角,因此,

可以利用较大的飞机阻力来进行减速,从而可以减小着陆时和滑跑距离。 因此,早期的飞机大部分都是后三点式起落架布置形式。 随着飞机的发展,飞行速度的不断提高,后三点式起落架暴露出了越来越多的缺点: (1)在大速度滑跑时,遇到前方撞击或强烈制动,容易发生倒立现象(俗称拿大顶)。因此为了防止倒立,后三点式起落架不允许强烈制动,因而使着陆后的滑跑距离有所增加。 (2)如着陆时的实际速度大于规定值,则容易发生“跳跃”现象。因为在这种情况下,飞机接地时的实际迎角将小于规定值,使机尾抬起,只是主轮接地。接地瞬间,作用在主轮的撞击力将产生抬头力矩,使迎角增大,由于此时飞机的实际速度大于规定值,导致升力大于飞机重力而使飞机重新升起。以后由于速度很快地减小而使飞机再次飘落。这种飞机不断升起飘落的现象,就称为“跳跃”。如果飞机着陆时的实际速度远大于规定值,则跳跃高度可能很高,飞机从该高度下落,就有可能使飞机损坏。 (3)在起飞、降落滑跑时是不稳定的。如处在滑跑过程中,某些干扰(侧风或由于路面不平,使两边机轮的阻力不相等)使飞机相对其轴线转过一定角度,这时在支柱上形成的摩擦力将产生相对于飞机质心的力矩,它使飞机转向更大的角度。 (4)在停机、起、落滑跑时,前机身仰起,因而向下的视界不佳。 基于以上缺点,后三点式起落架的主导地位便逐渐被前三点式起落架所替代,目前只有一小部分小型和低速飞机仍然采用后三点式起落架。 2、前三点式:这种起落架有一个前支柱和两个主起落架。并且飞机的重心在主起落架之前。前三点式起落架是目前大多数飞机所采用的起落架布置形式,与后三点式起落架相比较,前三点式起落架更加适合于高速飞机的起飞降落。 前三点式起落架的主要优点有: 1)着陆简单,安全可靠。若着陆时的实际速度大于规定值,则在主轮接地时,作用在主轮的撞击力使迎角急剧减小,因而不可能产生象后前三点式起落架那样的“跳跃”现象。

飞机起落架收放系统的设计原理(1)

邯郸学院本科短学期报告 题目飞机起落架收放系统的设计原理 指导教师韩翔宇 年级2013 级 专业物流工程 班级 2012班物流工程本科班 成员20130408101047赵琛 20130408101038李苗苗 20130408101031麦苑怡 20130408101049高春盈 20130408101009王天 邯郸学院信息工程

目录 1.飞机起落架介绍 (1) 1.1什么是起落架的收放系统? (1) 1.2起落架收放系统的目的 (1) 1.3对于收放系统的要求 (1) 1.4主要组成部件以及主要部件的应用 (1) 1.5什么是作动筒? (1) 2.飞机起落架收放机构设计要求 (2) 2.1模型图 (2) 2.2机构简图 (3) 2.3最小传动角的计算 (4) 2.4静力分析 (5) 3.总结 (5)

1.飞机起落架介绍 我们都知道,起落架是唯一一种支撑整架飞机的部件,也正是因为这个原因,它成为了飞机不可分缺的一部份;没有它,飞机便不能在地面移动。当飞机起飞后,可以视飞机性能而收回起落架。那么问题来了,飞机是如何将起落架收回的呢?答案就是起落架的收放系统。 1.1 什么是起落架的收放系统? 收放系统一般以液压作为正常收放动力源,以冷气、电力作为备用动力源。一般前起落架向前收入前机身,而某些重型运输机的前起落架是侧向收起的。主起落架收放形式大致可分为沿翼展方向收放和翼弦方向收放两种。收放位置锁用来把起落架锁定在收上和放下位置,以防止起落架在飞行中自动放下和受到撞击时自动收起。对于收放系统,一般都有位置指示和警告系统。 1.2 起落架收放系统的目的 起落架收放系统的目的:起落架控制系统控制主起落架和前起落架的放下和收上。 1.3 对于收放系统的要求 收放起落架所需要的时间应符合要求:保证起落架在收上和放下是都能可靠地锁住,并能使驾驶员了解起落架收放情况。 1.4 主要组成部件以及主要部件的应用 主要组成部件:起落架选择活门、收放作动筒、收上锁及放下锁作动筒、起落架舱门作动筒、主起落架小车定位作动筒及小车定位往复活门、液压管路等。 起落架选择活门:由起落架收放控制手柄作动,其作用是将收放的机械信号转换成液压信号,引导液压油通过起落架收放管路,从而实现起落架的液压收放。 主起落架舱门作动筒:利用液压打开及关闭主起落架舱门,且锁定舱门在关闭位置。 主起落架小车定位作动筒:增压时可使前机轮轴升起以使起落架顺利收进轮舱。 小车定位往复活门:将起落架收上或放下管路的压力输送到小车定位作动筒。 1.5 什么是作动筒?

飞机起落架的减震系统

8. 6起落架的减震系统 一、概述 飞机起落架的减震系统由减震器和轮胎组成?其中减震器(也称缓冲器)是所有现代 起落架所必须具备的构件,也是最重要的构件?某些起落架可以没有机轮、刹车、收放系统等,但是它们都必须具备某种形式的减震器。而轮胎虽然也能吸收一部分能量,但仅占减震系统总量的10%?15%。当飞机以一定的下沉速度(一般“限制下沉速度”为3 m/s,美国规定某些短距起落或海军用舰载机等可以更大些)着陆时,起落架会受到很大的撞击,并来回振动?减震装置的主要作用就是用来吸收着陆和滑行时的撞击能,以使作用到机体上的载荷减小到可以接受的程度;同时须使振动很快衰减。由以上功用对减震装置提出如下的设计要求. (1)在压缩行程(正行程)时,减震装置应能吸收设计规范要求的全部撞击能,而使作 用在起落架和机体结构上的载荷尽可能小。在压缩过程中载荷变化应匀滑,功量曲线应充实一一也即减震器应具有较高的效率. (2)为了减少颠簸或在伸展行程(反行程)中不出现回跳,要求系统在压缩行程中所吸收的能量中的较大部分(一般应有65%?80%左右)转化为热能消散掉。 (3)为了让起落架能及时承受再次撞击,减震器应有必要的能量和伸展压力使起落架 恢复到伸出状态,伸展放能时应柔和,支柱慢慢伸出,这样可消除回跳。减震器完成一个正、反行程的时间应短,一般不能大于o. 8s。以上⑵,(3)项措施同时也对提高乘员舒适性有利。 (4)着陆滑跑时,根据各种飞机对所预定的使用跑道的通过性(漂浮性)要求,规定在遇到某一高度的凸台和坑洼地时载荷系数不能超过允许值,(如某些次等级跑道的路面包含有76 mn高的凸台.以及一定波长和波幅的波形表面隆起)。轮胎的弹性变形和弹性力对吸收能量、减小载荷系数和提高滑行时乘员的舒适性等方面均起一定作用,但是它不能消耗能量。 二、减震器的类型 总的说减震器可分为两大类广类是由橡胶或钢制的固体“弹簧”式减震器;另一类是使用气体、油液或两者混合(通常称油气式)的流体“弹簧”式减震器。利用橡胶、钢弹簧和气体作为介质的减震器是利用介质变形吸收撞击动能,靠介质内的分子摩擦消耗能量,因此这些减震器的热耗作用很小,只适用于轻型低速飞机以及后三点式起落架的尾乾.图8. 24对不同类型减震器的效率V和效率/重量比作了比较。v(%)‘A/ LS,其中A为减震器在正行程中实际吸收的能量;I为正行程中受到的最大载荷;s为正行程中的最大行程。由团可知油气式减震器是目前效率/重量比最高的减震器类型,其效率实际上可达到80%一90%之间。图8. 25所示波音-737 主起落架的试验曲线表明其效

民航执照考试上册-第4章起落架系统

(上册)第4章起落架系统 1、后三点起落架的特点:结构比较简单、重量也较轻。但飞机在地面稳定性较差,易发生 所谓的“跳跃”现象,大力刹车可能使飞机发生倒立。 前三点起落架的特点:地面运动稳定性好,滑行中不容易偏转和倒立,可大力刹车。 主要缺点是前起落架承受的载荷较大。 2、支柱套筒是起落架特点:结构简单,易于收放;吸收水平撞击载荷性能差。 3、撑杆式支柱套筒起落架是现代民航飞机主起落架结构的一般形式。 4、摇臂式起落架结构特点:机轮通过摇臂与减震器连接,但结构复杂。 5、在小车架式起落架中,轮架与支柱是铰接的。 6、小车架俯仰稳定减震器在不平地面滑行时,减缓小车架的震动。小车架倾斜定位机构的目的是减小轮舱的设计尺寸。 7、大型飞机上使用小车架式起落架的主要目的是将飞机重量分散到更大的面积上。 8、减震原理:将吸收的撞击动能转换为飞机的势能和热能。 9、油气减震器主要是利用气体的压缩变形吸收撞击能量,起缓冲作用,利用油液高速流过小孔的摩擦消耗能量。 10、现代民航飞机起落架减震器支柱内灌充的油液为石油基液压油、气体为干燥的氮气。 11、油气减震器在伸张过程中,气体放出能量,其中一部分转变为飞机的势能,另一部分也由油液高速流过小孔时的摩擦以及密封装置等的摩擦,转变为热能消散掉。 12、油气减震器在压缩和伸张过程中,油液作用力与活塞运动速度的平方成正比,与油孔面积的平方成反比。 13、油液作用力随压缩量的增大,先增大后减小。 14、载荷高峰:减震器所受的载荷在压缩过程之初会出现一个起伏,这种现象叫载荷高峰。 15、调节油针的作用:消除载荷高峰,增大热耗系数。 16、单向调节活门:减小飞机减震柱伸张速度,从而消除反跳现象,同时也增大了热耗作用。单向调节活门又叫防反跳活门。 17:油气减震充灌不正常的危害: (1)油量正常、气压小于规定值:当飞机粗猛着陆的撞击动能等于规定的最大能量时,要产生刚性撞击;

某型飞机起落架设计改进及制造技术

2010 年第 8 期·航空制造技术 69 学术论文 RESEARCH [摘要] 详细介绍了某型飞机起落架设计改进及制造技术。改进后的起落架经试验以及预先飞行验证,各项指标符合要求,满足了新研飞机的使用需要。 关键词: 起落架 设计改进 制造技术 [ABSTRACT] The new technology and processes are introduced in detail, which are adopted in the landing gear design improvement for one type of aircraft. The testing and advance flight validation after improvement shows that all functional performances are qualified and can meet the application requirements of the retrofit aircraft. Keywords: Landing gear Design improvement Manufacturing technology 为满足某型飞机的研制需要,采用现代起落架的设计理念,在保持原起落架结构以及起落架与飞机的协调关系(连接形式、接口尺寸、电液和操作习惯)等方面基本不变的情况下,从设计、工艺方面进行改进,达到了增强承载能力、减轻重量和提高寿命的目的。试验验证和装机使用表明,改型后的飞机起落架性能优于原型机的性能,实现了减重、增寿,以及增强飞机使用安全性的目标。 1 设计改进 根据飞机起落架改进技术方案要求,在保证飞机安 全性的前提下,尽量减轻起落架的重量,并达到增寿的目的。经设计分析和计算,对不满足强度要求的零部件进行加强改进,对强度较富裕的零部件进行减重改进。1.1 缓冲支柱优化设计 飞机着陆重量的增加,相应引起起落架吸收动量增加,导致起落架着陆冲击载荷的增加。为了尽可能地降低着陆冲击过载,须对起落架的缓冲系统进行优化设计。为此,在充分利用原结构的前提下,进行缓冲器充填参数、阻尼油针的优化设计,选取多组缓冲结构并通过落震试验验证。 通过一系列比较和验证,阻尼油针选用圆角方形截面结构,如图1所示。该油针的选用,使飞机起落架 某型飞机起落架设计改进及制造技术 Design Improvement and Manufacturing Technology of Landing Gear for One Type of Aircraft 中国人民解放军驻陕飞公司军事代表室 王晓平 周 亮 李 鹏 阻尼特性稳定、磨损小,同时提高了缓冲器系统承载能力。 1.2 部分零 (组)件结构重新设计对起落架的部分零(组)件结构重新进行设计,改善 了零件的受力状态,从而提高了起落架的承载能力。如将主起落架斜撑杆由刚性结构改为弹性结构,以改善起 图1 圆角方形截面油针 Fig. 1 Square section pin with round corner 落架斜撑杆的协调承载能力,减少结构不协调引起的结构超载损伤,降低中部接头的应力水平,提高主起落架外筒中部接头的寿命。改进前后的结构如图2、图3所示。 1.3 关键重要件结构加强 由于新研飞机载荷的增加,经计算分析起落架部分零件强度不够,因此必须对零件结构进行改进,对簿弱部位进行加强。为了克服焊接结构的缺点,提高结构件的疲劳强度,前起落架活塞杆、主起落架外筒、前 图2 刚性斜撑杆(原结构) Fig. 2 Rigid batter brace (original structure) 图3 弹性斜撑杆(改进结构) Fig. 3 Flexible batter brace (improved structure) 3mm 3mm A腔

起落架系统结构及工作原理

起落架系统结构及工作原理 起落架用来支撑飞机和便于飞机在地面运动。飞机在着陆接地和地面运动时,会与地面产生不同程度的撞击,起落架应能减缓这种撞击,以减小飞机的受力。同时,起落架还应保证飞机在地面运动时,具有良好的稳定性和操纵性。 Cessna172R飞机起落架的配置形式为前三点式。与后三点式起落架相比,这种配置形式能保证飞机在地面运动时的稳定性较好,但前起落架的载荷比较大,构造也比较复杂,同时着陆滑跑时,飞机迎角较小,不能很好地利用气动阻力来缩短滑跑距离。 前起落架构件材料为4130、6150合金钢和7075-T73铝合金锻件。 3.1 主起落架构造及维护 Cessna172R飞机主起落架支柱由6150合金弹簧钢管和高强度的7075-T73 铝合金锻造连接件构成,用螺栓固定在机身底部,为不可收放式。每个支柱下部外侧连接了一个铸铝机轮组件和园盘式刹车系统。 主起落架维护程序包括支柱和悬臂拆卸/安装说明,主机轮校装程序,机轮和轮胎维护,以及刹车维护程序。 3.1.1 主起落架拆卸/安装 A.拆卸主起落架(见图1)。 (1)拆下前排座椅到达机身地板。 (2)拉起地毯拆下地板检查盖板(231AT)接近机身地板下部的起落架组件。 (3)顶起飞机。 (4)拆下机身整流罩与机身的连接螺钉。 (5)拆下机身整流罩结合部分螺钉。 (6)从支柱整流罩上拆下机身整流罩。 (7)从支柱上的刹车管路放泄液压油。 (8)脱开从机身蒙皮露出的接头处液压刹车管。 (9)在脱开的接头处放置盖帽或堵塞。 (10)拆下管状支柱后部内与起落架内部隔框接头处连接的螺帽,垫片和螺 栓。 (11)从接头和衬套处拉出管状支柱。 注意:管状支柱是压缩装配在起落架外部锻件衬套内。 B.安装主起落架(见图1)。 (1)安装所有从支柱上拆下的部件。 (2)使用Dow Corning 混合物 DC-7在管状支柱上部末端大约11英寸。 (3)移动管状支柱穿过衬套进入外部支柱接头和内部支柱接头。 (4)校准管状支柱与内部接头的螺栓孔。

飞机起落架设计

。 起落架设计 起落架形式的选择 前三点式起落架,采用前三点式起落架,与自行车式后三点式相比前三点式具有结构重量适中,前方视界、地面滑行稳定性、起飞抬前轮、起飞过程中的操作、着陆接地的操作性能好,着陆速度使用的发动机不限的特点。 飞机起落架安装位置的选择

飞机起落架形式的选择 特点:1.受力系统在放下位置借助承力锁来保证几何不变性,该锁将起落架的承力杆或梁直接固定在飞机结构上;2.收放作动筒不是受理系统承力杆;3.这种受力形式的下锁位承受很大的地面载荷,其变形等可能影响锁的可靠性,从而降低起落架收放的可靠性。故用此种形式时,对起落架收放的可靠性应予以充分注意,可靠性设计和试验均应考虑地面载荷。这一类起落架在机体内所占的空间较小。 各参数确定 前三点式起落架的主要几何参数包括:主轮距B 、前主轮距b 、停机角ψ、着地角φ、防后倒立角γ、起落架高度 h (1)停机角ψ的确定: ψ = 0°~ 4° 按起飞要求,其最佳值应能使飞机起飞距离最小。 根据经验取:ψ=2° (2)着地角φ的确定 按着陆迎角确定 φ=16° (3)防后倒立角γ的确定:应大于着地角 安装起滑ααψ-=安装着陆αψαφ--=

γ= +2°=18° (4)前主轮距b的确定: L=(m) f L= 取b=*f (5)起落架高度h 重心位置为B L=(m) 前轮所承受的载荷最佳值为起飞重量的8~15%的条件及γ=18°来确定 前轮载荷Q T,后轮载荷H T,飞机重量G 对主轮距取矩:Q T×b=G×e由此得出: e=(8~15%)b 取e== (m) 则h’=e/tanγ=(m) 减震器参数 (1) 飞机下沉速度 减震器的行程取决于飞机下沉速度(接地时的垂直速度)、减震材料和接

歼七起落架故障解析

西安航空职业技术学院 实训报告 论文题目:歼7飞机起落架维护 所属系部:航空维修工程系 指导老师:程军晋荣职称:教授 学生姓名:吴江波班级、学号: 10501119 专业:航空电子设备维修 西安航空职业技术学院制 2012年 03 月 25

飞机起落架故障分析 【摘要】 起落架是飞机的重要组成部分,飞机的停放、起飞着陆主要是由起落架来完成的。所以起落架的工作性能直接影响了飞机的安全性和机动性。 飞机起落架故障很多,本文主要针对歼七飞机的一些故障加以分析。主要阐述了歼七飞机主起落架机轮故障分析,飞机起落架收放系统典型故障分析。 歼7飞机起落架为前三点式布局,由1个前起落架、2个主起落架组成,其中主起落架安装左右机翼上。飞机停放时,起落架起着支撑作用;飞机地面滑行时、起飞着陆时,起落架起着缓冲作用,同时将地面载荷传迹到机身上。主起落架收起后,支柱收在机翼内,而机轮则绕活塞杆下部的转轴转动77°23′收入机身两侧。 主起落架为支柱式结构,由缓冲支柱、带刹车机轮、收放作动筒、转轮机构、上位锁、终点开关和护板等组成。 关键词:起落架机轮半轴裂纹法兰盘自动收起油路堵死电液换向阀

目录 目录 (2) 1.歼七飞机起落架收放系统典型故障分析 (3) 1.1歼七飞机前起落架自动收起的故障研究 (3) 1.1.1起落架收放控制原理分析 (3) 1.1.2起落架自动收起原因分析 (4) 1.1.3 电液换向阀性能不良 (5) 2.故障验证 (9) 3.改进起落架收放管路的设计 (10) 结束语 (11) 参考文献 (12)

1.歼七飞机起落架收放系统典型故障分析 1.1歼七飞机前起落架自动收起的故障研究 起落架收放系统是飞机的重要组成部分,此系统的工作性能直接影响到飞机的安全性和机动性. 改进设计飞机起落架收放系统主要用于控制起落架的收上与放下,控制主起落架舱门和前起落架舱门的打开与关闭,是飞机一个重要的系统,其能否正常工作将直接影响飞行安全。因此对该系统的维护和对所出现的故障进行分析研究,并进行有效的预防就显得十分重要。某单位在对某新型飞机做出厂试飞准备时,当机组人员接上地面压力源和电源进行该机的停机刹车压力调整时,在供压13min后,前起落架开始缓慢收起,飞机机头失去支撑最终导致机头接地,造成雷达罩和前机身02段蒙皮撕裂、结构损坏和前起落架变形等严重后果。本文将对前起落架自动收起的故障进行分析研究,并在此基础上针对性地提出预防措施。 1.1.1起落架收放控制原理分析 前起落架收放系统原理如图2-1所示。正常收起落间隙时,起落架收放手柄(下简称手柄)处于收上位时,电液换向阀l使高压油进入收上管路,放下管路b回油管路相通。在高压油的作用下,下位锁作

相关文档
最新文档