多晶光伏组件规格表

多晶光伏组件规格表
多晶光伏组件规格表

多晶硅太阳能电池板规格表

Specifications for Poly-crystalline Silicon Solar Panels

型号

Model No.

峰值功率Pm

Maximum

power (Wp)

开路电压Voc

Open circuit

voltage(V)

短路电流Isc

Short circuit

current (A)

峰值电压Vmp

Maximum

operating

voltage(V)

峰值电流Imp

Maximum

operating

current ( A )

组件尺寸

长×宽×高

Module Dimension

H ×W×D (mm) BL305P-24305 45.3 9.02 36.5 8.36 1956*992*50 BL300P-24300 45.3 8.79 36.5 8.22 1956*992*50 BL295P-24295 45.3 8.72 36.5 8.08 1956*992*50 BL290P-24290 44.6 8.61 36.0 8.05 1956*992*50 BL285P-24285 44.6 8.55 36.0 7.92 1956*992*50 BL280P-24280 44.6 8.40 36.0 7.78 1956*992*50 BL275P-24275 44.0 8.30 35.5 7.75 1956*992*50 BL270P-24270 44.0 8.14 35.5 7.61 1956*992*50 BL260P-24270 44.0 7.98 35.5 7.32 1956*992*50 BL250P-20250 37.8 8.85 30.5 8.20 1650*992*50 BL245P-30245 37.2 8.74 30.0 8.17 1650*992*50 BL240P-20240 37.2 8.65 30.0 8.00 1650*992*50 BL235P-20235 37.2 8.46 30.0 7.83 1650*992*50 BL230P-20230 36.6 8.42 29.5 7.80 1650*992*50 BL225P-20225 36.6 8.24 29.5 7.63 1650*992*50 BL220P-20220 36.0 8.19 29.0 7.59 1650*992*50 BL215P-18215 36.0 8.68 27.0 7.96 1482*992*50 BL210P-18210 43.6 8.48 27.0 7.78 1482*992*50 BL200P-18 200 43.6 8.08 27.0 7.41 1482*992*50 BL195P-16 195 30.7 8.45 24.7 7.9 1320*992*35 BL190P-16190 30.7 8.26 24.7 7.72 1320*992*35 BL185P-16185 30.1 8.21 24.1 7.67 1320*992*35 BL180P-16180 30.1 8.01 24.1 7.49 1320*992*35 BL175P-16175 29.6 7.96 23.5 7.44 1320*992*35 BL170P-16170 29.6 7.84 23.5 7.26 1320*992*35

工作温度Operating temperature : - 40 to + 85℃

最大系统电压Maximum system voltage : 1000V DC

测试标准STC: Irradiance 1000W/ m2, Temperature 25℃, AM=1.5

产品保证 Limited Warranty: Power output not less than 90% in 10 years and 80% in 25 years

型号

Model No.

峰值功率Pm

Maximum

power (Wp)

开路电压Voc

Open circuit

voltage(V)

短路电流Isc

Short circuit

current (A)

峰值电压Vmp

Maximum

operating

voltage(V)

峰值电流Imp

Maximum

operating

current ( A )

组件尺寸

长×宽×高

Module

Dimension

H ×W×D

(mm)

BL150P-12150 21.6 9.08 18.0 8.33 1482*666*35 BL145P-12145 21.6 8.78 18.0 8.05 1482*666*35 BL140P-12140 21.6 8.24 18.0 7.78 1482*666*35 BL135P-12135 21.6 8.01 18.0 7.50 1482*666*35 BL130P-12130 21.6 7.87 18.0 7.22 1482*666*35 BL125P-12125 21.6 7.57 18.0 6.95 1482*666*35 BL120P-12120 21.6 7.27 18.0 6.67 1320*666*35 BL115P-12115 21.6 6.96 18.0 6.39 1320*666*35 BL110P-12110 21.6 6.66 18.0 6.11 1150*666*35 BL105P-12105 21.6 6.30 18.0 5.83 1150*666*35 BL100P-12100 21.6 6.05 18.0 5.56 1150*666*35 BL95P-1295 21.6 5.75 18.0 5.28 1050*666*35 BL90P-1290 21.6 5.45 18.0 5.00 915*666*35 BL85P-1285 21.6 5.10 18.0 4.72 915*666*35 BL80P-1280 21.6 4.84 18.0 4.45 915*666*35

BL75P-1275 21.6 4.54 18.0 4.17 915*666*35 BL70P-1270 21.6 4.23 18.0 3.89 765*666*35 BL65P-1265 21.6 3.93 18.0 3.61 765*666*35 BL60P-1260 21.6 3.63 18.0 3.33 765*666*35 BL55P-1255 21.6 3.33 18.0 3.06 610*666*35 BL50P-1250 21.6 3.02 18.0 2.78 610*666*35 BL45P-1245 21.6 2.72 18.0 2.50 535*666*25 BL40P-1240 21.6 2.42 18.0 2.22 460*666*25 BL35P-1235 21.6 2.12 18.0 1.95 460*666*25 BL30P-1230 21.6 1.81 18.0 1.67 720*345*25 BL25P-1225 21.6 1.51 18.0 1.39 610*345*25 BL20P-1220 21.6 1.21 18.0 1.11 535*345*25 BL15P-1215 21.6 0.91 18.0 0.83 405*345*25 BL10P-1210 21.6 0.60 18.0 0.56 345*285*25 BL5P-12 5 21.6 0.30 18.0 0.278 285*185*25

工作温度Operating temperature : - 40 to + 85℃

最大系统电压Maximum system voltage : 1000V DC

测试标准STC: Irradiance 1000W/ m2, Temperature 25℃, AM=1.5

产品保证 Limited Warranty: Power output not less than 90% in 10 years and 80% in 25 years

光伏规范标准图纸

(一)村级光伏电站组件排布图纸 根据现场图片进行设计 1

2 村集体光伏电站效果图1 村集体光伏电站效果图2

3 村集体光伏电站效果图3 (二)、详细说明 项目概述 本项目叶集区南依大别山,北连淮北平原,西临史河,东部丘陵,境内河流纵横,塘堰星罗棋布,林竹繁茂。全区共有森林面积71800亩,其中,孙岗乡28000亩,三元乡7400亩,平岗办事处30000亩,镇区办事处6400亩,本区树种以意扬、国外松、杉木为主,经济林有板栗、桃、枣、水蜜桃等。属于北亚热带向暖温带转换的过渡带,季风显著,四季分明,气候温和,雨量充沛,光照充足,无霜期长。全年日照小时,平均气温,梅雨季节一般在6-7月间。全区年平均日照时数为小时,日照百分率为%左右,属于太阳能利用条件中等的地区。除

梅雨季节外,太阳能资源具备利用的稳定性。本项目参考METEONORM 7 数据库中的数据进行太阳能资源分析,统计了 1991~2010 年累年各月的水平面总辐射值和15°斜面总辐射值,详见下表。 月份水平面辐射(kWh/m2) 一月63 二月75 三月91 四月120 五月143 六月133 七月154 八月135 九月115 十月95 十一月71 十二月61 合计1253 (行业标准Q XT-89-2008)制定的太阳能资源丰根据《太阳能资源评估方法》 富程度等级划分,本项目站址所在地为资源丰富地区。 光伏电站根据现场安装状况进行组件及逆变器的配置,本村级光伏电站配备4个50KW的组串式逆变器,经逆变后进入一个交流配电箱,最终并入国家电网。 4

分布式光伏电站原理图5

光伏组件转换效率测试和评定方法技术规范

CNCA/CTS0009-2014 中国质量认证中心认证技术规范 CQC3309—2014 光伏组件转换效率测试和评定方法 Testing and Rating Method for the Conversion Efficiency of Photovoltaic (PV) Modules 2014-02-21发布2014-02-21实施 中国质量认证中心发布

目次 目次.................................................................................... I 前言.................................................................................. II 1范围 (1) 2规范性引用标准 (1) 3术语和定义 (1) 3.1组件总面积 (1) 3.2组件有效面积 (1) 3.3组件转换效率 (2) 3.4组件实际转换效率 (2) 3.5 标准测试条件 (2) 3.6 组件的电池额定工作温度 (2) 3.7 低辐照度条件 (2) 3.8 高温度条件 (2) 3.9 低温度条件 (2) 4测试要求 (2) 4.1评定要求 (2) 4.2抽样要求 (3) 4.3测试设备要求 (3) 5测试和计算方法 (4) 5.1预处理 (4) 5.2组件功率测试 (4) 5.3组件面积测定 (6) 5.4组件转换效率计算 (6)

前言 本技术规范根据国际标准IEC 61853:2011和江苏省地方标准DB32/T 1831-2011《地面用光伏组件光电转换效率检测方法》,结合光伏组件产品测试能力的现状进行了编制,旨在规范光伏组件转换效率的测试与评定方法。 本技术规范由中国质量认证中心(CQC)提出并归口。 起草单位:中国质量认证中心、国家太阳能光伏产品质量监督检验中心、中国电子科技集团公司第四十一研究所、中广核太阳能开发有限公司、中国三峡新能源公司、晶科能源控股有限公司、上海晶澳太阳能科技有限公司、常州天合光能有限公司、英利绿色能源控股有限公司。 主要起草人:邢合萍、张雪、王美娟、朱炬、王宁、曹晓宁、张道权、刘姿、陈康平、柳国伟、麻超。

晶硅组件检测与分析

光伏电站晶硅组件如何检测与分析? 光伏电站的质量问题由来已久,几年前,一家权威认证机构对国内已经在运行的多座大型晶硅组件光伏电站进行了质量检测,调查发现光伏组件普遍存在各种质量问题,如热斑、隐裂和功率衰 减等,对电站的发电量、KPI指标、电站收益及日常运行维护带来严重影响。 电站建成后,随着时间的推移,组件本身首年光致衰减及逐年衰减率和其他衰减因素都客观存在、不可避免,因此实际的装机容量会逐年减少,那么基于原始装机容量进行理论发电量或理论功 率输出计算的发电性能指标如PR、CPR和EPI等,其中包含的光伏电池板自身损耗部分会逐年增加,而且实际装机容量的不确定性将对次年各个电站的计划发电量的制定带来一定影响。 因此文中基于现实存在的客观情况,着重探讨已并网电站的户外组件电性能测试及功率修正方法、组件热斑现象和原因分析以及晶硅组件PID功率衰减的快速甄别方法,由于篇幅有限,其他质 量问题的检测将另起他文探讨。通过相关的测试和分析手段,可对自有电站的实际情况有清楚的了解,如组件的衰减情况、热斑组件的分布比例及是否存在PID组件等等。 一、组件(方阵)I-V测试及功率修正方法 笔者曾在某西部多家地面电站进行考察,发现在某一随机时段各个逆变器的发电量存在较大差异。如图1所示,通过对电站逐级逐段分析,排除了逆变器本身及对应方阵故障、设备停机等因素,发现电量差异的主要来源为各个组串工作电流的波动性,整体离散率较高,有的甚至超过20%。 逆变器发电量的差异和组件的功率输出情况有密切关联,因此有必要从汇流箱侧去查找低功率的组串或组件,一般的,户外组件或方阵组串的电性能测试使用便携式I-V测试仪,本部分首先介 绍便携I-V测试仪的原理、配套辐照度计量仪的类型和特点,接着介绍现场组件功率测试的一次修 正和二次修正方法。 图1 某地面电站某一时段各个逆变器的发电对比

光伏组件规格表

光伏组件规格表光伏组件(太阳能电池板)规格表 如本页不能正常显示,请点击刷新 短路峰值开路峰值峰值 电压电流电流尺寸电压功率型号材料(mm) Pm Voc Imp Isc Vmp (V) (A) (watt) (V) (A) 单晶0.66 265*265*25 5 APM18M5W27x28.75 0.57 10.5 硅_________________ 单晶265*265*25 17.5 5 0.29 21.5 0.32 APM36M5W27x27 硅多晶265*265*25 10.5 5 8.75 0.57 0.66 APM18P5W27x27 硅 ------------------- 多晶265*265*25 17.5 0.29 21.5 0.32 5 APM36P5W27X27 硅 单晶301*356*25 0.46 21.5 0.52 17.5 APM36M8W36X30 硅 多晶301*356*25 21.5 0.52 APM36P8W36X30 17.5 0.46 硅 单晶APM36M10W36X300 1 7.5 0.57 21.5 0.65 301*356*25 多晶APM36P10W36X300 17.5 0.57 21.5 0.65 301*356*25 287*487*25 0.97 21.5 0.86 单晶17.5 15 APM36M15W49X29 光伏组件规格表硅 多晶356*426*28 0.86 21.5 0.97 15 17.5 APM36P15W43X36 硅单晶1.29 1.14 21.5 281*627*25 APM36M20W63x220 17.5 硅 多晶356*576*28 1.14 21.5 1.29 APM36P20W58x36!0 17.5 硅 单晶536*477*28 21.5 1.61 APM36M25W48X525 17.5 1.43 硅 多晶356*676*28 21.5 1.61 APM36P25W68X325 17.5 1.43 硅

影响光伏电池、组件输出特性的因素概要

由于光伏电池、组件的输出功率取决于太阳光照强度、太阳能光谱的分布和光伏电池的温度、阴影、晶体结构。因此光伏电池、组件的测量在标准条件下(STC进行,测量条件被欧洲委员会定义为101号标准,其条件是:光谱辐照度为1000瓦/平米;光谱 AM1.5;电池温度25摄氏度。 在该条件下,太阳能光伏、电池组件所输出的最大功率被称为峰值功率,其单位表示为瓦(Wp。在很多情况下,太阳能电池的光照、温度都是不断变化的,所以组件的峰值功率通常用模拟仪测定并和国际认证机构的标准化的光伏电池进行比较。 (1温度对光伏电池、组件输出特性的影响 大家都知道,光伏电池、组件温度较高时,工作效率下降。随着光伏电池温度的升高,开路电压减小,在20-100摄氏度范围,大约每升高1摄氏度,光伏电池的电压减小2mV;而光电流随温度的升高略有上升,大约每升高1摄氏度电池的光电流增加千分之一。总的来说,温度每升高1摄氏度,则功率减少0.35%。这就是温度系数的基本概念,不同的光伏电池,温度系数也不一样,所以温度系数是光伏电池性能的评判标准之一。 (2光照强度对光伏电池组建输出特性的影响 光照强度与光伏电池、组件的光电流成正比,在光强由100-1000瓦每平米范围内,光电流始终随光强的增长而线性增长;而光

照强度对电压的影响很小,在温度固定的条件下,当光照强度在400-1000哇每平米范围内变化,光伏电池、组件的开路电压基本保持不变。所以,光伏电池的功率与光强也基本保持成正比。 (3阴影对光伏电池、组件输出特性的影响 阴影对光伏电池、组件性能的影响不可低估,甚至光伏组件上的局部阴影也会引起输出功率的明显减少。所以要注意避免阴影的产生,及时清理组件表面,防止热斑效应的产生。一个单电池被完全遮挡时,太阳电池组件输出减少75%左右。虽然组件安装了二极管来减少阴影的影响,但如果低估局部阴影的影响,建成的光伏系统性能和投资收效都将大大降低。

如何识别光伏组件优劣

如何快速识别光伏组件优劣? 一、电池片 1. 检验内容及方式: 1)电池片厂家,包装(内包装及外包装),外观,尺寸,电性能,可焊性,栅线印刷,主栅线抗拉力,切割后电性能均匀度。(电池片在未拆封前保质期为一年) 2)抽检(按来料的千分之二),电性能和外观以及可焊性在生产过程全检。 2. 检验工具设备: 单片测试仪,游标卡尺,电烙铁,橡皮,刀片,拉力计,镭射划片机。 3. 所需材料: xx 带,助焊剂。4.检验方法: 1)包装: 良好,目检。 2)外观: 符合购买合同要求。 3)尺寸: 用游标卡尺测量,结果符合厂家提供的尺寸的±0.5mm 4)电性能: 用单体测试仪测试,结果±3%。 5)可焊性: 用320-350C的温度正常焊接,焊接后主栅线留有均匀的焊锡层为合格。(要保证实验用的涂锡带和助焊剂具有可焊性)

6)栅线印刷: 用橡皮在同一位置反复来回擦20 次,不脱落为合格。 7)主栅线抗拉力: 将互链条焊接成△状,然后用拉力计测试,结果大于 2.5N。 8)切割后电性能xx:用镭射划片机将电池片化成若干份,测试每片的电性能保持误差在 ± 0.15w。 5.检验规则:以上内容全检,若有一项不符合检验要求则对该批进行千分之五 的检验。如仍不符合4)。5)。7)8)项内容,则判定该批来料为不合格。 二、xx 带 1. 检验内容及方式: 1)厂家,规格,包装,保质期(六个月),外观,厚度均匀性,可焊性,折断率,蛇形弯度及抗拉强度。2)每次来料全检(盘装),外观生产过程全检。 2. 检验所需工具: 钢尺,XX,烙铁,XX,拉力计。 3. 所需材料:电池片,助焊剂。 4. 检验方法: 1)外包装目视良好,保质期限,规格型号及厂家。 2)外观: 目视涂锡带表面是否存在黑点,锡层不均匀,扭曲等不良现象。 3)厚度及规格: 根据供方提供的几何尺寸检查,宽度士0.12mm厚度士0.02mm视为合格。

光伏组件测试

1.1.1组件电性能测试 1 组件测试仪校准:开始测试前使用相应的标准板校准测试仪;之后连续工作四小时(或更换待测产品型号)校准测试仪一次。 2 标准板选用:测试单晶硅组件使用单晶硅标准板;测试多晶硅组件使用多晶硅标准板。 测试120W以上(包括120W)组件:使用160W标准板校准测试; 测试50~120W(包括50W)组件:使用80W标准板校准测试; 测试30~50W(包括30W)组件:使用30W标准板校准测试; 测试30W以下组件:使用15W标准板校准测试。 3 短路电流校准允许误差:±3%。 4 每次校准后填写《组件测试仪校准记录》。 2 组件的测试: 1太阳模拟器光强均匀度测试:①太阳模拟器光强均匀度≤3%;②每周一、四校正测试一次。 2 太阳模拟器光强稳定性测试:①太阳模拟器光强稳定性≤1%;②每天测试前校正测试一次。 3电池组件测试前,需在测试室内静止放置24小时以上,然后进行测试。 .4 测试环境温度湿度:①温度:25±3℃;②湿度:20~80%;③测试室保证门窗关闭,无尘。 3组件重复测试精度:<±1%。 12.4组件电性能参数: 12.4.1国内组件:①三十六片串接:工作电压:≥16.0V;开路电压: ≥19.8V。 ②七十二片串接:工作电压:≥33.5V;开路电压: ≥42.4V。 ③六十片串接:工作电压:≥28.0V;开路电压: ≥34.0V。 ④五十四片串接:工作电压:≥25.0V;开路电压: ≥32.0V。 ⑤功率误差:±3%。 12.4.2国外组件:①三十六片串接:工作电压:≥16.8V;开路电压: ≥20.5V。 ②七十二片串接:工作电压:≥33.5V;开路电压: ≥42.4V。 ③六十片串接:工作电压:≥27.4V;开路电压: ≥34.0V。 ④五十四片串接:工作电压:≥25.0V;开路电压: ≥32.0V。 ⑤功率误差 2.0 仪器/工具/材料 2.1 所需原、辅材料:1.外观检查合格的组件 2.2 设备、工装及工具:1.组件测试仪;2.标准组件; 3.合格印章 3.0 准备工作 3.1 工作时必须穿工作衣,鞋;做好工艺卫生,用抹布清洗工作台 3.2 按《太阳能模拟器操作规范》开启并设置好组件测试仪;每班次开始生产测试前必须用标准

光伏组件中电池遮挡与伏安特性曲线变化的关系

体硅太阳电池组件有指导作用,而且也有利于人们正确判断光伏发电系统输 ... 配等因素是导致输出功率降低的主要原因,研究这些因素的影响不仅对制造晶体硅太阳电池组件有指导作用,而且也有利于人们正确判断光伏发电系统输出降低或失效的原因。 国外曾经有人报道一些在现场用了10到15年的组件电特性已经恶化。其I-V特性曲线已经和一些普通的光伏组件差别很大,而这种变化的I-V曲线可以用来分析晶体硅太阳电池组件输出降低的原因。本文主要讨论了遮挡部分电池组件输出特性的影响,并用计算机对核过程进行了模拟。 一、模拟方法 在晶体硅太阳电池组件中,当有电池被遮挡时,组件的输出特性可以用下式表示: 这些参数估算时可以用一下参数代替:n=1.96,I0=3.86X10-5(A),Rsh=15.29(Ω)。a=2.0x10-3,Vbr=-21.29(V),nn=3.R3=0.008. 组件中有电池被遮盖时的电路可以用图片三来表示,正常的电池和被遮盖住的电池在组建中是串联关系,因此电压V和电流I满足以下等式:

组件中电池被遮挡时的模拟电路 其中,Iph1代表组件中普通电池的光电流,Iph2代表遮挡电池产生的光电流,与等式(2)中的遮挡透过率有关系,例如,当遮挡透过率为35%时,Iph2是Iph1的0.35倍。通过解(3)-(6)式可以计算出I-V的特性。 二、实验 图2(a)和(b)是通过改变阴影透过率的情况下分别计算和实际测量的I-V 特性曲线。当组件上的一个电池用不同的透过率(一个组件由36块电池组成)时,短路电流大致变化不大。结果是透过率越低,电流随着电压的升高下降越快。另一方面,开路电压基本上相同。由图可看出:测量结果与计算的结果相吻合。

太阳能光伏组件分原材料及部件

太阳能光伏组件的原材料及部件性能,作 用,特点,及检验 1.太阳能电池片 外形与特点: 太阳能电池片是太阳能电池组件中的主要材料,电池片表面有一层蓝色的减反射膜,还有银白色的电极栅线。其中很多条细的栅线,是电池片表面电极向主栅线汇总的引线,两条宽一点的银白线就是主栅线,也叫电极线或上电极。电池片的背面也有两条(或间断的)银白色的主栅线,叫下电极或背电极。电池片与电池片之间的连接,就是把互连条焊接到主栅线上实现的。一般正面的电极线是电池片的负极线,背面的电极线是电池片的正极线。太阳能电池片无论面积大小(整片或切割成小片),单片的正负极间输出峰值电压都是0.48~0.5v。而电池片的面积大小与输出电流和发电功率成正比,面积越大,输出电流和发电功率越大。 合格的太阳能电池片应具有以下特点。 (1)具有稳定高效的光电转换效率,可靠性高。 (2)采用先进的扩散技术,保证片内各处转换效率的均匀性。 (3)运用先进的pecvd成膜技术,在电池片表面镀上深蓝色的氮化硅减反射膜,颜色均匀美观。 (4)应用高品质的银和银铝金属浆料制作背场和栅线电极,确保良好的导电性、可靠的附着力和很好的电极可焊性。 (5)高精度的丝网印刷图形和高平整度,使得电池片易于自动焊接和激光切割。 太阳能电池片的分类及规格尺寸 太阳能电池片按用途可分为地面用晶体硅太阳能电池、海上用晶体硅太阳能电池和空间用晶体硅太阳能电池,按基片材料的不同分为单晶硅电池和多晶硅电池。目前太阳能电池片常见的规格尺寸主要有125mm×125mm、150mm×150mm和156mm×156mm等几种,厚度一般在170~220μm。 单晶硅与多晶硅电池片到底有哪些区别呢?由于单晶硅电池片和多晶硅电池片前期生产工艺的不同,使它们从外观到电性能都有一些区别。从外观上看:单晶硅电池片四个角呈圆弧缺角状,表面没有花纹;多晶硅电池片四个角为方角,表面有类似冰花一样的花纹(业内称为多晶多彩),也有一种绒面多晶硅电池片表面没有明显的冰花状花纹(业内称为多晶绒面);单晶硅电池片减反射膜绒面表面颜色一般呈现为黑蓝色,多晶硅电池片减反射膜绒面表面颜色一般呈现为蓝色。 对于使用者来说,相同转换效率的单晶硅电池和多晶硅电池是没有太大区别的。单晶硅电池和多晶硅电池的寿命和稳定性都很好。虽然单晶硅电池的平均转换效率比多晶硅电池的平均转换效率高1%左右,但是由于单晶硅太阳能电池只能做成准正方形(4个角为圆弧状),当组成太阳能电池组件时就有一部分面积填不满,而多晶硅太阳能电池是正方形的,不存在这个问题,因此对于太阳能电池组件的转换效率来讲几乎是一样的。另外,由于两种太阳能电池材料的制造工艺不一样,多晶硅太阳能电池制造过程中消耗的能量要比单晶硅太阳能电池少30%左右,所以多晶硅太阳能电池占全球太阳能电池总产量的份额越来越大,制造成本也将大大小于单晶硅电池,所以使用多晶硅太阳能电池将更节能、更环保 分类及规格尺寸 (1)单晶硅太阳能电池 目前单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这

电池组件技术参数功率输出特性分析

电池组件技术参数功率输出特性分析 1.电池主要参数指标 与硅太阳能电池的主要性能参数类似,太阳能电池组件的性能参数也主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。这些性能参数的概念与前面所定义的硅太阳能电池的主要性能参数相同,只是在具体的数值上有所区别。 (1)短路电流I S 当将太阳能电池组件的正负极短路,使U=0时,此时的电流就是电池组件的短路电流,短路电流的单位是A,短路电流随着光强的变化而变化。 (2)开路电压Uo 当太阳能电池组件的正负极不接负载时,组件正负极间的电压就是开路电压,开路电压的单位是V。太阳能电池组件的开路电压随电池片串联数量的增减而变化。 (3)峰值电流I m 峰值电流也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池组件输出最大功率时的工作电流,峰值电流的单位是A。 (4)峰值电压U m 峰值电压也叫最大工作电压或最佳工作电压。峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是V。 (5)峰值功率Pm 峰值功率也叫最大输出功率或最佳输出功率。峰值功率是指太阳能电池组件在正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:Pm =I m×U m。峰值功率的单位是W。太阳能电池组件的峰值功率取决于太阳辐照度、太阳光谱分布和组件的工作温度,因此太阳能电池组件的测量要在标准条件下进行,测量标准为:辐照度lkW/mz、光谱AMl.5、测试温度25℃。 (6)填充因子 填充因子也叫曲线因子,是指太阳能电池组件的最大功率与开路电压和短路电流乘积的比值。填充因子是反应太阳能电池组件所用电池片输出特性好坏的一个重要参数,它的值越高,表明所用太阳能电池组件输出特性越趋于矩形,电池组件的光电转换效率越高。太阳能电池组件的填充因子系数一般在0.5~0.8之间,也可以用百分数表示。

晶硅组件检测与分析

晶硅组件检测与分析 This model paper was revised by the Standardization Office on December 10, 2020

光伏电站晶硅组件如何检测与分析 光伏电站的质量问题由来已久,几年前,一家权威认证机构对国内已经在运行的多座大型晶硅组件光伏电站进行了质量检测,调查发现光伏组件普遍存在各种质量问题,如热斑、隐裂和功率衰减等,对电站的发电量、KPI指标、电站收益及日常运行维护带来严重影响。 电站建成后,随着时间的推移,组件本身首年光致衰减及逐年衰减率和其他衰减因素都客观存在、不可避免,因此实际的装机容量会逐年减少,那么基于原始装机容量进行理论发电量或理论功率输出计算的发电性能指标如PR、CPR和EPI等,其中包含的光伏电池板自身损耗部分会逐年增加,而且实际装机容量的不确定性将对次年各个电站的计划发电量的制定带来一定影响。 因此文中基于现实存在的客观情况,着重探讨已并网电站的户外组件电性能测试及功率修正方法、组件热斑现象和原因分析以及晶硅组件PID功率衰减的快速甄别方法,由于篇幅有限,其他质量问题的检测将另起他文探讨。通过相关的测试和分析手段,可对自有电站的实际情况有清楚的了解,如组件的衰减情况、热斑组件的分布比例及是否存在PID 组件等等。 一、组件(方阵)I-V测试及功率修正方法 笔者曾在某西部多家地面电站进行考察,发现在某一随机时段各个逆变器的发电量存在较大差异。如图1所示,通过对电站逐级逐段分析,排除了逆变器本身及对应方阵故障、设备停机等因素,发现电量差异的主要来源为各个组串工作电流的波动性,整体离散率较高,有的甚至超过20%。 逆变器发电量的差异和组件的功率输出情况有密切关联,因此有必要从汇流箱侧去查找低功率的组串或组件,一般的,户外组件或方阵组串的电性能测试使用便携式I-V测试仪,本部分首先介绍便携I-V测试仪的原理、配套辐照度计量仪的类型和特点,接着介绍现场组件功率测试的一次修正和二次修正方法。

光伏组件能力检验方式

光伏组件能力检验方式 通过观察实验室参加能力验证的表现,实验室客户、管理机构和评价机构可以了解实验室是否有能力胜任所从事的检测活动,监控实验室能力的持续状况,识别实验室之间的差异,为实验室管理提供信息。不仅如此,实验室通过参加能力验证,可以了解自身能力,将其作为实验室内部质量控制的外部补充措施,从而满足持续改进的要求。光伏实验室的检测能力与水平尚需进一步提升。为了科学评估国内光伏组件实验室的检测能力,提高检测数据的准确性,需要通过国际通行的能力验证活动来推动和提高实验室的技术和管理水平,确定和核查实验室检测能力。 一、国内外光伏相关能力验证工作 当前,在国际上常见的光伏产品能力验证计划并不多,各主要光伏生产国的国家计量机构不定期进行小型标准光伏器件的比对,其中较有影响力的一次是美国能源部组织的历时四年的PEP93国际标准太阳电池比对,全世界有10个国家的13个太阳能电池测试实验室参加,我国天津电源研究所参加了这次比对活动,并最终具有了光伏计量基准WPVS的标定资格。近几年,澳大利亚的IFMQualityServices 组织了几次光伏组件的能力验证,但因样品传递周期过长而迟迟未有结果。而一些拥有多家光伏检测实验室的国际大型认证机构,会不定

期开展光伏产品检验能力的比对。目前,在国内尚未有正式官方的针对光伏组件产品的能力验证活动,仅在检测机构中有少量的自行组织的实验室间比对活动,但国家相关主管部门充分关注光伏检测技术的发展水平。近期,国家科技部在国家级课题“碳排放和碳减排评价机构认可关键技术”中的关于低碳产品检测数据质量控制关键技术研究与示范项目中包含了对光伏组件产品能力验证技术的研究,并将作为今后开展能力验证活动的重要依据。同时,北京鉴衡认证中心(CGC)近期也正在筹备签约检测实验室的组件测试能力比对活动。 二、方案规划与设计 光伏组件产品的能力验证作为一个全新的项目,在方案设计时,需根据样品本身的特性,制定出适于开展能力验证并达到预期目的的计划。但因样品本身的复杂性,检测方法的多样性,在方案设计过程中会遇到不少困难与问题。 1.样品选择 常用光伏组件分为晶硅组件和薄膜组件两大类,聚光组件因市场化程度低暂不考虑。因晶硅组件中多晶硅组件光电性能不如单晶硅组件稳定,相对来说易破损;薄膜组件因其固有的光致衰退特性,性能随时间变化较大而不够稳定。方案采用单晶硅组件,选取由72片125

光伏组件(太阳能电池板)规格表

光伏组件(太阳能电池板)规格表如本页不能正常显示,请点击刷新 型号材料 峰值 功率 Pm (watt) 峰值 电压 Vmp (V) 峰值 电流 Imp (A) 开路 电压 Voc (V) 短路 电流 Isc (A) 尺寸 (mm) APM18M5W27x27单晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36M5W27x27单晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM18P5W27x27多晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36P5W27x27多晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM36M8W36x30单晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36P8W36x30多晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36M10W36x30单晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36P10W36x30多晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36M15W49x29单晶硅15 17.5 0.86 21.5 0.97 287*487*25 APM36P15W43x36多晶硅15 17.5 0.86 21.5 0.97 356*426*28 APM36M20W63x28单晶硅20 17.5 1.14 21.5 1.29 281*627*25 APM36P20W58x36多晶硅20 17.5 1.14 21.5 1.29 356*576*28 APM36M25W48x54单晶硅25 17.5 1.43 21.5 1.61 536*477*28 APM36P25W68x36多晶硅25 17.5 1.43 21.5 1.61 356*676*28 APM36M30W48x54单晶硅30 17.5 1.71 21.5 1.94 536*477*28 APM36P30W82x36多晶硅30 17.5 1.71 21.5 1.94 356*816*28 APM36M35W62x54单晶硅35 17.5 2.00 21.5 2.26 537*617*40

光伏组件问题系列总结——部分遮挡对组件输出特性的影响

光伏组件问题系列总结——部分遮挡对组件输出特性的影响 1.0绪论 众所周知,晶体硅太阳电池组件的表面阴影、焊接不良及单体电池功率不匹配等因素是导致输出功率降低的主要原因,研究这些因素的影响不仅对制造晶体硅太阳电池组件有指导作用,而且也有利于人们正确判断光伏发电系统输出降低或失效的原因。 国外曾经有人报道一些在现场用了10到15年的组件电特性已经恶化。其I-V特性曲线已经和一些普通的光伏组件差别很大,而这种变化的I-V曲线可以用来分析晶体硅太阳电池组件输出降低的原因。本文主要讨论了遮挡部分电池组件输出特性的影响,并用计算机对核过程进行了模拟。 2.0模拟方法 在晶体硅太阳电池组件中,当有电池被遮挡时,组件的输出特性可以用下式表示: 这些参数估算时可以用一些参数代替:n=1.96,I0=3.86X10-5(A),Rsh=15.29(Ω)。 a=2.0x10-3,Vbr=-21.29(V),nn=3.R3=0.008. 组件中有电池被遮盖时的电路可以用图片三来表示,正常的电池和被遮盖住的电池在组件中是串联关系,因此电压V和电流I满足以下等式:

组件中电池被遮挡时的模拟电路 其中,Iph1代表组件中普通电池的光电流,Iph2代表遮挡电池产生的光电流,与等式(2)中的遮挡透过率有关系,例如,当遮挡透过率为35%时,Iph2是Iph1的0.35倍。通过解(3)-(6)式可以计算出I-V的特性。 二、实验 图2(a)和(b)是通过改变阴影透过率的情况下分别计算和实际测量的I-V特性曲线。当组件上的一个电池用不同的透过率(一个组件由36块电池组成)时,短路电流大致变化不

光伏组件生产四——EL检测

光伏组件生产四——EL检测太阳能电池组件缺陷检测仪——即EL测试仪是利用晶体硅的电致发光原理、利用高分辨率的CCD相机拍摄组件的近红外图像,获取并判定组件的缺陷。 EL 检测仪具有灵敏度高、检测速度快、结果直观形象等优点,是提升光伏组件品质的关键设备;红外检测可以全面掌握太阳电池内部问题,为改进生产工艺提供依据,提升产品质量,可以对问题组件进行及时返修,尽可能的降低损失。方便层压前和层压后太阳能电池组件的测试,更换不同规格的太阳能电池组件后设备能方便地调整,保证太阳能电池组件的安全。 使用EL检测仪 通过EL测试仪可以清楚的发现太阳能组件电池片上的黑斑、黑心以及组件中的裂片,包括隐裂和显裂、劣片及焊接缺陷等问题,从而及时发现生产中出现的问题,及时排除,进而改进工艺。对提高效率和稳定生产都有重要的作用,因而太阳电池电致发光测试仪被认为是太阳电池产线上的“眼睛”。 EL检查的生产工艺及注意事项 不同规格的电池片要使用不同的电流和电压,具体如下

注意事项 1.使用前确保太阳能电池组件规格是否有调整,严禁未经调整随意测试不同规格的组件。 2.太阳能电池组件在传输过程中不得随意拉动或者停止太阳能电池组件,确保人员和产品的安全。 3.在检查直流电源前,请在切断电源10分钟后再用万用表等确认进行工作。 4.禁止随意使用U盘拷贝数据,避免病毒传染,重要数据流失。 5.如一段时间不使用,应同时关闭电脑及所有电源。 6.打开直流稳压电源后,确认电源上面的数值是否符合规格。 7.请勿在暗箱内放置任何物体。 EL检测阶段常见问题及解决方法 1、破片 生产过程中由于铺设、层压操作不当导致热应力、机械应力作用不均匀都有可能出现破片现象。 2、黑芯

光伏组件安全鉴定测试规范

XXXXX有限公司光伏组件安全鉴定测试规范

1.目的 为了合理的验证光伏组件安全性能,以确保必要的测试项目得到统一和规定,进而保证产品质量,满足产品设计需求。 2.适用范围 本规范没有涉及海上和交通工具应用时的特殊要求,也不适用于集成了交/直流逆变器的组件。本规范的试验程序和通过判据为了发现由误用应用等级,不正确的使用方法或组件内部元件破碎而引起的火灾、电击和人身伤害的隐患。 3.术语定义

光伏组件的应用等级定义如下: A级:公众可接近的、危险电压、危险功率应用 通过本等级鉴定的组件可用于高于直流50V或240W以上的系统,同时这些系统是公众有可能接触或接近的。通过本标准和IEC61730-2适用于本应用等级的安全鉴定的组件被认为满足安全等级II的要求。 B级:限制接近的、危险电压、危险功率应用 通过本等级鉴定的组件可用于以围栏或特定区划限制公众接近的系统。通过本应用等级的组件只提供了基本的绝缘保护,这类组件被认为满足安全等级0的要求。 C级:限定电压、限定功率应用 通过本等级鉴定的组件只能用于低于直流50V和240W的系统,这些系统公众是有可能接触和接近的。通过本标准和IEC61730-2适用于本应用等级的安全鉴定的组件被认为满足安全等级III的要求。 注:安全等级在IEC61140中规定。 4.引用标准 IEC 61646,地面用薄膜光伏组件设计鉴定和定型 5.测试内容 组件应进行的试验由IEC61730-1确定的应用等级决定,下表列出各等级所需的试验项目。试验的顺序应根据测试序列进行。 基于应用等级的试验要求

5.1外观检查MST01 5.1.1目的

光伏组件测试标准内容对比

光伏组件测试标准内容对比 郭素琴李娜武耀忠傅冬华 (阿特斯阳光电力科技有限公司测试中心,常熟215562 )摘要:对光伏行业内主要的组件测试标准中预处理试验、基本检查试验、电击危害试验、火灾试验、机械应力试验、结构试验和性能测试的试验内容进行对比总结,包括IEC 61215:2005地面用晶体硅光伏组件设计鉴定和定型、UL1703:2004平板组件安全测试、IEC 61730-2:2004 光伏组件安全鉴定。 关键词:组件测试标准IEC 61215 IEC 61730 UL1703 Comparison of PV module test standards Suqin Guo, Na Li, Willon Wu, Albert Fu (Changshu CSI Advanced Solar Inc,Changshu 215562 ) Abstract:According to PV module test standards including IEC 61215:2005, UL1703:2004 and IEC 61730-2:2004 Comparation of the Preconditioning tests, General inspection test, Electrical shock hazard tests, Fire hazard tests, Mechanical stress tests, Component tests and performance test were studied in this paper. Keywords:Photovoltaic modules, Test standards, IEC 61215, IEC 61730, UL 1703 1.引言 在低碳经济成为热点,节能减排成为目标时,使用光伏组件的进行发电能大量减少温室气体的排放。随着光伏电站建设的增多与光伏组件应用领域的扩大,越来越多的客户和光伏组件生产厂商认识到光伏组件使用时安全性能的重要性。现在已有很多国际知名的认证机构开展了对光伏组件的可靠性检测,而且也有很多的生产厂商在公司内部建立实验室对光伏组件进行可靠性检测。故本文对IEC 61215:2005、IEC 61730-2:2004、UL 1703:2004三份光伏组件测试标准的内容进行对比。 2.标准介绍 2.1 IEC 61215:2005《地面用晶体硅光伏组件:设计鉴定和定型》,该标准规定了地面用光伏组件设计鉴定和定型的要求,表明组件能够在规定的气候条件下长期使用。 2.2 IEC 61730-2:2004《光伏(PV)组件安全鉴定 第二部分:试验要求》,IEC 61730-2部分规定了光伏组件的试验要求,以使其在预期的使用期内提供安全的电气和机械运行。对由机械或外界环境影响造成的电击、火灾和人身伤害的保护措施进行评估。 2.3 UL 1703:2004《平面组件安全测试》,该标准适用于安装在建筑物或与建筑物连为一体的平面光伏电池板,也适用于独立应用的太阳能电池平板。适用于在电压小于等于1000伏的系统中应用的光伏电池板,还适用于连接在或是装置在光伏电池板上的设备部分。不适于从组件中获得电压、电流的输出设备,任何追踪装置,在强光下照射下的应用的电池组件,光学集中器,光电热结合的模块及面板。 3.预处理试验对比 3.1 IEC 61215:2005有温度循环(50或200次循环、-40℃至+85℃)、湿冻试验(10次循环、-40℃至+85℃、85%RH)、湿热试验(1000小时、85℃,85%RH)、紫外预处理试验(15KWh/m2)、室外曝晒试验(60KWh/m2)。 作者简介:郭素琴(1979-),女,江西兴国人,阿特斯光伏测试中心质量监督员,主要从事太阳能 光伏组件可靠性检测室的监督工作。

光伏组件故障分析..

一.接线盒 光伏组件接线盒的主要作用是连接和保护太阳能光伏组件,传导光伏组件所产生的电 流。光伏组件接线盒作为太阳能电池组件的一个重要部件,是集电气设计、机械设计和材料 应用于一体的综合性产品,为用户提供了太阳能光伏组件的组合连接方案。 目前,中国组件制造商生产的组件很多都存在不少的质量问题和隐患,而其中很大一部 分组件质量问题来自于接线盒自身的设计和品质。作为光伏组件制造商的配套企业,接线盒 制造商不仅需要对组件制造商负责,更需要对终端客户负责,特别是对使用过程中人身安全 的保护。所以,优化接线盒结构设计、提高质量是所有接线盒制造企业的首要任务。 常州天华新能源科技有限公司(简称“天华新能源”)下属常州华阳光伏检测技术有限 公司(简称“华阳检测”,于 2009 年 12 月获得了 CNAS 实验室认可,认可范围包括光伏组) 件、光伏材料共 119 项检测能力。公司自 2008 年开始进行接线盒检测(依据标准:VDE 0126-5:2008),讫今共完成 30 家接线盒供应商、50 多款接线盒的

检测和质量分析,获得了

大量的检测数据。 结合光伏组件户外使用的实际情况,我们总结出目前接线盒常见失败项目主要有:IP65 防冲水测试、结构检查、拉扭力试验、湿漏电试验、二极管温升试验、环境试验、750℃灼 热丝试验。 接线盒测试常见失败项目统计图:

一、户外组件因接线盒问题引起的故障图片 接线盒引线端子烧毁 接线盒烧毁 引起组件背板烧焦 组件碎裂 二、接线盒在认证测试中常见失败项目及原因分析 1.接线盒 IP65 防冲水测试 防水性能是接线盒性能的重要指标。认证测试中,先进行老化预处理测试,然后进行防 冲水测试,再通过外观结构检查和工频耐压测试进行评判。测试能否顺利通过,取决于接线 盒的密封保护程度,而接线盒的密封保护直接影响到成品组件的防触电保护和漏电防护的等 级。就目前常规构造的接线盒而言,其设计和材料的缺陷已在认证测试中显露无疑。 图 1 IP65 防冲水测试测试图片

光伏组件生产工艺流程

光伏组件生产工艺流程: A、工艺流程: 1、电池检测—— 2、正面焊接—检验— 3、背面串接—检验— 4、敷设(玻璃清洗、材料切割、玻璃预处理、敷设)—— 5、层压—— 6、去毛边(去边、清洗)—— 7、装边框(涂胶、装角键、冲孔、装框、擦洗余胶)—— 8、焊接接线盒—— 9、高压测试——10、组件测试—外观检验—11、包装入库; B、工艺简介: 1、电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。 2、正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。(我们公司采用的是手工焊接) 3、背面串接:背面焊接是将36片电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将“前面电池”的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次将36片串接在一起并在组件串的正负极焊接出引线。 4、层压敷设:背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA 、玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂(primer)以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:玻璃、EVA、电池、EVA、玻璃纤维、背板)。 5、组件层压:将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA熔化将电池、玻璃和背板粘接在一起;最后冷却取出组件。层压工艺是组件生产的关键一步,层压温度层压时间根据EVA的性质决定。我们使用快速固化EVA时,层压循环时间约为25分钟。固化温度为150℃。 6、修边:层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。

晶硅光伏组件最佳设计技术

前言 晶体硅电池是光电转化的核心器件,但是由于单片电池片的电压、电流、功率有限,所以要将电池片串并联起来,使它具有满足用电设备和工业化用电要求的电压、电流、功率。但是,由于晶体硅电池物理脆性,容易碎裂,因此需要将电池片封装,做成组件进行保护。 晶硅光伏组件主要分为: 常规组件(组成:玻璃、EVA、晶硅电池、背板、铝框、接线盒等); 透明组件(组成:玻璃、EVA、晶硅电池、透明背板、铝框、接线盒等); 双玻组件(组成:玻璃、PVB、晶硅电池、玻璃背板、接线盒等); 无框组件(没有铝框的常规组件和透明组件); 组件的设计主要考虑三点: 物理电学性能 组件的功率大小,尺寸,承载、安装等要求。物理电学性能需要满足IEC61215和IEC61730或UL1703。使用的环境 针对组件使用的环境不同,需要特殊化设计,例如: 组件用于沿海或海岛地区,那么组件需要具有耐盐雾、防腐蚀的性能。此时,组件需要满足IEC61701的标准要求。 针对农业地区,需要组件具有抗氨气腐蚀的能力,组件需要满足IEC62716的标准。 性价比最佳化 组件的设计需要兼顾组件的性能和成本,使得组件的性价比达到最佳化。 透明组件 透明组件的用途 透明组件根据设计不同,可以得到不同的透光率,所以透明组件广泛的应用于屋顶及光伏建筑一体化(BI PV)等。 实验设计

2.1 设计前言 首先透明组件的原材料必须符合材料符合组件工厂材料导入的标准,材料测试符合性能质量要求,参考标准可以根据原材料的规格书、认证信息,以及工厂根据IEC61215或UL1703演化而来的原材料测试。其次,由于透明组件涉及变量较多(如尺寸、透光率、电池片功率、电池片数量、物料价格成本、人工成本、制造成本等),因此这里化归处理,考虑透光率、成本(元/W),以及曲线图中过原点的直线的最大斜率=透光率/(元/W)。 透光率={1-(电池片面积*电池片数量)/组件面积}×玻璃透光率×透明背板透光率。 成本(元/W)=(电池片+其它物料成本)/组件瓦数。 最大斜率=透光率/(元/W) --------过曲线与原点的直线的最大斜率。 透明组件的物料组成如表1所示。 表1 透明组件的物料组成 2.2电池片功率数量一定,其它不定,确定最佳性价比 任意组件,当电池片数量、功率一定,随着组件尺寸的增大,透光率将增大,成本相应增加。以透光率与成本(元/W)为坐标轴作图可以得到最佳的性价比的点。下面分析引出以透光率与成本(元/W)之间的关系图。 分析如下: 组件透光率Z与组件的面积变化率X之间的关系 Z={1-(电池片面积*电池片数量)/组件面积(1+X)}×玻璃透光率×透明背板透光率。 令:(电池片面积*电池片数量)/组件面积=a 玻璃透光率×透明背板透光率=b 所以,Z={1- a/(1+X)}b, 其中,a,b>0,且为常数,Z>0,X≥0。

相关文档
最新文档