(完整版)初中数学思想方法大全

(完整版)初中数学思想方法大全
(完整版)初中数学思想方法大全

初中数学思想方法大全

教学的本质到底是什么?很显然,教学最本质的东西就是传授知识,提高素质,培养能力。那么,数学教学的本质又是什么呢?众所周知:“数学是思维的体操。”数学思想方法是数学的精髓,它是数学中最本质最有价值的东西。它是知识转化为能力的桥梁。所以从某种意义上说,数学教学的本质就是数学思想方法的教学,在数学教学中,教师除了基础知识和基本技能的教学外,更应重视数学思想方法的参透,注意对学生进行数学思想方法的培养。

一、数学思想方法是什么?

数学思想方法是什么呢?其实它包换两个方面,即思想和方法。

所谓数学思想,是指人们对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提练上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是用数学解决问题的指导思想,它直接支配着数学的实践活动。所谓数学方法,则是在数学提出问题、解决问题(包括数学内部问题和实际问题)过程中,所采用的各种方式、手段、途径等。它具有过程性、层次性和可操作性等特点。数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们合称为数学思想方法。

因此,在数学教学中,教师除了基础知识和基本技能的教学外,还应重视数学思想方法的渗透,注重对学生进行数学思想方法的培养,这对学生今后的数学学习和数学知识的应用将产生深远的影响,使学生终生受益。正如波利亚强调:在数学教学中“有益的思考方式、应有的思维习惯”应放在教学的首位。加强数学思想方法教学,必然对提高数学教学的质量起到至关重要的作用。

二、初中阶段主要的数学思想方法有哪些?

纵观初中新课标教材,涉及到的数学思想方法大体可分为三种类型。第一类是技巧型思想方法(也称低层次数学思想方法),包括消元、降次、换元、配方、待定系数法等,这类方法具有一定的操作步骤。比较容易为学生所接受。第二类是逻辑型的思想方法(也称较高层次数学思想方法),包括类比、抽象、概括、归纳、分析、综合、演绎、特殊化方法、反证法等,这类方法都具有确定的逻辑结构,是普通适用的逻辑推理论证模型。第三类是宏观型思想方法(也称高层次数学思想方法),主要包括用字母表示数、数形结合、分类讨论、归纳猜想、化归转换、数学模型等,这类方法较多地带有思想观点的属性,揭示数学发展中极其普遍的方法,对数学发展起导向功能。学生较难领悟,需要教师在平时的教学中反复渗透。

用图框表示是:

(一)、宏观型思想方法

1.化归转化思想方法

不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。通过转化可使原条件中隐含的因素显露

出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。化归转化思想是指在解决问题的过程中,对问题进行转化,使之成为简单、熟知问题的数学思想方法,它是使一种数学对象在一定条件下转化为另一种数学对象的思想和方法。其核心就是将有待解决的问题转化为已有明确解决程序的问题,以便利用已有的理论、技术来加以处理,从而培养学生用联系的、发展的、运动变化的观点观察事物、认识问题、解决问题。

(1)、转化与化归的原则:

熟悉化原则:即陌生问题--熟悉问题,就是常说的通过旧知解决新知

简单化原则:即复杂问题--简单问题

具体化原则:即抽象问题--具体问题或直观问题

极端化原则:即运用极端化位置或状态的特性引出一般位置上或状态下的特性,从而获得解决问题的思路。

和谐化原则:即对问题进行转化时要注意把条件和结论的表现形式转化为更具数、式和形内部固有和谐统一特点的形式,以帮助我们去确定解决问题的方法。

(2)转化与化归的主要途径有:

①正与反、一般与特殊的转化;②常量与变量的转化;③数与形的转化。有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。有些不易解决的几何题通过辅助线转化为代数三角的知识来证明,实现转化;④数学各分支之间的转化;⑤相等与不相等之间的转化;⑥实际问题与数学模型的转化.⑦利用“换元”、“画辅助线”、“消元法”、“配方法”,进行构造变形实现转化。

(3)转化与化归的应用举例:

减法转化成加法(减去一个数等于加上这个数的相反数);除法转化成乘法(除以一个不等于零的数等于乘以这个数的倒数);多项式的先化简再代入求值;单项式乘单项式可化归为有理数乘法和同底数幂的乘法运算;单项式乘多项式和多项式乘多项式都可以化归为单项式乘单项式的运算;将求负数的立方根转化为求正数的立方根的相反数;实数近似运算中据问题需要取近似值,从而转化为有理数计算;将异分母分式的加减转化为同分母分式的加减;将分式的除法转化成分式的乘法;将分式方程转化为整式方程求解;将分子的次数不低于分母次数的分式用带余除法转化为整式部分和分式部分的和;将方程的复杂形式化为最简形式;通过立方程把实际问题转化为数学问题;通过解方程把未知转化为已知;把一元二次方程转化为一元一次方程求解;把二元二次方程组转化为二元一次方程组,再转化为一元一次方程从而求解;通过转化为解方程实现实数范围内二次三项式的分解、方程中字母系数的确定;角度关系的证明和计算;平行线的性质和判定;把几何问题向平行线等简单的熟悉的基本图形转化;特殊化(特殊值法、特殊位置、设项、几何中添辅助线等);图形的变换(轴对称、平移、旋转、相似变换);解斜三角形(多边形)时将其转化为解直角三角形等。

例1 如图,“回”字形的道路宽为1米,整个“回”字形的长为8米,宽为7米,一个人从入口点A沿着道路中央走到终点B,他共走了 .

思路和解答假设拖把的宽度是1米,某服务员拿着拖把沿着小路向前推,那人走遍小路相当于把整块场地拖完了,而拖1㎡的场地相当于那人向前走了1米,整块场地面积是7×8=56(㎡),所以那人从A走到B共走了56米,这样我们就把求线段长度问题化归成求面积问题了。

下面是一个化几何问题为代数问题的例题

例2 如图,是一块在电脑屏幕上出现的矩形色块图,由6个颜色不同的正方形组成,设中间最小一个正方形边长为1,则这个矩形色块图的面积为 .

思路和解答设次小正方形边长为x,则其余正方形的边长依次1+x,2+x,3+x,根据题意得:(2+x+3+x)(3+x+x)-【(3+x)2+(2+x)2+(1+x)2+2x2】=1,解得x=4. 所以矩形色块图的面积为13×11=143.

注:如果对待这个问题时只考虑几何的面积求法,很容易陷入分别求边长的死胡同,从而一筹莫展,这里采用代数考虑,将问题用一个方程表达出来,进而求出次小正方形的边长,进而求得解。这里又包含了整体思想、方程思想.

2.数形结合的思想和方法

数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。著名数学家华罗庚先生说:“数形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合千般好,隔离分家万事休。”

这充分说明了数形结合思想在数学研究和数学应用中的重要性。

(1)数形结合的主要途径:

①形转化为数:用代数方法研究几何问题,这是解析几何的基本特点.

②数转化为形:即根据给出的“数式”的结构特点,构造出与之相应的几何图形,用几何方法解决代数问题.

③数形结合:即用形研究数,用数研究形,相互结合,使问题变得直观、简捷、思路易寻.

(2)数形结合的应用举例:

应用:A利用数轴确定实数的范围;B几何图形与代数恒等式(或不等式);C数与形相结合在平面直角坐标系中的应用;D利用函数图像解决方程、不等式问题;E数与形相结合在函数中的应用;F构造几何图形解决代数问题例如:在数轴上表示数;用数轴描述有理数的有关概念和运算(相反数、绝对值等概念,比较有理数的大小,利用数轴探究有理数的加法法则、乘法法则等);在数轴上表示不等式的解集;代数的不等式(组)、方程和方程组,几何的几乎所有内容;函数方面(建立直角坐标系使点与有序实数对之间建立了一一对应关系,从而具备了数形转化的重要工具;从解析式和图像两个方面来研究函数,能更清晰地把握函数的性质;用图像解决代数问题〈如解不等式、解方程〉和用代数解决几何问题〈如通过解析式确定抛物线的对称轴、开口方向等〉);运用代数、三角比知识通过数量关系的讨论去处理几何图形的问题;能运用几何、三角比知识通过对图形性质的研究去解决数量关系的问题。

①数轴上的点与实数的一一对应的关系。②平面上的点与有序实数对的一一对应的关系。③函数式与图像之间的关系。④线段(角)的和、差、倍、分等问

题,充分利用数来反映形。⑤解三角形,求角度和边长,引入了三角函数,这是用代数方法解决几何问题。⑥“圆”这一章中,贺的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。⑦统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。

例1、二元一次方程组的解的意义:

二元一次方程组11122200

a x

b y

c a x b y c ++=??++=?的解有三种情况:

① 无解;②无数个解;③ 只有一个解。

这三种情况可以转化为两条直线a 1x+b 1y+c 1=0、a 2x+b 2y+c 2=0的三种位置关系:

①平行;②重合;③ 相交。方程组的解转化为两条直线的交点。当a 1:a 2=b 1:b 2≠c 1:c 2时,两条直线的斜率相同,y 轴上的截距不同。此时两条直线平行,无

交点,因而方程组无解。当a 1:a 2=b 1:b 2=c 1:c 2时,两条直线的斜率相同,y 轴

上的截距相同。此时两条直线重合,有无数个公共点,因而方程组有无数个解。当a 1:a 2≠b 1:b 2时,两条直线的斜率不相同,两条直线相交,只有一个交点,

因而方程组只有一个解。

,方程组无解。直线2x+y+3=0、4x+2y+1=0的位置关系:平行

4x+2y+1=0

②21020x y x y ++=??

+=?,方程组只有一个解。直线2x+y+1=0、x+2y=0的位置关系:相交。 ③24020

x y x y +=??+=?,方程组有无数个解。两直线2x+4y=0、x+2y=0的位置关系:重合。

例2、图形隐含条件:

例:在数轴上的位置如图,化简:|a-b|-|b-c|+2|a+c|。

解:∵b <0,c <0,b >c ,a >b ,|c |>|a |∴a -b >0,b -c >0,a +c <0。|a -b |-|b -c |+2|a +c |=(a -b )-(b -c )-2(a +c ) =-a-2b-c 。

例3、如图,是连接在一起的两个正方形,大正方形的边长是小正方形边长的2倍。问:若只许剪两刀应如何裁剪,使之能拼成一个新的大正方形?

对于这一问题学生往往采取实验的方法,这里裁一刀,那里试一剪,但却极少有人能在短时间内拼凑好。如果对题目认真加以分析,我们不难发现,从已知到结论,图形虽然变了,但其中却还有没变的东西——面积,若设小正方形的面积为1,则其边长就是1,大正方形的变长是2,新大正方形的边长为 5 , 这样一来,我们仅需沿着图4中边长为5的线段去考虑裁剪即可,而图中这样的线段没有几条,于是很快就能找到答案。

3.分类讨论的思想和方法

由于数学研究对象的属性不同,或者由于在研究问题过程中出现了不同情况,从而对不同情况进行分类研究的思想,我们称之为分类讨论思想,其实质是把问题“分而治之,各个击破”。是一种逻辑划分的思想。从思维策略上看,它是把要解决的数学问题,分解成可能的各个部分,从而使复杂问题简单化,使“大”问题

(1) (2) (1)

(2) c b 0 a x

转化为“小”问题,便于求解。

(1)分类的要点方法:

①分类是按一定的标准进行的,分类的标准不同,分类的结果也不相同;

②要注意分类的结果既无遗漏,也不能交叉重复;

③分类要逐级逐次地进行,不能越级化分。

(2)分类讨论的步骤

同一性、互斥性、层次性三原则仅仅保证合理分类,是分类讨论中的核心步骤,解题中,分类讨论一般分为四步:

第一,确定讨论的对象以及讨论对象的取值范围;

第二,正确选择分类标准,合理分类;

第三,逐类、逐段分类讨论;

第四,归纳并做出结论.

(3)分类思想应用举例:

应用:A对问题的题设条件需分类讨论;B对求解过程中不便统一表述的问题进行分类讨论;C从图像中获取信息进行分类讨论;D对图形的位置、类型的分类讨论;E对字母、未知数的取值范围分不同情况讨论。

例子:有理数的分类;绝对值的讨论;有理数的加法法则、乘法法则、有理数乘法的符号法则、乘方的符号法则;整式分类;研究平方根、立方根时,把数按正数、0、负数分类;按定义或按大小对实数进行分类;

例1绝对值概念是一个需要分类讨论的概念,要讲清这一概念应从绝对值的几何意义说起,也就是一个数的绝对值就是数轴上表示这个数的点与原点的距离。学生自然而然的会得出绝对值的三种分类讨论情况,也就是:

a ( a>0)

|a| = 0 ( a = 0 )

-a ( a<0 )

例2 甲、乙两人分别从相距30km 的A 、B 两地同时相向而行,经过3h 后相距3km ,再经过2h ,甲到B 地所剩的路程是乙到A 地所剩路程的2倍,求甲、乙两人的速度。(分析:题中“经过3h 后相距3km ”有两种情况,一种是没相遇距3km ;一种是相遇后距3km 。)

解:当3h 后甲、乙两人未相遇时,设甲的速度为xkm/h ,乙的速度为ykm/h ,则

(1)??

?-=--=+)530(253033033y x y x 解得 ???==54y x

(2)???-=-+=+)530(253033033y x y x 解得 ???

????==317316y x 答:甲的速度为4Km/h ,乙的速度为5Km/h 或甲的速度为16/3Km/h ,乙的速度为17/3Km/h 。

4、数学建模思想

数学模型指根据所研究的问题的一些属

性、关系,用形式化的数学语言(概念、符

号、语言等)表示的一种数学结构(如多项式、方程式、不等式、函数式以及图形等)。

把实际应用题中的等量关系构建在方程组的模式,或其他模式,找到一种解决问题的数学方法。数学模型是对客观事物的空间形式和数量关系的一种反映,它可

以是方程、函数或其他数学式子,也可以是一个几何基本图形。利用数学模型解决问题的一般数学方法就是数学模型方法。它的基本步骤如上图所示:数学中的建模思想是解决数学实际问题用得最多的思想方法之一,初中数学中常用的数学模型有:方程模型,函数模型,几何模型,三角模型,不等式模型和统计模型等等。

数学模型方法,指先根据研究的问题建立数学模型,再通过对数学模型的探索进而达到解题目的的方法。此法多用于解决一些实际问题或较繁琐的数学题。

应用:A建立几何模型(合理、正确地画出几何图形);B建立方程、函数模型解决实际问题;C在解决实际问题(如物体运动规律、销售问题、利润问题、方案设计、几何图形变化问题等)时,先抽象出一次函数或二次函数关系式的数学模型(即建模),再用函数的知识来解决这些实际问题。

●函数与方程思想

方程思想(方程模型)就是从分析问题的数量关系入手,适当设定求知数,利用已知条件、公式、定理中的已知结论把所研究问题中已知量和未知量之间的数量关系转化为方程或方程组等数学模型,从而使问题得到解决的思维方式。

函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系建函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路要确定变化过程的某些量。

函数思想与方程思想的联系十分密切。解方程f(x)=0就是求函数y=f(x)当函数值为零时自变量x的值;求综合方程f(x)=g(x)的根或根的个数就是求函数y=f(x)与y=g(x)的图象的交点或交点个数;正是这些联系,促成了函数与方

程思想在数学解题中的互化互换,所以将二者统称为函数方程思想。

方程与函数思想应用举例:

应用:求最大(小)值;解决有关方程、不等式、圆的问题;解决大量的实际问题;

例如:立方程(组)解应用题;利用判别式和韦达定理确定一元二次方程中待定系数(字母系数);二次三项式的因式分解;利用韦达定理解形如韦达定理的二元二次方程组;

5、抽象和概括思维方法

抽象:是人们在感性认识的基础上,通过比较、归纳、分析、综合等方法,透过现象,深入里层,从所研究的问题中排开那些与转化无关的表面因素,只抽取出与研究有关,直接作用于转化机制的本质属性、内部联系和规律,从而达到理性认识的思维方法,为解答问题提供某种科学依据或一般原理。

概括:即把抽象出来的若干事物的共同属性归纳出来进行考察的思维方法。概括是人们追求普遍性的认识方式,是一种由个别到一般的思维方法。概括是以抽象为基础,抽象度愈高,则概括性愈强,高度的概括对事物的理解更具有一般性,则获得的理论或方法就有更普遍的指导性。抽象和概括是密不可分的。抽象可以仅涉及一个对象,而概括则涉及一类对象。

从不同角度考察同一事物会得到不同性质的抽象,即不同的属性。而概括则必须从多个对象的考察中寻找共同相通的性质。抽象思维侧重于分析、提练;概括思维则侧重于归纳、综合。数学中的每一个概念都是对一类事物的多个对象通过观察和分析,抽象出每个对象的各种属性,再通过归纳、概括出各个对象的共同属性而形成的。在解决数学问题方面,得出数学的模型、模式,总结出解题的

规律和方法,都是通过分析、比较、抽象、归纳等思维环节,最后进行理论概括的结果。几何图形都是由现实事物去其物理性质,而只考虑其形状、大小、位置抽象出来的,这也是解决现实生活中问题的一个途径。

6、整体思想

将问题中的某些元素或组合看成一个完整的整体,把注意力和着眼点放在问题的整体结构和结构改造上,从整体上把握问题的内容和解题的方向和策略,从而化繁为简,化难为易。

整体思想方法是指用“集成”的眼光,把某些式子或图形看成一个整体,把握已知和所求之间的关联,进行有目的、有意识的整体处理来解决问题的方法.利用整体思想往往能够避免局部思考带来的困惑.

例1 解方程组???2002x+2003y=2001①2003x+2002y=2004②

分析:如果选用代入法解答,比如由①得,x= 2001- 2003y 2002

,再代入②,得 2003×(2001- 2003y 2002

)+2002y=2004 解答起来十分麻烦.

如果选用加减法,比如,①×2003- ②×2002,可以消去x ,得

2003×2003y-2002×2002y=2001×2003- 2004×2002

形式也很复杂,不易求解.

注意到两个方程的系数正好对调这一特征,先将两方程相加,①+②,得

4005x + 4005y = 4005

化简,得 x+y=1 ③

再将两方程相减,① - ②,得 -x + y = - 3 即x-y=3 ④

由③、④组成方程组,得

?

??x + y =1 ③x - y =3 ④ 解这个方程组得 ???x = 2y = -1

. 例2 如图,矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和为86cm ,一条对角线长是13cm ,那么矩形的面积是多少?

分析 本题要求矩形的面积,根据面积公式S=AB ·BC,只需求出AB ·BC 即可。 解 根据题意,有

AB+BC+CD+DA=86-2(AC+BD )=86-4×13=34.

∴AB+BC=17.

两边平方,得AB 2+2AB ·BC+BC 2=289, 又AB 2+BC 2=AC 2

=169,

两式相减,得2AB ·BC=120, ∴AB ·BC=60(㎝2).

7、系统化

系统化,就是将各种有关材料编成顺序,纳入一定体系之中进行研究的一种思维方法。它是与比较、分类、抽象、概括、具体化等思维方法紧密联系在一起的。运用系统化方法,有助于从整体上把握事物的内在联系,系统、深刻地掌握知识;有助于抓住核心,了解来龙去脉。例如,在学习了两角和与差的三角函数

的公式,倍角、半角的三角函数公式,万能公式以及三角函数的积化和差与和差化积公式之后,应及时指导学生把这许多公式的内在联系和推导的线索用绘制图表的方法进行系统的整理,这将大大有助于学生理解、记忆和掌握这些公式,这是学好三角函数公式的关键。

又如,在学习了椭圆、双曲线、抛物线的内容之后,也应指导学生把这三种圆锥曲线的几何条件(定义)、标准方程、图形、性质制成图表,进行比较,并形成系统化的知识。

(二)、逻辑型思想方法

1、演绎推理

演绎推理是从一般原理推出个别结论的思维方法。即一般到特殊的推理方法。其特点是:在推理的形式合乎逻辑的条件下,运用演绎法从真实的前提一定能推出真实的结论。演绎推理是逻辑证明的工具,整个欧几里得几何就是一个演绎推理系统,19世纪数学家们由对欧几里得第五公设的独立性的试证导致发现非欧几何。三段论是演绎推理的主要形式,所谓“三段论”就是由大前提、小前提、结论三部分组成。

例如,凡同边数的正多边形都是相似的,这两个正多边形的边数是相同的,所以这两个正多边形也是相似的。这里有三个判断,第一个判断提供了一般的原理原则,叫做三段论的大前提;第二个判断指出了一个特殊场合的情况,叫做小前提;联合这两个判断,说明一般原则和特殊情况间的联系,因而得出的第三个判断,叫做结论。

2、归纳与猜想

在解决数学问题时,从特殊的、简单的、局部的例子出发,通过观察类比联

想进而猜想结果的思想方法,是通过对一系列特殊问题的研究,概括出一类问题的一般性规律的思维方法。

●数学归纳法

数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n0)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或n≥n0且n∈N)结论都正确”。由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。

运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。

3、比较的思维方法、

比较是一种判断性的思维活动,是确定所研究的对象的相同点和差异点的思维方法。它不遵循逻辑思维的规律,但是却能获得研究发现,是确定解题方法的线索。

应用:A概念的比较;B从不同图形中寻找相同进行比较;C将问题延伸,从中寻找规律进行比较。

例子:同类项;通过角的形态的比较,形成对对顶角、邻补角、“三线八角”的鲜明对照,在区别上明鉴,在联系上沟通;

(1). 类比方法

据事物与事物之间在某些方面(如特征、属性、关系)的相似之处进行比较,通过联想和预测,推出它们在其他方面也可能相似,从而去建立猜想和发现真理的方法。所谓类比,就是两个对象都有某些相同的属性,并且其中一个对象还有另外的某些属性作为前提,进而判断出另一个对象也有这些属性的思维形式。一些数学问题的解决思路常常是相通的,类比思想可以教会学生由此及彼,灵活应用所学知识。例如:合并同类项与合并同类二次格式类比;二次根式的和相乘与多项式乘法类比;通过与分数的类比来研究分式的概念、基本性质、通分、约分、运算等;由假分数化成带分数继而化为整数部分和分数部分的和,联想到在分子的次数不低于分母次数的分式中可以用带余除法将分式转化为整式部分和分式部分的和;通过与等式基本性质的类比来学习不等式的基本性质;学习一元一次不等式的解法,应将其与一元一次方程的解法进行类比;

(2).对比方法

把两个几何图形的特征加以对比,才能发现它们的区别和联系才能深刻地理解,才能识别。

例如:线段的中点和角平分线的区别和联系;

例1、已知:

3223222?=+,8338332?=+,154415442?=+,245524552?=+,……,若 a b a b ?=+21010 符合前面式子的规律, 则 a + b = .

解析:观察已知的四个等式我们发现:等式的左边是一个整数与分数的和,且整数与分数的分子相同,分数的分母等于整数的平方减1,等式的右边是左边的整数的平方与左边的分数的积,从上述规律可以得到式子

a b a b ?=+21010中

10=b ,991102=-=a ,所以109=+b a .

4、举反例证明假命题的方法(反驳)

●反驳

是用已知为真的命题去揭露或证实另一个命题的虚假性的逻辑方法。反驳与证明不同,证明是确定某一判断的真实性,反驳是确定对方论题的虚假性或不能成立;证明的作用在于探求真理,阐明真理,反驳的作用则在于揭露谬误,捍卫真理。反驳与证明又是密切联系的,如果确定了一个判断的真实性,同时也就意味着确定了与之相矛盾的判断的虚假性。反之,如果确定了一个判断的虚假性,同时也就意味着确定了与之相矛盾判断的真实性。所以,证明与反驳是相辅相成的,它们都是人们探索真理、发展真理不可缺少的思维形式和逻辑方法。

常用的反驳法有以下三种:

⑴构造一反例。即举出一个例子,说明它具备命题的全部条件,但不具有命题的结论。

⑵假定命题成立,推出荒谬结果,从而证明了该命题是虚假的。

例如,证明“零可以作除数”是错误的。

证明:因为2-2=3-3即2(1-1)=3(1-1),若零可以作除数,则推出2=3这一结果,显然荒谬。所以,“零可以作除数”是错误的。

⑶论证与该命题相矛盾的命题是真实的,根据矛盾律则推出原命题是虚假的数学中,要认定一个命题是真命题,必须就一般情况给出严格的推理证明,而要认定一个命题是假命题,只需举出一个反例就可以了。举反例是证明一个命题是假命题的一般方法。

●反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,

从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

与前面所讲的方法不同,反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。

反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑

思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。

反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证明的主要三步是:否定结论→推导出矛盾→结论成立。实施的具体步骤是:

第一步,反设:作出与求证结论相反的假设;

第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;

第三步,结论:说明反设不成立,从而肯定原命题成立。

在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行

专题讲座(数学思想方法与初中数学教学)

专题讲座(数学思想方法与初中数学教学)

数学活动的机会,帮助学生在自主探索和合作交流的过程中,真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。因此,在初中数学教学中,教师必须重视对学生进行数学思想方法的渗透与培养。 二、几种常见的数学思想方法在初中数学教学中的应用 (一)渗透转化思想,提高学生分析解决问题的能力 所谓“转化思想”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。转化思想是初中数学中常见的一种数学思想,它的应用十分广泛,我们在数学学习过程中,常常把复杂的问题转化为简单的问题,把生疏的问题转化为熟悉的问题。数学问题的解决过程就是一系列转化的过程,转化是化繁为简,化难为

易,化未知为已知的有力手段,是解决问题的一种最基本的思想,对提高学生分析解决问题的能力有积极的促进作用。 我们对转化思想并不陌生,中学数学中常用的化高次为低次、化多元为一元,都是转化思想的体现。在具体内容上,有加减法的转化、乘除法的转化、乘方与开方的转化、数形转化等等。例如:初中数学“有理数的减法”和“有理数的除法”这两节教学内容中,教材是通过“议一议”的形式,使学生在自主探究和合作交流的过程中,经历把有理数的减法转化为加法、把有理数的除法转化为乘法的过程,“减去一个数等于加上这个数的相反数”,“除以一个数等于乘以这个数的倒数”,这个地方虽然很简单,但却充分体现了把“没有学过的知识”转化为“已经学过的知识”来加以解决,学生一旦掌握了这种解决问题的策略,今后无论遇到多么难、多么复杂的问题,都会自然而然地想到把“不会的”转化为“会的”、“已经掌握的”知识来加以解决,这符合学生原有认知规律,作为教师,我们不能因为简单而忽视它的教学,实践告诉我们,往往是越简单、越浅显的例子,越能引起学生的认同,

初中数学思想方法总结模板计划模板汇总.doc

v1.0可编辑可修改 初中数学思想方法的概念、种类 及渗透策略分析 分类讨论思想 一、分类讨论思想的意义 当我们在解决数学问题时,有时由于被研究对象的属性不同,影响了研究问题的结果,因而需对不同属性的对象进行分类研究; 或者由于在研究问题过程中出现了不同情况,因而 需对不同情况进行分类研究. 通过分类讨论,常能化繁为简,更清楚地暴露事物的本质,并 增加条件,“分类讨论” , 简言就是先分类,后讨论。阅读大纲和教材会发现, 初中数学对分类讨论本着先易后难、循渐进的原则, 把“分类讨论思想” 分两个层次 , 即“分类思想” 和“讨论思想”。分类思想在初中数学占有相当要的地位, 通过教学应使学生确立类思想, 学会分类 方法 , 而“讨论思则要求通过有关知识的传授起到潜默化的作用。分类讨论是一种逻辑方 法, 也是一种数学思想。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性, 能训练人的思维条理性和概括性, 所以在试题中占有重要的位置。 二、分类讨论的一般步骤是:明确讨论对象, 确定对象的全体→确定分类标准, 正确进行分类 →逐步进行讨论, 获取阶段性结果→归纳小结, 综合得出结论。 三、分类讨论思想的分类原则: 分类讨论必须遵循原则进行,在初中阶段,我们经常用到的有以下 4 大原则 : (1)同一性原则 (2) 互斥性原则 (3) 相称性原则 (4) 多层次性原则四、七年 级数学中体现分类讨论思想的知识点 上册: 1、含字母式子的绝对值的化简2、过平面内的点画直线的条数3、线段、角的计算4、立体图形异面点之间的最短距离5、数轴上两点间的距离6、分段计费问题。下册:1、两边分别平行的两角的关系2、正数的平方根3、实数的分类4、坐标平面内点的坐标5、 P112第 10 题 6、解字母系数的不等式7、借助不等式(组)的正整数解讨论方案设计问题。 五、典型例题 例 1. ( 2011 浙江中考)解关于x 的不等式组: a(x 2 )> x 3

初中数学思维方法

初中数学思维方法 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法

初中数学思想方法主要有哪些

一、用字母表示数的思想,这是基本的数学思想之一 在代数第一册第一章“代数初步知识”中,主要体现了这种思想。例如: 设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b) (2)甲数的1/3与乙数的1/2差:1/3a-1/2b 二、数形结合的思想 “数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。实中数学教材中下列内容体现了这种思想。 1、数轴上的点与实数的一一对应的关系。 2、平面上的点与有序实数对的一一对应的关系。 3、函数式与图像之间的关系。 4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。 5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。 6、“圆”这一章中,贺的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。 7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。 三、转化思想 在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,它是数学基本思想方法之一。下列内容体现了这种思想: 1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。 2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。 3、“圆”这一章中,证明圆周角定理进所做的分析:证明弦切角定理的思路:求两圆的切线长的问题。这些转化都是通过辅助线来完成的。 4、把三角形或多边形中的某种线段或面积问题化为相似比问题来解决。 四、分类思想 集合的分类,有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关生活经验等都是通过分类讨论的。 五、特殊与一般化思想

初中数学中的主要数学思想方法

初中数学中的主要数学思想方法 初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等. (1) 转化思想.转化思想就是人们将需要解决的问题,通过演绎、归纳等转化手段,归结为另一种相对容 易解决或已经有解决方法的问题,从而使原来的问题得到解决.转化思想体现在数学解题过程中就是将未知的、 陌生的、复杂的问题通过演绎和归纳转化为已知的、熟悉的、简单的问题. 初中数学中诸如化繁为简、化难为易、化未知为已知等均是转化思想的具体体现.具体而言,代数式中加法与减法的转化,乘法与除法的转化,用换元法解方程,在几何中添加辅助线,将四边形的问题转化为三角形 的问题,将一些角转化为圆周角并利用圆的知识解决问题等等都体现了转化思想.在初中数学中,转化思想运用 的最为广泛.

(2) 数形结合思想.数学是研究现实世界空间形式和数量关系的科学,因而,在某种程度上可以说数学研究 是围绕着数与形展开的.初中数学中的“数”就是代数式、方程、函数、不等式等符号表达式,初中数学中的“形”就是图形、图象、曲线等形象表达式.数形结合思想的实质是将抽象的数学语言(“数” ) 与直观的图象(“形“ ) 结合起来,数形结合思想的关键就是抓住“数”与“形”之间本质上的联系,以“形”直观地表达“数”, 以“数”精确地研究“形”,实现代数与几何之间的相互转化.数形结合思想包括“以形助数”和“以数辅形” 两个方面,它可以使代数问题几何化,几何问题代数化.“数无形时不直观,形无数时难入微.”数形结合是研究数学、解决数学问题的重要思想,在初中数学中有着广泛应用. 譬如,在初中数学中,通过数轴将数与点对应,通过直角坐标系将函数与图象对应均体现了数形结合思想的 应用.再比如,用数形结合的思想学习相反数、绝对值等概念,学习有理数大小比较的法则,研究函数的性质等,从形象思维过渡到抽象思维,从而显著降低了学习难度. (3) 分类讨论思想.分类讨论思想就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同的 种类.分类是以比较为基础的,它有助于揭示数学对象之间的内在联系与规律,有助于学生总结归纳数学知识、

初中数学思想方法大全

一、宏观型思想方法 数学思想是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂。 (一)、转化(化归)思想 解决数学问题就是一个不断转化的过程,把问题进行变换,使之化繁为简、化难为易、化生疏为熟悉,变未知为已知,从而使问题得以解决。 不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。通过转化可使原条件中隐含的因素显露出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。 “转化”的思想是一种最基本的数学思想。数学解题过程的实质就是转化过程,具体的说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“抽象”转化为“具体”,把“复杂问题”转化为“简单问题”,把“高次”转化为“低次”,在不断的相互转化中使问题得到解决。 可运用联想类比实现转化、利用“换元”、“添线”、消元法,配方法,进行构造变形实现转化、数形结合,实现转化。一般转化为特殊,有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。有些不易解决的几何题通过辅助线转化为代数三角的知识来证明,有些结构比较复杂的问题,可以简化题中某一条件,甚至暂时撇开不顾,先考虑一个简化的问题,这种简化题对于证明原题常常能起到引路的作用。把实际问题转化为数学问题。结合解题进行化归思想方法的训练的做法:a、化繁为简;b、化高维为低维;c、化抽象为具体;d、化非规范性问题为规范性问题;e、化数为形;f、化实际问题为数学问题; g、化综合为单一;h、化一般为特殊。 有加减法的转化,乘除法的转化,乘方与开方的转化,添辅助线,设辅助元等等都是实现转化的具体手段。因此,首先要认识到常用的很多数学方法实质就是转化的方法 应用:A将未知向已知转化;B将陌生向熟知转化;C方程之间的转化;D平面图形间的转化;E空间图形与平面图形的转化;F统计图之间的相互转化。 例子:减法转化成加法(减去一个数等于加上这个数的相反数);除法转化成乘法(除以一个不等于零的数等于乘以这个数的倒数);多项式的先化简再代入求值;单项式乘单项式可化归为有理数乘法和同底数幂的乘法运算;单项式乘多项式和多项式乘多项式都可以化归为单项式乘单项式的运算;将求负数的立方根转化为求正数的立方根的相反数;实数近似运算中据问题需要取近似值,从而转化为有理数计算;将异分母分式的加减转化为同分母分式的加减;将分式的除法转化成分式的乘法;将分式方程转化为整式方程求解;将分子的次数不低于分母次数的分式用带余除法转化为整式部分和分式部分的和;将方程的复杂形式化为最简形式;通过立方程把实际问题转化为数学问题;通过解方程把未知转化为已知;把一元二次方程转化为一元一次方程求解;把二元二次方程组转化为二元一次方程组,再转化为一元一次方程从而求解;通过转化为解方程实现实数范围内二次三项式的分解、方程中字母系数的确定;角度关系的证明和计算;平行线的性质和判定;把几何问题向平行线等简单的熟悉的基本图形转化;特殊化(特殊值法、特殊位置、设项、几何中添辅助线等);图形的变换(轴对称、平移、旋转、相似变换);解斜三角形(多边形)时将其转化为解直角三角形; (二)、数形结合思想 数学的研究对象是现实世界中的数量关系(“数”)和空间形式(“形”),而“数”和“形”是相互联系、相互渗透的,一定条件下也是可以互相转化的,因此,在解决问题时,常需把同一问题的数量关系与空间形式结合起来考查,利用数的抽象严谨和形的直观表意,把抽象思维和形象思维结合起来,把数量关系问题通过图形性质进行研究,或者把图形性质问题通过数量关

中考数学思想方法专题之整体思想

初中数学思想之整体思想 整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想 【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7 【例2】.已知114a b -=,则2227a ab b a b ab ---+的值等于( ) A.6 B.6- C. 125 D.27- 【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值. 二.方程(组)与不等式(组)中的整体思想 【例4】已知24122x y k x y k +=+?? +=+? ,且03x y <+<,则k 的取值范围是 【例5】已知关于x ,y 的二元一次方程组3511x ay x by -=??+=?的解为56 x y =??=?,那么关于x , y 的二元一次方程组3()()5()11x y a x y x y b x y +--=??++-=? 的解为为 【例6】.解方程 22523423x x x x +-=+ 三.函数与图象中的整体思想 【例7】已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式 四.几何与图形中的整体思想

初中数学解题思想方法全部内容

初中数学解题思想方法全部内容 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法

初中数学解题思维方法大全

初中数学解题思维方法大全 还在为初中数学解题而烦恼?还在为数学低分而烦躁?那是你没有全面理解初中数学 的解题思维和解题方法。暑假不出门,了解,助你在新学期解决数学难题。 一、选择题的解法 1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。 2、特殊值法:特殊值淘汰法有些选择题所涉及的数学命题与字母的取值范围有关, 在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然 后淘汰错误的,保留正确的。 3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。 4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既 采用“走一走、瞧一瞧”的策略,每走一步都与四个结论比较一次,淘汰掉不可能的,这 样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。 5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义, 又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求 解题思路,使问题得到解决。 二、常用的数学思想方法 1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数 含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。 2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数 学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之 间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊 与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。 3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不 同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要 的解题策略。

初中数学常用思想方法专题讲解

初中数学常用思想方法专题讲解 引入语 数学思想方法就是数学基础知识、基本技能的本质体现,就是形成数学能力、数学意识的桥梁,就是灵活应用数学知识与技能的灵魂、正确运用数学思想方法就是在中考数学中取得好成绩的关键、 解中考题时常用的数学思想方法有:整体思想、分类讨论思想、方程思想、转化的思想、数形结合思想、归纳与猜想的思想等、 中考解读 数学思想就是解决数学问题的灵魂,它在学习与运用数学知识的过程中起着关键性的指导作用、数学思想方法就是中考考查的重点内容之一,还因为它就是解决数学问题的根本策略,也就是学生数学素养的重要组成部分、数学思想总就是在解决问题的过程中体现出来,在中考中不会出现单纯的数学思想题目,这就增加了数学思想的掌握与训练的难度,但它也就是有规律的,只要勤于思考与总结,经过适当的训练,相信您一定能够掌握初中数学常用的思想方法、回顾近年全国各地的中考题,不难发现数学思想方法的考查频率越来越高,涉及的知识点也越来越多、预计2009年中考,对数学思想方法的考查可能呈现以下趋势:需要利用数学思想求解的题目稳中有增,涉及的知识点更加分散、其中,函数与方程思想的考查,很可能集中体现在应用题中;数形结合思想的考查以选择与填空为主;分类讨论思想的考查主要在求解函数、不等式、空间与图形、概率等问题中出现;……,总之,数学思想的掌握与训练应引起同学们的重视、 复习策略 由于数学思想总就是渗透在问题中,所以复习中要抓关键类型,突出重点知识与方法,比如方程思想与函数思想的联合复习等;要注意挖掘课本例、习题的潜在功能,以题思法,推敲其中的思想方法,多角度多侧面探讨条件的加强与弱化、结论的开放与变换、蕴含的思想方法、及与其她试题的联系与区别等,提高复习的效率、 题型归类 一、整体的思想 整体思想就是将问题瞧成一个完整的整体,把注意力与着眼点放在问题的整体结构与结构改造上,从整体上把握问题的内容与解题的方向与策略、运用整体思想解题,往往能为许多中考题找到简便的解法、 例1 (苏州市)若2 20x x --=, ( ) 分析:已知条件就是一个一元二次方程,通过求出方程的解再代入计算,当然可以得到结果,但就是显然很繁、注意到,条件可以转化为22x x -=,而且要求值的代数式中的未知部分都就是2 x x -,所以可以整体代入、 解:由条件得:22x x -=, 213、故应选A 、

整理初中数学思想方法专题复习教学设计

课 题 数 学 思 想 方 法 专 题 复 习 20 年月日A4打印/ 可编辑

课题:数学思想方法专题复习 数形结合的思想 宜昌市第一中学周继业 一、教学设计 1.教学内容解析 高考《考试说明》在命题指导思想和命题原则中明确指出:“注重通性通法,强调考查数学思想方法”,并明确了“数学思想方法属方法范畴,但更多的带有思想、观点的属性,属于较高层次的提炼与概括”,而且把“数形结合的思想”作为所要考查的七种基本数学思想之一,纳入重点考查对象. 数形结合的思想贯穿整个高中数学的教学.本课是高三学生经过第一轮教材基础知识梳理后,在第二轮复习中关于数学思想方法的专题复习课.授课内容包含建系以数辅形、构造以形助数和转化数形互助三种结合方式,其目的是为了加强学生对数形结合思想的理解和应用,使学生能够通过数学问题的条件和结论的联系分析其代数含义和几何意义,提高学生运用图形、构造图形的能力,增强学生胸中有图、见数想图的意识.考虑到二轮专题复习回归教材的必要性,本课围绕人教版必修2中阅读材料为情景引入,紧扣数形结合思想内涵展开探究,由情景生成新的问题设问推进,层层深入实现思想建构.为系统展示数形结合思想及其应用的普遍性和重要性,改编题主要以线性规划、平面向量、函数、方程、不等式和解析几何等典型问题作为探究点,兼顾课本知识整合. 根据以上分析,本节课的教学重点确定为 教学重点:分析数学问题的代数含义和几何意义,由数思形解决问题;回顾涉及数形结合思想的知识点,完成思想建构. 2、学生学情诊断 本节课为数学思想方法的专题复习,涉及面广,分布零散,问题形式多样且难易兼备,因此学生容易以点盖面,以偏概全.数形结合思想渗透在中小学数学教材的各个章节,学生一向是以感受为主,经验为重,尚未系统整理建构,所以突破学生对数形结合思想理解上的局限性,站在思想方法的高度重新认识数形结合思想,在学生思维中留下一条清晰的认知线索为本节课成功的关键.二轮复习中,学生对线性规划知识和平面向量的坐标法接受起来相对容易,可以顺利实现以数辅形,但在中学数学的主体知识(函数、方程、不等式)中合理构造图形解决代数问题还是较难.在“探究二”中由2012年北京高考题设计了由两个不同初等函数组成的超越方程,让学生自然产生由数到形、以形助数的想法并完成求解,为凸显复习知识的深度和对学生思维训练的强度,设计的不等式问题将成为学生的难点,难在含有量词和逻辑联结词的处理,还有由数到形的等价性问题,此处要通过小组讨论、学生展示、几何画板演示进行突破.为体现“数”与“形”在本质上的相互渗透而设计“探究三”,让学生体会由形到数、由数到形的过程,帮助学生完善对数形结合思想的理解. 根据以上分析,本节课的教学难点确定为 教学难点:根据代数问题的几何含义构造图形,并借助图形特征找出处理问题的充要条件;运用数形结合思想方法时遵循等价性、简单性原则. 3.教学标准设置 (1)通过由情景生成的四个问题探究,让学生体会数形结合的三种途径,培养学生将复杂的数量关系自觉转化为直观的几何图形来解决问题的能力. (2)明确数形结合思想所涉及的知识点,能够胸中有图、见数想图. (3)借助几何画板演示,通过小组合作交流再展示的方式,让学生经历“数”的抽象和“形”的直观相互转化的过程,感受数学活动的探索性、创造性和数学的美感. 4.教学策略分析

人教版七年级(数学)下册思想方法专题:相交线与平行线中的思想方法

思想方法专题:相交线与平行线中的思想方法——明确解题思想,体会便捷渠道 ◆类型一方程思想 1.如图,直线AB,CD相交于点O,∠AOC=60°,OE把∠BOD分成两部分,且∠BOE∶∠EOD=1∶2,则∠AOE的度数为() A.180°B.160°C.140°D.120° 第1题图第2题图2.(2017·无棣县期末)如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠EOD=4∶1,则∠AOF的度数为________. 3.如图,已知FC∥AB∥DE,∠α∶∠D∶∠B=2∶3∶4.求∠α,∠D,∠B的度数. 4.(2017·启东市期末)如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC. (1)若∠DBC=30°,求∠A的度数; (2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由. ◆类型二分类讨论思想

5.若∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是() A.18°B.126° C.18°或126°D.以上都不对 6.(2017·玄武区期末)在直线MN上取一点P,过点P作射线PA、PB.若PA⊥PB,当∠MPA=40°,则∠NPB的度数是________________. 7.(2017·江干区一模)一副直角三角尺按如图①所示方式叠放,现将含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图②,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°)其他所有可能符合条件的度数为________________________________________________________________________. 8.如图,已知直线l1∥l2,直线l3交l1于C点,交l2于D点,P是线段CD上的一个动点.当P在直线CD上运动时,请你探究∠1,∠2,∠3之间的关系. ◆类型三(转化思想)利用平移进行转化求图形的周长或面积 9.如图,直角三角形ABC的周长为100,在其内部有6个小直角三角形,则6个小直角三角形的周长之和为________. 第9题图 10.(2017·惠山区期中)如图,直径为2cm的圆O1平移3cm到圆O2的位置,则图中阴影部分的面积为________cm2.

浅谈初中数学的数学思想方法

龙源期刊网 https://www.360docs.net/doc/8013801148.html, 浅谈初中数学的数学思想方法 作者:赵金玲 来源:《祖国·建设版》2013年第03期 数学思想是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实与数学理论的本质认识,而数学方法是以数学为工具进行科学研究的方法。数学思想与数学方法是数学知识中奠基性成分,是学生获得数学能力必不可少的。数学思想方法的训练,是把知识型教学转化为能力型教学的关键,是实话素质教育的重要组成部分。 1 初中数学思想方法教学的重要性 长期以来,传统的数学教学中,只注重知识的传授,却忽视知识形成过程听数学思想方法的现象非常普遍,它严重影响了学生的思维发展和能力培养。随着教育改革的不断深入,越来越多的教育工作者、特别是一线的教师们充分认识到:中学数学教学,一方面要传授数学知识,使学生掌握必备数学基础知识;另一方面,更要通过数学知识这个载体,挖掘其中蕴含的数学思想方法,更好地理解数学,掌握数学,形成正确的数学观和一定的数学意识。事实上,单纯的知识教学,只显见于学生知识的积累,是会遗忘甚至于消失的,而方法的掌握,思想的形成,才能使学生受益终生,正所谓“授之以鱼,不如授之以渔”。不管他们将来从事什么职业和工作,数学思想方法,作为一种解决问题的思维策略,都将随时随地有意无意地发挥作用。 2 初中数学思想方法的主要内容 初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。 2.1对应的思想和方法: 在初一代数入门教学中,有代数式求值的计算值,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系……在进行此类教学设计时,应注意渗透对应的思想,这样既有助于培养学生用变化的观点看问题,有助于培养学生的函数观念。 2.2数形结合的思想和方法 数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。著名数学家华罗庚先生说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难人微,数形结合百般好,隔离分家万事休。”这充分说明了数形结合思想在数学研究和数学应用中的重要性。

初中数学思想方法汇总

初中数学思想方法的概念、种类 及渗透策略分析 分类讨论思想 一、分类讨论思想的意义 当我们在解决数学问题时,有时由于被研究对象的属性不同,影响了研究问题的结果,因而需对不同属性的对象进行分类研究;或者由于在研究问题过程中出现了不同情况,因而需对不同情况进行分类研究.通过分类讨论,常能化繁为简,更清楚地暴露事物的本质,并增加条件,“分类讨论”,简言就是先分类,后讨论。阅读大纲和教材会发现,初中数学对分类讨论本着先易后难、循渐进的原则,把“分类讨论思想”分两个层次,即“分类思想”和“讨论思想”。分类思想在初中数学占有相当要的地位,通过教学应使学生确立类思想,学会分类方法,而“讨论思则要求通过有关知识的传授起到潜默化的作用。 分类讨论是一种逻辑方法,也是一种数学思想。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在试题中占有重要的位置。 二、分类讨论的一般步骤是:明确讨论对象,确定对象的全体→确定分类标准,正确进行分类→逐步进行讨论,获取阶段性结果→归纳小结,综合得出结论。 三、分类讨论思想的分类原则 : 分类讨论必须遵循原则进行,在初中阶段,我们经常用到的有以下4大原则: (1)同一性原则 (2)互斥性原则 (3)相称性原则 (4)多层次性原则 四、七年级数学中体现分类讨论思想的知识点 上册:1、含字母式子的绝对值的化简2、过平面的点画直线的条数3、线段、角的计算4、立体图形异面点之间的最短距离5、数轴上两点间的距离6、分段计费问题。下册:1、两边分别平行的两角的关系2、正数的平方根3、实数的分类4、坐标平面点的坐标5、P 112第10题6、解字母系数的不等式7、借助不等式(组)的正整数解讨论方案设计问题。 五、典型例题 例1.(2011中考 )解关于x 的不等式组: a(2-x )>3-x )9x a +( >9a+8 例2已知直线AB 上一点C ,且有CA=3AB ,则线段CA 与线段CB 之比为__ 或____ 。 练习:已知A 、B 、C 三点在同一条直线上,且线段AB=7cm ,点M 为线段AB 的中点,线段BC=3cm ,点N 为线段BC 的中点,求线段MN 的长.

初中数学思想方法有哪些(总4页)

初中数学思想方法有哪些-CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

初中数学思想方法有那些 初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等. (1) 转化思想.转化思想就是人们将需要解决的问题,通过演绎、归纳等转化手段,归结为另一种相对容易解决或已经有解决方法的问题,从而使原来的问题得到解决.转化思想体现在数学解题过程中就是将未知的、陌生的、复杂的问题通过演绎和归纳转化为已知的、熟悉的、简单的问题. 初中数学中诸如化繁为简、化难为易、化未知为已知等均是转化思想的具体体现.具体而言,代数式中加法与减法的转化,乘法与除法的转化,用换元法解方程,在几何中添加辅助线,将四边形的问题转化为三角形的问题,将一些角转化为圆周角并利用圆的知识解决问题等等都体现了转化思想.在初中数学中,转化思想运用的最为广泛. (2) 数形结合思想.数学是研究现实世界空间形式和数量关系的科学,因而,在某种程度上可以说数学研究是围绕着数与形展开的.初中数学中的“数”就是代数式、方程、函数、不等式等符号表达式,初中数学中的“形”就是图形、图象、曲线等形象表达式.数形结合思想的实质是将抽象的数学语言(“数” ) 与直观的图象(“ 形“ ) 结合起来,数形结合思想的关键就是抓住“数”与“形”之间本质上的联系,以“形”直观地表达“数”,以“数”精确地研究“形”,实现代数与几何之间的相互转化.数形结合思想包括“以形助数”和“以数辅形”两个方面,它可以使代数问题几何化,几何问题代数化.“数无形时不直观,形无数时难入微.”数形结合是研究数学、解决数学问题的重要思想,在初中数学中有着广泛应用. 譬如,在初中数学中,通过数轴将数与点对应,通过直角坐标系将函数与图象对应均体现了数形结合思想的应用.再比如,用数形结合的思想学习相反数、绝对值等概念,学习有理数大小比较的法则,研究函数的性质等,从形象思维过渡到抽象思维,从而显着降低了学习难度.

初中数学思想方法专题复习教学设计

《初中数学思想方法专题复习》教学设计 义务教育课程标准实验教科书(人教版)《数学》 本节课的设计主要采用“依问题为载体,再归纳总结”的基本模式,通过探讨归纳的形式,让学生 了解中考数学中蕴含的思想方法。教学中利用典型的中考题的 展示和学习,帮助学生顺利实现两个迁移:一是通过具体问题对相关概念、法则、设计理念公式、定理等实现知识上的迁移,二是通过具体问题的解决总结和提炼数学思想方法,然后再举一反三, 触类旁通,实现学生能力上的迁移。配合使用PPT课件,实现课堂扩容,给学生提供更多的学习机 会和探讨空间。 九年级学生在第二轮复习中已有了较多的做题技巧的储备,数学思想是数学内容的进一步提炼和概括,是对数学内容的种本质认识,数学方法是实施有关数学思想的一种方式、途径、手段,数学思 想方法是数学发现、发明的关键和动力.抓住学情分析数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,本专题的复习主要依据学生比较感兴趣的我省中考数学试题为载体,总结和提炼数学思想方法,从而达到培养学生用数学思想方法解决问题的意识和能力. 本节是在学生拥有了较多的做题技巧的基础上进行归纳总结的,但是初中的数 学思想方法很多,在教学中不可能一一展示,因此教学中主要是通过部分较简单的知识分析中考 题型的探讨,让学生了解中学主要的四大数学思想,体会数学思想方法在解题中发挥的引领和指导作用的同时,也训练了学生发现和归纳总结的良好学习习惯。 1.了解中学的四大数学思想,即方程与函数思想、数形结合思想、化归与转化思想、分类与整合 思 知识与技能想。 学 2.会用基本的思想方法解答问题。 习经历自主探究,合作交流中寻求解决问题的方目法,及在具体问题的分析过程中,渗透数学思想过程与方法 标方法。 充分发挥学生的自主能力和归纳总结能力,激情感态度与价值观发学生学习数学的兴趣,从而对 中考充满信心。 中学数学常见思想方法的归纳总结 教学重点 教学难点会利用数学思想方法解答具体问题 自主探索、合作交流、归纳总结

中学数学思想方法及教学

中学数学思想方法及其教学 1.数学思想方法教学的心理学意义 美国心理学家布鲁纳认为,“不论我们选教什么学科,务必使学生理解该学科的基本结构。”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理。”“学习结构就是学习事物是怎样相互关联的。”数学思想与方法为数学学科的一般原理的重要组成部分。下面从布鲁纳的基本结构学说中来看数学思想、方法教学所具有的重要意义。 第一,“懂得基本原理使得学科更容易理解”。心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习。”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了。下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即使新知识能够较顺利地纳入到学生已有的认知结构中去。学生学习了数学思想、方法就能够更好地理解和掌握数学内容。 第二,有利于记忆。布鲁纳认为,“除非把一件件事情放进构造得好的模型里面,否则很快就会忘记。”“学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来。高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具。”由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的。无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生。”

第三,学习基本原理有利于“原理和态度的迁移”。布鲁纳认为,“这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识。”曹才翰教授也认为,“如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,”“只有概括的、巩固的和清晰的知识才能实现迁移。”美国心理学家贾德通过实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中。”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力。 第四,强调结构和原理的学习,“能够缩挟高级‘知识和’初级‘知识之间的间隙。”一般地讲,初等数学与高等数学的界限还是比较清楚的,特别是中学数学的许多具体内容在高等数学中不再出现了,有些术语如方程、函数等在高等数学中要赋予它们以新的涵义。而在高等数学中几乎全部保留下来的只有中学数学思想和方法以及与其关系密切的内容,如集合、对应等。因此,数学思想、方法是联结中学数学与高等数学的一条红线。 2.中学数学教学内容的层次 中学数学教学内容从总体上可以分为两个层次:一个称为表层知识,另一个称为深层知识。表层知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法。 表层知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的,以及具有较强操作性的知识。学生只有通过对教材的学习,在掌握和理解了一定的表层知识后,才能进一步的学习和领悟相关的深层知识。

史上最全的初中数学解题方法大全

一、选择题的解法 1、直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。 2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关; 在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。 3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。 4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。 5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。 二、常用的数学思想方法 1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。 2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。 在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。 如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。 3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。 4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。 为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。 5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。

初中数学思想方法主要有哪些

初中数学思想方法主要有哪些 初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等.基本方法主要指待定系数法、消元法、配方法、换元法、图象法等。由于数学方法在教材中大都有具体陈述,而数学思想却是隐含在知识系统之中,这为强化数学思想方法带来了一定困难。为此,下面我想谈谈转化、分类讨论、数形结合等数学思想在初中数学中的表现。 1、转化思想 所谓转化思想是指一种研究对象在一定条件下转化为另一种研究对象的思维 方式。转化思想是数学思想方法的核心,其它数学思想方法都是转化的手段或策略。初中数学中运用转化思想具体表现在以下三个方面:(l)把新问题转化为原来研究过的问题,如有理数减法转化为加法,除法转化为乘法等(2)把复杂的问题转化为简单的问题,新问题用已有的方法不能或难以解决时,建立新的研究方式如引进负数,建立数轴;变利用逆运算的性质解方程为利用等式的性质解方程,等等。 2、分类讨论思想 所谓分类讨论是指对于复杂的对象,为了研究的需要,根据对象本质属性 的相同点和差异性,将对象区分为不同种类,通过研究各类对象的性质,从而 认识整体的性质的思想方式。在分类讨论中要注意标准的同一性,即划分始终 是同一个标准,这个标准必须是科学合理的;分域的互斥性,即所分成的各类 既要互不包含,又要使各类总和等于讨论的全集;分域的逐级性,有的问题分 类后还可在每类中继续分类。运用分类讨论思想指导数学教学,有利于学生归纳、总结所学的数学知识,使之系统化、条理化,并逐步形成一个完整的知识结构网

络,这有利于学生严密、清晰、合理地探索解题思路,提高数学思维能力。在初中数学中需要分类讨沦的问题主要表现三个方面:(1)有的数学概念、定理的论证包含多种情况,这类问题需要分类讨论。如平面几何中三角形的分类、四边形的分类、角的分类、圆周角定理、弦切角定理等的证明,都涉及到分类讨论;(2)解含字母参数或绝对值符号的方程、不等式,讨论二次函数中二次项系数与图象的开口方向等,由于这些参数的取值不同或要去掉绝对值符号就有不同的结果,这类问题就需要分类讨论;(3)有的数学问题,虽结论惟一但导致这结论的前提不尽相同,这类问题也要分类讨论。 3、数形结合思想 所谓数形结合是指抽象的数学语言与形象直观的图形结合起来,从而实现由抽象向具体转化的一种思维方式。著名数学家华罗庚说过:“数缺形时不直观,形少数时难入微”。有些数最关系,借助于图形的性质,可以使许多抽象的概念和复杂的关系直观化、形象化、简单化;而图形的一些性质,借助于数量的计算和分析得以严谨化。在初中阶段,数形结合的“形”可以是数轴、函数的图象和几何图形等等,它们都具有形象化的特点。数形结合思想在初中数学中主要表现在以下两个方面:(l)以形助数,帮助学生深刻理解数学概念如教师可以用数轴上点和实数之间的对应关系来讲清相反数、绝对值的概念以及比较两个数大小的方法;运用函数图象的性质讨沦一元二次方程的根以及讨论一元一次不等式等等;(2)以数助形,帮助学生简化解题方法。 4、函数与方程思想 函数与方程思想就是用函数的观点和方法分析问题、解决问题.函数思想是客观世界中事物运动变化、相互联系、相互制约的普遍规律在数学中的具体反映.函数与方程思想的本质是变量之间的对应,即用变化的观点和函数的形式将所研究的数量关系表示出来,然后用函数的性质进行研究,从而使问题获得解决.如果函数的形式用解析式的方式表示,那么就可以将函数解析式看作方程,并通过解方程和对方程的研究使问题得到解决,这就是方程思想.

相关文档
最新文档